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Abstract.—

Across the genome, the e↵ects of di↵erent evolutionary processes and historical

events can result in di↵erent classes of genetic variants (or alleles) characterized by their

relative frequency in a given population. As a result, population genetic inference can be

strongly a↵ected by biases in laboratory and bioinformatics treatments that a↵ect the site

frequence spectrum, or SFS. Yet despite the widespread use of reduced-representation

genomic datasets with nonmodel organisms, the potential consequences of these biases for

downstream analyses remain poorly examined. Here, we assess the influence of minor allele

frequency (MAF) thresholds implemented during variant detection on inference of

population structure. We use simulated and empirical datasets to evaluate the e↵ect of

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188623doi: bioRxiv preprint 

https://doi.org/10.1101/188623
http://creativecommons.org/licenses/by-nc-nd/4.0/


MAF thresholds on the ability to discriminate among populations and quantify admixture

with both model-based and non-model-based clustering methods. We find model-based

inference of population structure is highly sensitive to choice of MAF, and may be

confounded by either including singletons or excluding all rare alleles. In contrast,

non-model-based clustering is largely robust to MAF choice. Our results suggest that

model-based inference of population structure can fail due to either natural demographic

processes or assembly artifacts, with broad consequences for phylogeographic and

population genetic studies. We propose a simple hypothesis to explain this behavior and

recommend a set of best practices for researchers seeking to describe population structure

using reduced-representation libraries.

(Keywords: MAF; population structure; population genetic inference; structure; clustering;

genomics; bioinformatics)

The distribution of genetic variation within and among individuals is the crucial to

understanding the organization of biological diversity and its underlying causes. Across the

genome, the e↵ects of di↵erent evolutionary processes and historical events can result in

di↵erent classes of genetic variants (or alleles) characterized by their relative frequency in a

given population. An excess of common alleles may reflect the signature of population

bottlenecks (Marth et al. 2004), purifying selection (Fay et al. 2001), or the absence of

population subdivision (Pritchard et al. 2000). Alternatively, high frequencies of rare

alleles can provide evidence of population expansion (Marth et al. 2004), detailed

information on mutation rates and gene flow (Slatkin 1985), and reveal geographically

localized population subdivision (Barton and Slatkin 1986; Gompert et al. 2014). Because

the distribution of allele frequencies (also known as the site frequency spectrum, or SFS)
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therefore reflects the unique combination of these varied factors, downstream analyses are

sensitive to the influence of sampling methodologies. Yet despite the explosive recent

growth of population genetics provided by advent of a↵ordable reduced-representation

genome sequencing for nonmodel organisms, there remain significant gaps in our knowledge

of how data collection biases population genetic inference.

These biases may originate either in wet lab and bioinformatic treatments. Prior to

sequencing, the SFS may be shaped by ascertainment bias in library preparation:

RADseq-style methods introduce genealogical biases (Arnold et al. 2013) and nonrandom

patterns of missing data (Gautier et al. 2013) due to reliance on the presence of restriction

cut sites, while hybridization capture with ultraconserved element (UCE) probesets

necessarily involves targeting sites highly-conserved across evolutionarily distant taxa

(Faircloth et al. 2012). During sequencing itself, relatively high error rates are accepted in

individual reads, under the assumption they will be corrected during bioinformatic

processing steps (Nielsen et al. 2012). However, the absence of standard bioinformatic

pipelines in ecology and evolutionary biology is itself a source of uncertainty (Shafer et al.

2016) because specific methodologies and parameter choices may dramatically a↵ect the

composition of data matrices.

For organisms lacking a suitable reference genome, de novo sequence assemblies may

introduce substantial errors that a↵ect both the SFS and inference of population genetic

structure (Shafer et al. 2016). During read-mapping, SNP variation can result in higher

rates of successful alignments in reads sharing the reference allele (Degner et al. 2009).

Parameters used during variant detection can also play a significant role in determining the

number and distribution of single nucleotide polymorphisms or SNPs (Nielsen et al. 2012),

the most frequently used marker type in modern population genetics. In particular, minor

allele frequency (MAF) thresholds directly influence the SFS by imposing a cuto↵ on the

minimum allele frequency allowed to incorporate a specific genetic variant. But despite its
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potential importance, the two most popular comprehensive bioinformatic pipelines for

RADseq data alternatively include (Catchen et al. 2013) or exclude (Eaton 2014) the

option to set minor allele frequency thresholds during variant calling, with the result that

among empirical studies, MAF choices are only sometimes reported (e.g., Winger 2017;

Blanco-Bercial and Bucklin 2016).

One potential consequence of ambiguous MAF choice is variation in the ability to

detect population subdivision (or structure), a fundamental goal of many population

genetic studies. Broadly speaking, methods to detect population structure fall into two

categories: model-based (or parametric) approaches, and nonparamatric approaches.

Model-based methods, exemplified by the influential program structure (Pritchard et al.

2000), typically assume a hypothetical K populations characterized by P allele frequencies

at a set of loci L, and seek to probabilistically assign individuals to each of these

populations given their genotypes. When allowing for admixture, an additional parameter

Q models proportion of each individual’s genome that originated from a given population.

While other programs di↵er from structure in using variational inference

(fastSTRUCTURE ; Raj et al. 2014) or a maximum likelihood framework (e.g.

ADMIXTURE or FRAPPE ; Alexander et al. 2009; Tang et al. 2006), they are united in

proposing an explicit generative model for input data, assuming linkage equilibrium

between loci and Hardy Weinberg equilibrium between alleles. In contrast, nonparametric

methods such as principal components analysis and k-means clustering (Jombart 2008;

Novembre et al. 2008) first reduce the dimensionality of an allele frequency matrix and

then seek to identify groups of individuals that minimize an objective function without

explicitly modelling the attributes of genetic data.

Because of these di↵erences, parametric and nonparametric approaches may show

di↵erent sensitivities to SFS generated through biased data collection methods. It’s

possible these sensitivities also reflect the influence of the type datasets available during
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each program’s initial development: for example, as structure’s underlying algorithm was

tested prior to widespread adoption of high throughput sequencing methods and initially

applied on microsatellite data screened for appropriate frequency distributions (Pritchard

et al. 2000; Li et al. 2002), the characteristics of unfiltered modern SNP datasets may

present unanticipated challenges to accurate population genetic inference. Yet to the best

of our knowledge, no studies have directly addressed this potential source of error in

population genetic and phylogeographic studies. Here, we assess the influence of minor

allele frequency (MAF) thresholds on inference of population structure. We evaluate the

ability of model-based and nonparametric clustering methods to describe population

structure in both simulated and empirical genomic datasets and find that model-based

approaches are highly sensitive to the choice of MAF cuto↵. We propose a simple

hypothesis to explain this behavior and recommend a set of best practices for researchers

seeking to describe population structure using reduced-representation libraries.

Methods

Simulated data.

We simulated genome-wide SNP datasets under a custom demographic model in

fastsimcoal2 (Exco�er et al. 2013) in order to assess the impacts of MAF filtering on

population structure inference in the absence of sequencing or assembly error. The

underlying demographic model was designed to reflect a plausible demographic history for

our empirical case (see below), with one population experiencing successive splits 60,000

and 40,000 generations in the past after which all populations increase in size

exponentially, reaching a final Ne of 50,000 for the “outgroup” lineage and 500,000 for the

remaining populations. Migration is allowed between all populations after the final
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divergence event. To avoid genealogical bias in the SFS of simulated SNP data, we

included a mutation rate parameter of 2x10�6, equivalent to selecting a single SNP from a

200bp region in an organism with an average genome-wide mutation rate of 1x10�8 (see

fastsimcoal2 user manual). Missing data – a common feature of reduced-representation

library SNP datasets – was simulated by randomly dropping 25% of the alleles at each

simulated locus. We generated 100 independent simulations using the same starting

parameter values. Each simulation was initialized with 5,000 loci across 10 individuals in

each of the 3 populations. After converting fastsimcoal2 output to structure’s input file

format, we generated MAF-filtered datasets at each of the following cuto↵s: 1/60, 2/60,

3/60, 4/60, 5/60, 8/60, and 20/60.

Empirical data

We collected genome-wide SNP data from 40 individuals of the widespread North

American passerine Regulus satrapa, the Golden-crowned Kinglet. Our geographic aimed to

represent three areas of the species’ breeding range a previous study with mitochondrial

DNA suggested were distinct populations (Klicka 2017): subspecies satrapa in the Eastern

US / Canada; subspecies olivaceous / apache in the coastal and Rocky Mountain US /

Canada, respectively; and subspecies azteca in the Sierra Madre del Sur and Transvolcanic

Belt of Mexico. We extracted whole genomic DNA using Qiagen DNEasy extraction kits

and prepared reduced-representation libraries via the ddRADseq protocol (Peterson et al.

2012) using the digestion enzymes Sbf1 and Msp1 and a size-selection window of 415-515

bp. We sequenced the resulting libraries for 50 bp single-end reads on an Illumina HiSeq

2500. We assembled reads into sequence alignments de novo using the program ipyrad v.

0.7.11 (https://github.com/dereneaton/ipyrad). We set a similarity threshold of 0.88 for

clustering reads within and between individuals, a minimum coverage depth of 6 per

individual, and a maximum depth of 10,000. To exclude paralogs from the final dataset, we
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Figure 1: (A) The demographic model used in simulating SNP datasets. (B) Sampling
localities and sizes for Regulus satrapa, with a priori population assignments.

filtered out loci sharing a heterozygous site in 50% of samples. We define “locus”

throughout this manuscript as a cluster of sequence reads putatively representing the same

50-bp region downstream of an Sbf1 cut site. Because missing data can have a strong

influence on population genetic inference (Arnold et al. 2013; Gautier et al. 2013) and

preliminary exploration suggested anomalous clustering behavior, we removed 7 individuals

from our dataset prior to all downstream analysis. Of these final 33 samples, we required

each locus to be sequenced in at least half of samples and randomly selected one SNP per

locus.

Population structure analyses

We ran alignments for all MAF filters of simulated (n=700) and empirical data (n=7) in

structure using the correlated allele frequency model with admixture for 250,000

generations each, with 10,000 generations of burn-in. Structure was run once for each

simulated dataset and 10 times for each empirical dataset, with all runs initialized using a

random seed value drawn from a uniform distribution with range (0 - 10,000). To test

whether variation in population assignments were due to issues related to structure’s
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implementation and not representative of model-based methods more broadly, we also ran

fastSTRUCTURE once for each simulated dataset once and 10 times for each empirical

dataset. (While fastSTRUCTURE shares parameters with structure, it employs variational

Bayesian inference for rapid computation rather than a Markov chain Monte Carlo

approach to sample posterior distributions of global ancestry parameters.) We performed

k-means clustering and discriminant analysis of principal components (DAPC) using the R

package adegenet Jombart (2008) and the same datasets as input. For both nonparametric

analyses, we performed 100 replicate cluster assignments on each alignment and calculated

the percentage of correct population identifications, given K=3. For DAPC, we

cross-validated population assignments by randomly selecting half the samples in each

k-means cluster, conducting a DAPC on these samples, and predicting the group

assignments of remaining individuals with the “trained” DAPC model. To summarize the

sensitivity of each clustering method to MAF threshold, we performed an analysis of

variance and a Tukey honest significant di↵erence test in R Team (2017), and averaged

di↵erences across all MAF thresholds within each clustering method. We then scaled

summary statistics describing population assignment accuracy to a range of 0-1 and asked

if the distribution of di↵erences in accuracy across MAF cuto↵s di↵ered between methods

using a second Tukey test. These analyses were conducted separately for empirical and

simulated datasets.

Results

Simulations and sequence assembly

Following MAF filtering, our simulated datasets retained an average range of 3942 (for

MAF=1) to 242 (for MAF=20) loci. For our Regulus satrapa ddRAD libraries, Illumina

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188623doi: bioRxiv preprint 

https://doi.org/10.1101/188623
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequencing returned an average of 781,011 quality-filtered reads per sample. Clustering

within individuals identified 35,722 putative loci per sample, with an average depth of

coverage of 22x. After clustering across individuals and applying paralog and

depth-of-coverage filters, we retained an average of 4286 loci per sample. Prior to applying

MAF filters and removing individuals for excess missing data, our alignment included 3898

unlinked diallelic SNPs from sequenced in at least 30 of the original 40 samples. Our final

MAF-filered datasets ranged from 3419 (MAF=1) to 431 (MAF=20) loci. Site frequency

spectra of simulated and empirical datasets were similar in decreasing in an approximately

exponential manner as MAF increased, but with two notable di↵erences. First, the SFS of

our unfiltered simulated datasets featured greater proportion of singletons than our

ddRAD data – 44.6% to 36.7% in a representative example. However, when excluding

singletons, simulated datasets generally had fewer rare alleles overall, e.g. 12.6% to 16.9%

and 6.8% to 8%, respectively (Figure S1).

Parametric clustering

The ability to detect population subdivision in both simulated and empirical datasets

varied widely across MAF thresholds using the model-based method structure (Figure 2).

Across 100 replicates of each of 7 MAF thresholds tested for simulated datasets, population

discrimination (defined as the Euclidean distance between populations in Q-matrix space,

indicating the proportion of an individual’s ancestry from a given ancestral population)

and the natural logarithm of the mixing parameter alpha (ln(alpha), indicating the relative

level of admixture present in an individual’s genome) were significantly di↵erent for all but

one pairwise comparisons in a Tukey HSD test (adjusted p=0-0.06). Population

discrimination and ln(alpha) were significantly di↵erent for 11/21 pairwise comparisons

with empirical Regulus satrapa data (adjusted p=0-0.99). We observed broadly similar
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Figure 2: The influence of minor allele count on the natural log of structure’s admixture
parameter (A), population discrimination (B), and highest likelihood clustering plots (C) for
simulated SNP datasets; identical results for empirical Regulus satrapa data shown below
(D,E,F).
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sensitivity in fastSTRUCTURE results, but with considerably less accuracy and ability to

detect admixture (Figures S2 and S3).

Nonparametric clustering

In contrast to structure, both k-means and DAPC with cross-validation showed relatively

little sensitivity to MAF threshold (Figure 3). In simulated alignments, all pairwise

di↵erences in accuracy across MAF cuto↵s were statistically significant – likely due to large

sample sizes – but were much smaller than found in structure (mean di↵erences of 0.066 for

k-means clustering versus 0.33 for structure population discrimination). For empirical data,

both methods achieved near-perfect accuracy under all MAF cuto↵s, resulting in no

significant di↵erences in accuracy. After scaling structure population discrimination to a

range of (0,1), we found that the di↵erences across MAF levels were significantly greater

for structure (mean di↵erence in population discrimination 0.33 for simulated data and

0.34 for empirical data) than in either k-means (0.066 simulated, 0 for empirical) or DAPC

(0.078 simulated, 0 empirical; Figure 4, p< 0.01 for all comparisons).

Discussion

Parametric inference of population structure is sensitive to MAF

Our results demonstrate model-based inference of population structure can be strongly

influenced by choice of MAF threshold. However, di↵erences in patterns of detected

subdivision across MAF values between our two datasets suggest that programs like

structure may fail when input a variety of SFS distributions resulting from genome-wide

sampling. Our simulations of a three-deme model with migration and exponential growth
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Figure 3: The influence of minor allele count on k-means assignment accuracy (A), DAPC
cross-validation accuracy (B), and principal component analysis (C) for simulated SNP
datasets; identical results for empirical Regulus satrapa data shown below (D,E,F).
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Figure 4: Mean di↵erence in e↵ect size from a Tukey’s honest significant di↵erence test,
compared across three clustering programs.
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following divergence resulted in a high proportion of singletons, which can demonstrate

fine-scale patterns of geographic structure (Barton and Slatkin 1986; Gompert et al. 2014).

Yet across replicate datasets and structure runs, most of analyses failed to detect

population limits when singletons were included. In contrast, including rare alleles

(MAF=2 to MAF=8) allowed for highly accurate population inference, followed by a decay

in accuracy when only common alleles were included.

Our empirical ddRAD Regulus satrapa data, featuring fewer singletons, exhibited

di↵erent behavior in structure. While the full, unfiltered dataset occasionally resulted in

the correct identification of our three a priori population assignments, most runs failed to

detect any structure at all. This result repeated for increasingly stringent MAF filters until

all rare alleles were excluded, and was replicated in ln(alpha) values.

We believe both simulated and empirical cases reflect behavior of structure’s

likelihood function, with overfitting as a result of either a high frequency of uninformative

rare alleles or a high frequency of uninformative common alleles (discussed in the context

of maximum likeihood methods in Alexander and Lange 2011). In both scenarios,

population k1 receives an allele frequency distribution averaging out true population

specific-frequencies of common alleles, resulting in the broad band of majority ancestry

visible in Figure 2. Subsequently, populations k2 ...kN receive high frequencies of singletons

or otherwise uninformative rare alleles, resulting in the additional broad bands of minority

ancestry. With our simulated data, rare but non-singleton alleles reflect fine population

structure and thus harm inference when excluded; with our empirical data, rare alleles are

uninformative and serve only as noise to common allele frequency distributions reflecting

true population history.

This hypothesis is consistent with a pathology related structure’s inability to model

mutation of modern alleles, previously identified as a potential obstacle to accurate

inference of population structure under certain histories (Shringarpure and Xing 2008).
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Because structure assumes each unique allele in the input dataset has a distinct frequency

in its parent population, recent mutations - e.g., derived alleles - are erroneously treated as

representative of a separate population-specific allele frequency profile rather than as

descendants of ancestral copies. If a su�cient number of singletons are present in the

dataset, the noise from these false allele frequency profiles may mask the signal from alleles

indicative of “true” populations.

Nonparametric methods show little sensitivity to MAF choice

Relative to model-based population structure inference, the results of nonparametric

methods of k-means clustering and DAPC with cross validation were little influenced by

di↵erent MAF threshold choices. For simulated datasets, accuracy only slightly decreased

as MAF threshold was increased, though large sample sizes contributed to both the

breadth of distributions and statistical significance across nearly all MAF values. Across

empirical datasets, MAF choice showed no e↵ect on the ability to detect predefined

population clusters with either k-means or DAPC with cross validation. Visualization of

the first two principal components similarly showed little pattern of increased or decreased

separation across groups. These results are unsurprising given both k-means clustering and

DAPC heavily weight genetic variants with the ability to distinguish among groups, while

retaining properties capable of reconstructing an accurate approximation of the source

dataset (Jombart et al. 2010). Indeed, PCA-based methods are widely used in human and

Drosophila genomics, subfields with a longer history of access to large, computationally

intensive SNP datasets (Paschou et al. 2007; Novembre et al. 2008; Pool et al. 2012).

Though nonparametric approaches lack the ability to directly model important population

genetic statistics such as levels of admixture, their flexibility (particularly in combination

with demographic modeling using predefined population assignments) makes them an
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important tool for systematists and other biologists looking to identify population

subdivision in nonmodel organisms.

Sources of error and best practices

Importantly, our results suggest the specific SFS distributions that can cause structure and

other model-based programs to erroneously fail to detect structure may be generated by

either normal demographic processes (e.g., exponential population growth, as in our

simulated example) or by assembly errors (potentially present in our empirical example,

and well documented in other de novo RADseq datasets (e.g. Shafer et al. 2016). As a

consequence, a broad set of empirical studies may be a↵ected. We recommend researchers

using model-based programs to describe population structure observe the following best

practices: 1) duplicate analyses with nonparametric methods such as PCA and DAPC with

cross validation; 2) exclude singletons or compare unfiltered and filtered datasets; 3)

compare alignments with multiple assembly parameters.

Population genetics of Regulus satrapa

Though describing population structure and phylogeographic patterns of the

Golden-crowned Kinglet was not the primarily goal of our study and will be elaborated on

elsewhere, our data provide novel evidence for deep splits across the range of the species,

corroborating previous mtDNA evidence (Klicka 2017). Curiously, the results of our

model-based population structure inference suggest not only singletons but all rare alleles

(MAF  8/80) have a high noise to signal ratio, while common alleles (MAF � 10/80)

accurately reflect expected relationships. This pattern may be driven by either purifying

selection eliminating geographically localized variants (Nelson et al. 2012; Jackson et al.

2015), a population bottleneck (Nei et al. 1975; Gattepaille et al. 2013), a burst of recent
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migration following exponential population growth (Slatkin 1985), or assembly artifacts

resulting in a high proportion of uninformative / erroneous sites (Shafer et al. 2016). While

all scenarios are likely contributing to some extent, studies of genetic variation in similar

taxa provide support for post-Pleistocene expansion and gene flow among populations

separated by ice sheets (Spellman and Klicka 2006), processes that may result in similar

SFS distributions to our example.

Future directions

With simulated and empirical cases reflecting similar (if non-identical) site frequency

spectra, our focus was on a necessarily narrow range of demographic scenarios and a

relatively narrow range of SFS distributions. Future examinations of the sensitivity of

population genetic inference to MAF thresholds with datasets simulated under a diversity

of evolutionary histories may shed light on the biological processes generating problematic

SFS, and lead to the development of more robust model-based programs. While other

parametric population structure inference programs share structure’s underlying model and

we believe the broad patterns reported here will be similarly reflected, di↵erences in

implementation (e.g., MCMC versus maximum likelihood, Gelman et al. 1996) may shape

specific sensitivities. A broader survey of model-based population structure inference

methods will help clarify which approaches are best suited to genomic datasets, and lead to

the development of more robust software for describing the fundamental units of biological

organization.

Conclusions

Our study demonstrates model-based methods to infer population structure are

highly a↵ected by minimum MAF choice, while non-model-based methods show relatively
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little sensitivity. Model-based methods lacking parameters to account for recent mutation

may fail due to overfitting as a result of uninformative singletons, or due to limited

variation in common alleles given stringent MAF thresholds. As problematic site frequency

distributions can be generated by either assembly artifacts or natural demographic

processes prior to dataset filtering, we suggest researchers observe our reccomended best

practices while conducting exploratory data analysis with these programs.
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Figure S1: Site frequency spectra for the simulated and empirical datasets.
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Figure S2: Population discrimination and representative clustering plots for simulated SNP
data.
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Figure S3: Population discrimination and representative clustering plots for empirical Reg-
ulus satrapa data.
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