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Abstract

The connectivity of the human brain is fundamental to understanding the principles of cognitive function, and
the mechanisms by which it can go awry. To that extent, tools for estimating human brain networks are re-
quired for single participant, group level, and cross-study analyses. We have developed an open-source, cloud-
enabled, turn-key pipeline that operates on (groups of) raw di usion and structuremagnetic resonance imaging
data, estimating brain networks (connectomes) across 24 di erent spatial scales, with quality assurance visual-
izations at each stage of processing. Running a harmonized analysis on 10 di erent datasets comprising 2,295
subjects and 2,861 scans reveals that the connectomes across datasets are similar on coarse scales, but quanti-
tatively di erent on fine scales. Our framework therefore illustrates that while general principles of human brain
organization may be preserved across experiments, obtaining reliable p-values and clinical biomarkers from
connectomics will require further harmonization e orts.

1 Introduction

Neuroimagingmethods such asmagnetic resonance
imaging (MRI) are becoming increasingly more ac-
cessible and available in clinical and research pop-
ulations. Specifically, recent advances in Di usion
Weighted MRI (DWI) provide high contrast for the
connective tissue of the brain (i.e. white matter), en-
abling the study of structural networks within the
brain (connectomes). As such, DWI data is be-
ing collected at an unprecedented rate, including
both healthy and diseased populations [1–3]. These
datasets provide us with a unique opportunity to dis-
cover the principles of connectome coding, aswell as
potentially identifying clinically useful biomarkers.

To fully capitalize on these data requires pro-
cessing pipelines that satisfy a number of desider-
ata. First, pipelines should yield accurate and re-
liable estimates of data derivatives with each pro-
cessing stage. A pipeline’s accuracy can be eval-
uated by comparing it to known neuroscience; its
reliability can be assessed with repeated measure-
ments (such as test-retest data). The requirement
for accurate and reliable estimates follow from de-
siring accurate and reliable inferences on the ba-
sis of the estimated connectomes; if the connec-
tomes are either inaccurate or unreliable, it is unlikely
that the subsequent inferences will be. The pipelines

should exhibit these properties across datasets, this
includes datasets collected using di erent acquisi-
tion parameters, and from di erent institutions. This
robustness to dataset variability facilitates compar-
ing results across datasets, a requirement for high-
confidence in scientific or medical studies. More-
over, the pipeline should be able to be run on di er-
ent platforms, with minimal installation and config-
uration energy. This usability criterion ensures that
the pipelines can be run by di erent analysts using
di erent hardware resources, whichmay be required
for privacy reasons. To date, a number of DWI pro-
cessing pipelines have been proposed, none of which
satisfy each of these desiderata however.

We present NDMG, an accurate, reliable, robust
turn-key solution for structural connectomes esti-
mation that can be deployed at scale either in the
cloud or locally for cross-study analysis. Leverag-
ing existing tools such as FSL [4–6], Dipy [7], the
MNI152 brain atlas [8] and others, NDMG is a one-
click pipeline that lowers the barrier to entry for
connectomics. By virtue of harmonized process-
ing, the NDMG pipeline enables scientific “meganal-
ysis” in which data from multiple studies can be
pooled, opening the door for more highly generaliz-
able statistical analyses of the structure of the hu-
man brain. We ran NDMG on 10 datasets compris-
ing 2,295 subjects with 2,861 scans, for each gener-
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Figure 1: ndmg usage workflow. The NDMG pipeline enables accurate, reliable, robust, and usable analy-
sis at the participant-, group-, andmeganalysis levels. Raw di usion and structural scans are provided to
the participant-level analysis, which in turn outputs derivatives including connectomes at many di erent
parcellation scales. By organizing the data according to the BIDS specification, group-level analysis is
automatically performed, and pooled across datasets for meganalysis.

ating connectomes at 24 di erent scales, for a to-
tal of nearly 70,000 estimated connectomes, all of
which are now publicly available. This is the largest
yet database of connectomes [9], and the largest
meganalysis of connectomics [10]. In addition to
demonstrating that NDMG is accurate, reliable, ro-
bust, and usable, our results indicate that previously
documented qualitative properties of connectomes
are preserved across datasets. Yet, quantitatively,
even upon harmonizing the connectome estimating,
there are significant quantitative di erences across
datasets. This suggests that further work is required
to utilize connectomes to produce accurate and reli-
able p-values or clinical biomarkers across datasets.

2 Results

The NDMG pipeline enables three tiers of analy-
sis: participant-level, group-level, and meganaly-
sis (see Figure 2). The Brain Imaging Data Struc-
ture (BIDS) is a recently proposed specification for
organizing multi-scan, multi-subject, multi-modality
datasets [11; 12]. Each session of data, consisting
of a structural scan (T1w/MPRAGE), a di usion scan
(DWI), and the di usion parameters files (b-values, b-
vectors), can then be used as inputs to generate a
connectome.

Participant-level analysis performs several trans-
formations from raw di usion images towards gen-
erating connectomes, producing plots and deriva-
tives for each intermediate stage. Once participant-
level analysis has completed for a cohort of data,
NDMG group-level analysis can be performed on the

generated graphs. At this stage, summary statis-
tics are computed for all graphs generated within
the dataset. These statistics are then plotted for
additional quality assurance by the scientist, and
saved for rigorous quantitative evaluation. Since
NDMG processes all participants and groups iden-
tically, it enables the pooling of data across co-
horts, that is, a “meganalysis.” Meganalysis expands
the sample population to potentially improve sta-
tistical power, confirm reliability, and ultimately the
scientific impact of their findings. All of the de-
rived graphs and intermediate derivatives have been
made publicly available on our Amazon S3 bucket,
mrneurodata, and can also be accessed through
http://m2g.io.

2.1 Participant-Level Analysis

The participant level of NDMG has been developed
by leveraging and interfacing existing tools, including
FSL [4–6], Dipy [7], the MNI152 atlas [8], and a vari-
ety of parcellations defined in theMNI152 space [13–
19]. All algorithms which required hyper-parameter
selection were initially set to the suggested parame-
ters for each tool, and tuned to improve the quality,
reliability, and robustness of the results.

Conceptually, this pipeline can be broken up into
four key components: (1) registration, (2) tensor es-
timation, (3) tractography, and (4) graph generation
(see Figure 2). The NDMG pipeline has been vali-
dated through reliability on multiple measurement
datasets (including test-retest). Below we provide
a brief description of each step, Appendix A pro-
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Figure 2: ndmg subject-level analysis. The subject-level of the NDMG pipeline transforms raw di usion
weighted MRI data into structural connectomes. Here, NDMG consists of four main steps: registration,
tensor estimation, tractography, and graph generation . At each stage, NDMG produces both data deriva-
tives and quality assurance figures of the derivative, as illustrated.

vides further details. Participant-level analysis in
NDMG takes approximately 1-hour to complete using
1 CPU core and 12 GB of RAM.

A crucial component of the design of NDMG was
to include quality assurance (QA) figures for each
stage to the pipeline, to enable users to easily detect
whether or not the pipeline is producing accurate re-
sults. Snapshots of these QA figures are shown Fig-
ure 2.

The participant level analysis was run on 2,295
participants including 2,861 scans; each generating
connectomes across each of the 24 parcellations in
NDMG, resulting in 68,664 total brain-graphs.

Registration NDMG leverages FSL [4–6] for a se-
ries of linear registrations. Taking as input the min-
imally preprocessed DWI and T1W images, the end
result is the DWI volumes aligned to the MNI152
atlas [8]. The registration pipeline implemented is
“standard” when working with di usion data and
FSL’s tools. The QA figure produced at this stage
is cross-sectional images at di erent depths in the
three canonical planes (sagittal, coronal, and axial) of
an overlay of the DWI image and the MNI152 atlas.

Tensor Estimation A voxelwise tensor image
from the DWI image stack using a simple 6-
component tensor model from Dipy [7]. The aligned
di usion volumes and b-values/b-vectors files are
transformed into a 6-dimensional tensor volume, a
single dimension for each component of the result-
ing tensors. A fractional anisotropy map of the ten-
sors is provided for QA, again using multiple depths
in each of the three canonical image planes.

Tractography Streamlines are generated from
the tensors using Dipy’s EuDX [20], a deterministic
tractography algorithm closely related to FACT [21].
Each voxel within the tensor image, confined to the
boundary of the brain mask, is used as a seed-point
in EuDX and fibers are produced and then pruned
based on their length. NDMG provides a QA plot visu-
alizing a subset of the generated streamlines within a
mask of the MNI152 brain so that the user can verify
that their structure resembles that of the fractional
anisotropy map generated in the previous step.

Graph Generation Connectomes are created by
tracing fibers through pre-defined parcellations. As
fibers are traced, an undirected edge is added to
the graph for every pair of regions along the path,
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Table 1: Processed public M3R datasets. The derivatives from each dataset processed with NDMG are publicly
available at http://m2g.io. Multiple measurement datasets were evaluated using discriminability (“Discr” be-
low), where 1 indicates perfectly discriminable connectomes. The pooled discriminability is the computed by
pooling the datasets and ignoring group labels. Age is reported as the dataset mean ± standard deviation;
“Rep’s” is the number of scans per subject.

Dataset Scanner # Dirs Age (yrs) %Male # Subj’s Rep’s Total Scans Discr
BNU1 [2] Siemens 30 23.0± 2.3 53 57 2 114 0.984
BNU3 [2] Siemens 64 22.5± 2.1 50 48 1 47 –
HNU1 [2] GE 33 24.4± 2.3 50 30 10 300 0.993
KKI2009 [22] Philips 33 31.8± 9.4 52 21 2 42 1.0
MRN1313 – 70 – – 1313 1 1299 –
NKI1 [2] Siemens 137 34.4± 12.8 0 24 2 40 0.984
NKI-ENH [23] Siemens 137 42.5± 19.6 40 198 1 198 –
SWU4 [2] – 93 20.0± 1.3 51 235 2 454 0.884
Templeton114 Siemens 70 21.8± 3.0 58 114 1 114 –
Templeton255 Siemens 150 – – 255 1 253 –
Pooled 2295 2861 0.979

where the weight of the edge is the cumulative
number of fibers between two regions. NDMG in-
cludes neuroanatomically delineated parcellations,
such as the HarvardOxford cortical and sub-cortical
atlases [16], JHU [15], Talairach [17], Desikan [13],
and AAL [14] atlases, algorithmically delineated par-
cellations, such as slab907 [18], Slab1068 [19],
CC200 [24], and 16 downsampled (DS) parcella-
tions [25] ranging from 70 to 72,783 nodes that
we developed. QA for the graph generation step
includes a heatmap of the adjacency matrix, as
well as several univariate and multivariate graph
statistics: betweenness centrality, clustering coe -
cient, hemisphere-separated degree sequence, edge
weight, eigenvalues of the graph laplacian, locality
statistic-1, and the number of non-zero edges [25].
The hemisphere-separated degree sequence we de-
veloped to indicate, for each vertex, its ipsilateral de-
gree and its contralateral degree, which we found
quite useful for QA. Appendix A.4 includes definitions
and implementation details for each of the statistics.

2.2 Group-Level Analysis

Once connectomes have been generated for a
dataset, NDMG group-level analysis computes and
plots multiscale graph summary statistics as well as
reliability statistics. We ran the NDMG group analysis
on 10 di erent datasets, listed in Table 1.

GraphSummaryStatistics Each subject’s con-
nectome can be summarized by a set of graph statis-

tics, as described above. For QApurposes, we visual-
ize each session’s summary statistics overlaid on one
another. For example, Figure 3 demonstrates that
each graph from the BNU3 dataset using the Desikan
atlas has relatively similar values for the statistics.
It is clear from both the degree plot and the mean
connectome plot that the DWI connectomes tend
to have more connections within a hemisphere than
across a hemisphere, as expected. Appendix A.5 il-
lustrates how NDMG also computes the average value
for each univariate andmultivariate statistic for each
atlas, and demonstrates similarities across scales, in-
dicating that that the basic structure of the connec-
tomes is preserved across di erent atlases.

Reliability Group level results from NDMG that in-
clude repeated measurements are quantitatively as-
sessed using a statistic called discriminability [26].
The group’s sample discriminability estimates the
probability that two observations within the same
class are more similar to one another than to objects
belonging to a di erent class:

D = p(||aij − aij′ || ≤ ||aij − ai′j′ ||). (1)

In the context of reliability in NDMG, each connec-
tome, aij is compared to other connectomes belong-
ing to the same subject, aij′ , and to all connectomes
belonging to other subjects, ai′j′ . A perfect dis-
criminability score indicates that for all observations
within the dataset, each connectome is more alike to
connectomes from the same subject than to others.
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Table 1 lists the discriminability score of each dataset
with repeated measurements; NDMG achieves a dis-
criminability score of nearly 0.99 or greater on most
datasets, with a the lowest scoring nearly 0.9.

2.3 Meganalysis

Many sources of variability contribute to the ob-
served summary statistics, including subject, mea-
surement, population, and analysis. By virtue of har-
monizing the analysis across subjects, we are able
assess the remaining degrees of variability due to
measurement and population specific e ects. Al-
though population level e ects are expected, for ex-
ample, when comparing two di erent populations
with di erent demographics, for inferences based on
neuroimaging to be valid, variability acrossmeasure-
ments must be relatively small.

Course Grained Similarities Across Groups
Figure 4 shows the mean connectome computed

from each dataset, as well as the weighted mega-
mean and mega-standard deviation connectomes
combining all datasets. These means have very sim-
ilar structures and intensity profiles. For example,
each connectome seems to contain a higher num-
ber of ipsi-lateral connections than contra-lateral
connections. Moreover, the ipsi-lateral connections
form more consistent across groups than are the
contra-lateral connections. Finally, the ipsi-lateral
connectivity within left (nodes 1-35) and right (nodes
36-70) hemispheres, respectively, are very similar in
structure.

To test each of these conjectures, we assume
that each groups’ connectome is a sample from a
random graph model. We compute the variance
across datasets for each connectome edge. In-
deed, the variances of the ipsi-lateral connections
are stochastically smaller than those of the contra-
lateral connections.

Figure 3: Graph summary statistics. NDMG computes and plots of connectome-specific summary statis-
tics after estimating graphs for each session, providing immediate quality assurance for the group.
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Figure 4: Multi-StudyMeanConnectomes. Dataset-mean connectomes and a combinedmean-of-mean
and standard deviation-of-mean connectomes were computed from the Desikan labeled graphs pro-
duced by NDMG, resulting in the largest known mean connectome to-date, consisting of 2,861 sessions.
Datasets appear qualitatively similar to one another, with minor deviations particularly visible in the
contra-lateral regions of the graphs. As expected, ipsi-lateral connectivity is consistently more dense
than contra-lateral connectivity. Similarly, the standard deviation connectome, which highlights edges
that are more highly variable, shows higher ipsi-lateral variance. This suggests that not only are these
connections more likely to occur, but they have a higher variance, as well.

Fine-Grained Difference Across Groups with
Implications Although at a coarse resolution
each group of connectomes exhibited similar prop-
erties, the above analysis is insu cient to determine
the extent of “batch e ects”— sources of variabil-
ity such as scanner, acquisition sequence, and op-
erator, which are not of neurobiological interest. If
the batch e ects are larger than the signal of in-
terest (for example, whether a particular subject

is su ering from a particular psychiatric disorder),
then inferences based on individual studies are prone
to be irreplaceable, thereby creating ine ciencies
in the collective scientific process. We therefore
use discriminability to quantify the degree to which
di erent groups di er from one another. More
specifically, using the discriminability framework,
and keeping only a single session per subject, we
compute the discriminability across groups, rather

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188706doi: bioRxiv preprint 

http://neurodata.io
https://doi.org/10.1101/188706
http://creativecommons.org/licenses/by/4.0/
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Figure 5: Prevalence of batch e ects. Discriminability was computed across the ten processed datasets
using the dataset-id as the class label. If no significant di erence between datasets exists, the discrim-
inability scorewould not be significantly di erent fromchance, a score of 0.363. Here, the discriminability
score was 0.632, which is significant with a p-value of less than 0.0001 when performing a permutation
test, suggesting that there is significant dataset specific signal in the graphs.
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Figure 6: Connectome Sex Classification. Using K-Nearest Neighbours classification, several cross-
validation attempts were made on “raw” and further post-processed connectomes to improve accuracy
in sex classification. The attempted normalizations were: ranking edges, unit normalization, dataset
with subtracting cohort means, and dataset with subtracting cohort and population means. The cross-
validations methods were leave-out-one (LOO): subject within each dataset, subject for pooled dataset,
dataset for pooled dataset. If the batch e ects were insignificant, then we would expect the two pooled-
dataset methods to have equivalent performance. We notice that LOO-subject performs greater in all
normalization strategies, indicating that the batch e ect has considerable impact on downstream clas-
sification.

than subjects. Whereas we desire high subject-level
discriminability indicating that subject variability is
larger thanother sources of variabilitywithin a group,
here we desire low group-level discriminability, indi-
cating that group variability is smaller than biological
variability. Chance discriminability, indicating that
connectomes were all equally similar regardless of
dataset, can be calculated using C = 1

N2

∑k
i∈k M

2
i ,

where k is number of classes, Mi is the number of
elements in per class, and N is the total number of
observations. The discriminability across a random
subsample of single session per subject is 0.632, as
compared to chance levels which are 0.363, a sig-
nificant di erence as the p < 0.0001 level (see [26]
for details). Figure 5 shows the average discrim-
inability both within and across groups. KKI2009
sticks out as being an outlier group. KKI2009 was

acquired on a Philips scanner, whereas the other
groups predominantly used Siemens scanners and,
and a single group used GE (HNU1). Removing ei-
ther or both groups that used non-Siemens scanner
did not meaningfully change discriminability (0.626
with p<0.0001, and 0.627 with p<0.0001, for remov-
ing KKI2009, and both KKI2009 and HNU1, respec-
tively). Templeton114 and Templeton255 were ac-
quired at the same site, using di erent scanner se-
quences, and exhibited a significant di erence.

The fact that there are significant batch e ects,
however, does not on its own indicate that down-
stream inference tasks, such as calculating p-values
or developing biomarkers on the basis of the esti-
mated connectomes will not be possible. Rather, it
is the relative size of the batch e ect as compared to
the e ect of the signal of interest that regulates the
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impact of batch e ects. To determine the implica-
tions of the batch e ect on these data, we built two-
class classifiers to di erentiate subject sex on the ba-
sis of their connectomes. Previous work has demon-
strated performance significantly above chance for
this task, with accuracy typically in the 80% to 90%
range [27]. FIgure 6 depicts the leave-one-out (LOO)
subject out classification error for each of the six DWI
datasets with sex information; the accuracy ranges
from around 60% to around 80% using a k-nearest
neighbor classifier, and post-hoc selecting the opti-
mal k. We then pooled the subjects across datasets,
and computedboth the LOOsubject and LOOdataset
accuracies. If the batch e ect was smaller than the
sex e ect, then pooling the data would increase the
sample size, and therefore improve accuracy. How-
ever, the pooled data exhibited poor accuracy, with
LOO-dataset performing even worse than many of
the individual datasets.

It is possible that this batch e ect could be me-
diated by some normalization scheme. We consid-
ered several, including: converting the edge weights
to relative ranks, unit-normalizing each connec-
tome, subtracting the cohort-mean , and subtracting
the population-mean and then the residual cohort-
mean. None of the normalization schemes opera-
tionally improved performance on the pooled data.
These results collectively suggests that the batch ef-
fect is large, and signals found in one dataset were
idiosyncratic to that dataset, rather than represent-
ing true neurobiological signals.

3 Discussion

The NDMG pipeline is a reliable tool for structural
connectome estimation with a low barrier to entry
for neuroscientists, capable of producing accurate
brain-graphs across scales and datasets. NDMG ab-
stracts hyper-parameter selection fromusers bypro-
viding a default setting that is robust across a va-
riety of datasets, achieving equal or improved dis-
criminabilitywhenperforming either single- ormulti-
dataset analysis compared to alternatives [28; 29].
Though this generalizability means that NDMG may
not use the optimal parameters for a given dataset,
it provides a consistent estimate of connectivity
across a wide range of datasets and makes com-
paring graphs trivial across studies, avoiding overfit-
ting of the pipeline to a specific dataset. NDMG has

been optimized with respect to discriminability,yet
one can always further improve the pipeline via in-
corporating additional algorithms, datasets, or met-
rics. For example, one could further optimize to re-
duce the batch e ect. Alternately, one could incor-
porate probabilistic tractography, to compare with
deterministic in a principled meganalysis using the
open source data derivatives generated here.

Previous e orts have developed pipelines for
DWI data. For example, PANDAS [30] and CMTK [31]
are flexible pipelines enabling users to select hyper-
parameters for their dataset, a useful feature, but
they do not provide a reference pipeline that is op-
timized for any particular criteria across datasets.
MRCAP [32] and MIGRAINE [33] provide reference
pipelines, but are di cult to deploy, and also lacked
vetting across datasets.

Other e orts have focused on multi-site data.
Specifically, [34] used fMRI-derived connectomes
from the ABIDE dataset demonstrating an impres-
sive ability to minimized batch e ects. Unfortu-
nately, most ABIDE datasets lack DWI data, so a
similar strategy for NDMG is not currently possible.
Additionally, a variety of studies propose methods
for data harmonization upon either minimally pre-
processed or raw MRI data [35–37] which could be
explored within the context of the NDMG pipeline.

We integrated NDMG with a number of di er-
ent computing platforms, including OpenNeuro1,
CBRAIN2, and AmazonWeb Services3, as well as pro-
vide a Docker image so that it can be run from the
web or locally on disparate computational configu-
rations such as laptops and institutional clusters with
ease.
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Appendix A Processing Pipeline

Herewe take adeep-dive into eachof themodules of theNDMGpipeline. Wewill explain algorithmandparameter
choices that were implemented at each step, and the justification for why they were used over alternatives.

Appendix A.1 Registration

Registration in NDMG leverages FSL and the Nilearn Python package. The primary concern in development of
NDMGwas thediscriminability and robustness of each step. Additionally, a desired feature of thepipelinewas that
it could be run on non-specialized hardware in a timeframe that didn’t significantly hinder the rate of progress
of scientists who wish to use it. As such, NDMG uses linear registrations, as non-linear methods were found to
have higher variability across datasets while simultaneously increasing the resource and time requirements of
the pipeline (not shown).

As is seen in Figure 7B1, the first step in the registration module is eddy-current correction and DWI self-
alignment to the volume-stack’s B0volume. FSL’seddy_correctwasused to accomplish this. Theeddy_correct
function was chosen over the newer eddy function as the eddy function, while providingmore sophisticated de-
noising, takes significantly longer to run or relies on GPU acceleration, which would reduce the accessibility of
NDMG.

Registration

Leverages:   FSL, MNI152

Graph Generation

Leverages:    Parcellations

B1. Registration B2. Tensor Estimation B3. Tractography B4. Graph Generation

              ndmg pipeline

T1w MRI

DWI MRI

Tensor Estimation &  
Tractography

Leverages:   DiPy, MNI152

eddy_cor r ect

epi _r eg f l i r t

appl y_xf m

make_gr aphTensor Model ,
        f i t

gr adi ent _t abl e

     get _spher e,
 quant i ze_evecs,

          EuDX

DWI

T1w MNI152 T1w

Aligned DWI

ParcellationsFiber Streamlines

Connectome

Aligned DWI

B-vectors B-values

Fiber Streamlines

MNI152 Mask

Figure 7: ndmg detailed pipeline. The NDMG pipeline consists of 4 main steps: Registration (B1), Tensor
Estimation (B2), Tractography (B3), and Graph Generation (B4). Each of these sections leverages pubicly
available tools and data to robustly produce the desired derivative of each step. Alongside derivative
production, NDMG produces QA figures at each stage, as can be seen in B1-4, that enable qualitative
evaluation of the pipeline’s performance.
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Once the DWI data is self-aligned, it is aligned to the same-subject T1w image through FSL’s epi_reg mini-
pipeline. This tool performs a linear alignment between each image in the DWI volume-stack and the T1w vol-
ume.

The T1w volume is then aligned to the MNI152 template using linear registration computed by FSL’s flirt.
This alignment is computed using the 1 millimeter (mm) MNI152 atlas, as this enables higher freedom in terms
of the parcellations that may be used, such as near-voxelwise parcellations that have been generated at 1 mm.
FSL’s non-linear registration, fnirt, is not used in NDMG as the performance was found to vary significantly
based on the collection protocol of the T1w images, often resulting in either slightly improved or significantly
deteriorated performance.

The transform mapping the T1w volume to the template is then applied to the DWI image stack, resulting
in the DWI image being aligned to the MNI152 template in stereotaxic-coordinate space. However, while flirt
aligns the images in stereotaxic space, it does not guarantee an overlap of the data in voxelspace. UsingNilearn’s
resample, NDMG ensures that images are aligned in both voxel- and stereotaxic-coordinates so that all analyses
can be performed equivalently either with or without considering the image a ne-transformsmapping the data
matrix to the real-world coordinates.

Finally, NDMG produces a QA plot showing 3 slices of the first B0 volume of the aligned DWI image overlaid
on the MNI152 template in the 3 principle coordinate planes, providing 9 plots in total which enable qualitative
assessment of the quality of alignment.

Appendix A.2 Tensor Estimation

Once the DWI volumes have been aligned to the template, NDMG begins di usion-specific processing on the
data. All di usion processing in NDMG is performed using the Dipy Python package [7]. The di usion processing
in NDMG is performed after alignment to facilitate cross-connectome comparisons.

While high-dimensional di usion models such as orientation distribution functions (ODFs) or q-ball enable
reconstruction of crossing fibers and complex fiber trajectories, these methods are designed for images with
a large number of di usion volumes/directions for a given image [38; 39]. Because NDMG is designed to run
robustly on a wide range of DWI datasets, including di usion tensor imaging, NDMG uses a lower-dimensional
tensormodel. Themodel, described in detail on Dipy’s website4, computes a 6-component tensor for each voxel
in the image, reducing the DWI image stack to a single 6-dimensional imagewhich can be used for tractography.
Once tensor estimation has been completed, NDMG generates a QA plot showing slices of the FA map derived
from the tensors in 9 panels as above.

Appendix A.3 Tractography

In keeping with the theme of computationally e cient and robust methods, NDMG uses DiPy’s deterministic
tractography algorithm, EuDX [20]. Integration of tensor estimation and tractography methods is minimally
complex with this tractography method, as it has been designed to operate on the tensors produced by Dipy
in the previous step. Probabilistic tractography would be significantly more computationally expensive, and it
remains unclear how well it would perform on data with a small number of di usion directions. A subset of the
resolved streamlines are visualized in an axial projection of the brainmaskwith the fibers contained, allowing the
user to verify, for example, that streamlines are following expected patterns within the brain and do not leave
the boundary of the mask.

Appendix A.4 Graph Estimation

NDMG uses the fiber streamlines to generate connectomes across multiple parcellations. The connectomes gen-
erated are graph objects, with nodes in the graph representing regions of interest (ROIs), and edges representing
connectivity via fibers. An undirected edge is added to the graph for each pair of ROIs a given streamline passes
through. Edges are undirected because DWI data lacks direction information. Edge weight is the number of
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streamlines which pass through a given pair of regions. NDMG uses 24 parcellations, including all standard pub-
lic DWI parcellations known by the authors. Users may run NDMG using any additional parcellation defined in
MNI152 space simply by providing access to it on the command-line. To package an additional parcellation with
NDMG, please contact the maintainers.

NDMG computes eight node- or edge-wise statistics of each connectome. Each illustrates a non-parametric
graph property. The graph statistics are primarily computedwithNetworkX andNumpy, and all implementations
forNDMG livewithin the graph_qamodule. Below, for each statistic we provide a link to the code/documentation
of the statistic as it was implemented.

Table 2: Graph statistics. Each of the graph statistics computed by NDMG.

Statistic Operates On Implementation
Betweenness Centrality Binarized Graph NetworkX
Clustering Coe cient Binarized Graph NetworkX
Degree Sequence Binarized Graph NetworkX
Edge Weight Sequence Weighted Graph NetworkX
Eigen Values Weighted Graph NetworkX and Numpy
Locality Statistic-1 Weighted Graph ndmg and NetworkX
Number of Non-Zero Edges Binarized Graph NetworkX
Cohort Mean Connectome Weighted Graph Numpy

Appendix A.5 Group-Level Multi-Scale Analysis

Figure 8 shows the group-level summary statistics of connectomes belonging to same dataset over 13 parcella-
tions ranging from48nodes up to 500nodes; an additional 11 parcellationswith up to over 70,000nodes are not
shown here for clarity. For each parcellation, vertex statistics are scaled/normalized by number of vertices in the
parcellation and smoothed as described in ?? for comparison purposes. For most of the statistics, the “shape”
of the distributions are relatively similar across scales, though their actual magnitudes can vary somewhat dra-
matically. In particular, graphs from the the downsampled block-atlases (DS) appear to be scaled versions of
one another, as may be expected because they are related to one-another by a region-growing function [25].
However, graphs from the smaller DS parcellations look less similar to those from the neuroanatomically defined
parcellations (JHU [15], Desikan [13], HarvardOxford [16], CC200 [24]). This suggests that the neuroanatomi-
cally defined parcellations are more similar to one another than they are to the downsampled parcellations.

Appendix A.6 Multi-Site Analysis

Figure 9 shows a variety of uni– andmulti-variate statistics of the average connectome fromeach of the datasets
enumerated in Table 1 using the Desikan parcellation. Each dataset largely appears to have similar trends across
each of the statistics shown.

Notes

1https://openneuro.org/
2https://portal.cbrain.mcgill.ca
3http://scienceinthe.cloud/
4http://nipy.org/dipy/examples_built/reconst_dti.html
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Figure 8: Multi-scale graph analysis. NDMG produces connectomes at a variety of scales, enabling in-
vestigation of graph properties between parcellation schemes. We can observe that the statistics are
qualitatively similar in shape across scales, however, they are quantitatively significantly di erent. This
suggests that claimsmade or analyses performed on a given scale may not hold when applied to another
scale. This is impactful, as the choice of parcellation has significant bearing on the results of a scientific
study.
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Figure 9: Multi-site graph analysis. Average connectomes from ten datasets processed with NDMG are
qualitatively compared by way of their summary statistics on the Desikan parcellation. The Desikan atlas
used in NDMG has been modified to include two additional regions, one per hemisphere, which fills in a
hole in the parcellation near the corpus callosum. The nodes in this plot have been sorted such that the
degree sequence of the left hemisphere (Desikan nodes 1-35) of the BNU1 dataset is monotonically non-
decreasing, and that corresponding left-right nodes are next to one another. The interactive version of
this plot, available through http://m2g.io, provides hover-text of the region names.
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