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Abstract11

In Escherichia coli DNA replication yields interlinked chromosomes. Controlling topological changes12

associated with replication and returning the newly replicated chromosomes to an unlinked monomeric13

state is essential to cell survival. In the absence of the topoisomerase topoIV, the site-specific recom-14

bination complex XerCD-dif-FtsK can remove replication links by local reconnection. We previously15

showed mathematically that there is a unique minimal pathway of unlinking replication links by recon-16

nection while stepwise reducing the topological complexity. However, the possibility that reconnection17

preserves or increases topological complexity is biologically plausible. In this case, are there other18

unlinking pathways? Which is the most probable? We consider these questions in an analytical and19

numerical study of minimal unlinking pathways. We use a Markov Chain Monte Carlo algorithm20

with Multiple Markov Chain sampling to model local reconnection on 491 different substrate topolo-21

gies, 166 knots and 325 links, and distinguish between pathways connecting a total of 881 different22

topologies. We conclude that the minimal pathway of unlinking replication links that was found un-23

der more stringent assumptions is the most probable. We also present exact results on unlinking a24

6-crossing replication link. These results point to a general process of topology simplification by local25

reconnection, with applications going beyond DNA.26
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1 Introduction27

Flexible circular chains appear often in nature, from microscopic DNA plasmids to macroscopic loops28

in solar corona. Such chains entrap rich geometrical and topological complexity which can give insight29

into the processes underlying their formation or modification. Knotted and interlinked states often30

coincide with higher energy states in physical systems and are usually undesired. Topology-simplifying31

reconnection processes involving one or two cleavages are observed. Examples in biology include the32

action of type II topoisomerases and of site-specific recombinases. Type II topoisomerases bind to33

two segments of double-stranded DNA, cleave one of the segments, transport the other through the34

break (strand-passage) and reseal the break. Site-specific recombinases bind to two specific sites (short35

segments of double-stranded DNA), introduce a double-stranded break on each site, recombine the36

ends and reseal the breaks. The action of recombination enzymes is a local reconnection event. We37

here investigate pathways of unlinking of newly replicated DNA links by local reconnection. The results38

presented, and the numerical methods proposed are not restricted to the biological example and are39

applicable to any local reconnection process.40

In genetics, the observation of topological links dates back to studies in plants in the 1930s. In a41

study of chromosomal variation in Crepis tectorum, M. Navashin observed ring chromosomes, noting42

“in one case, the two daughter strands composing a normal chromosome failed to separate". Navashin43

reported on a metaphase involving four rings, two of which were “united in the fashion of chain links,"44

thus documenting the appearance of two newly replicated circular chromosomes forming a singly-45

linked catenane, or 2-crossing link.1 In her study of ring chromosomes in maize, Barbara McClintock46

observed the accumulation of several rings in the same cell and hypothesized that “lack of uniformity47

in the splitting plane could give rise to a double sized ring with two insertion regions or cause split48

halves of the ring to become interlocked", thus introducing the ideas of chromosome dimers and links49

(also called catenanes).2 Three decades later, DNA links were studied in vitro via random cyclization50

of circular DNA in the presence of an excess of DNA circles3 and, in 1980 interlinked dimers formed by51

nicked newly replicated 5.2kb circular dsDNA mini chromosomes from SV40 were observed by electron52

microscopy.4 The mechanisms of replication and segregation of circular DNA predict products that53

can be topologically characterized as right-hand (RH) 2m-crossing torus links with parallel sites, which54

we here refer to as parallel 2m-cats (denoted mathematically as parallel (2m)21 or T (2, 2m)p).5 These55

topological forms were confirmed by characterizing the linked replication intermediates that accumulate56

in topoIV mutants6 (Fig. 1(A)).57
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Figure 1: (A) Under the assumption that each reconnection step strictly reduces the number of
crossings of the substrate, in Shimokawa et al.7 we showed that there is a unique unlinking pathway
starting at a 2m-crossing replication link. In E. coli a replication link is a 2m-cat with parallel dif
sites,6 and this pathway predicts the first product to be a (2m − 1)1 knot with two dif sites in direct
repeats. Two sites along a knotted chain are in direct repeats if they induce the same orientation into
the knot. Replication links are 2m-crossing right-handed torus links with parallel sites (mathematical
notation: (2m)21). The pathway in the figure illustrates, form = 6, the only unlinking pathway starting
at the parallel 2m-cat under the assumption that each reconnection step strictly reduces the minimal
crossing number. All the intermediate topologies are torus links (2m)21 or torus knots (2m− 1)1 with
two reconnection sites in direct repeats as in the figure. (B) One reconnection step: here the cleavage
regions of the reconnection sites on a 621 link are brought together to form a synapse (shown as a ball
enclosing two strings). The synapse is modeled mathematically as a 2-string tangle. In the case of
XerCD site-specific recombination, the strings in the tangle contain the core regions of the dif sites
(indicated by two arrows in a tangle P representing two very short segments of double-stranded DNA
which physically behave as two almost straight strings) and any bound DNA which does not change
during recombination (gray shaded region). Any interesting geometrical or topological complexity
of the substrate is captured mathematically as an outside tangle O that remains constant during
reconnection. Before strand cleavage, the substrate is modeled by the tangle equation N(O+P ) = 621.
The local reconnection is modeled by tangle surgery where P is replaced with R, yielding a product
represented as N(O + R) = K, where K is a knot with two directly repeated sites. (C) Local
reconnection is a simple event which can be modeled as a band surgery, where P = (0) is replaced
with a tangle R = (w, 0) enclosing a vertical row of w twists, for some integer w. The rational tangle
notation (or Conway notation) for such vertical tangle is R = (w, 0). In the case when w = ±1 the
notation simplifies to R = (±1). In the simplest cases, P = (0) with sites in parallel alignment goes
to R = (±1), and P = (0) with sites in anti-parallel alignment goes to R = (0, 0) as illustrated in the
figure.
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Sogo et al.8 hypothesized that catenanes appeared as replication intermediates of bacteriophage λ58

DNA and observed that, in order to secure proper segregation of circular chromosomes at cell division,59

the linking number of the two newly replicated molecules must be reduced to zero. However, the60

topology of a circular double-stranded (ds)DNA molecule is insensitive to any manipulation that does61

not allow a double-stranded break.5 Nicking of a single DNA strand, however extensive, is insufficient62

to unlink two newly replicated DNA circles unless pre-existing nicks are present along the second63

strand. The type II topoisomerase topoIV is a major decatenase in E. coli.6,9 Grainge et al. showed64

that in the absence of topoIV, the XerCD-dif-FtsK molecular machine can act in vivo to separate65

two interlinked, newly replicated chromosomes.10 The XerCD complex consists of the site-specific66

tyrosine recombinases XerC and XerD. The dif site is a 28bp long recombination site located within67

the terminus region of the E. coli chromosome. FtsK is a powerful translocase that assembles at the68

division septum, where it activates XerCD-dif recombination. Their experimental data suggested a69

gradual reduction in topological complexity of the substrates, which were RH 2m-cats with parallel dif70

sites.10 The proposed unlinking pathway, through which the enzymes unlink the replication links in a71

step-wise fashion is illustrated in Fig. 1A. In the figure, each closed curve represents a circular dsDNA72

molecule. The components of a two-component link represent two newly replicated DNA chains.73

A rigorous mathematical analysis of the recombination experiments of Grainge et al.10 showed that at74

least 2m steps are needed in order to unlink any RH 2m-cat with parallel sites.7 This result relied simply75

on the assumption that the XerCD tetramer binds the two dif sites and that a simple cut-reconnect-76

paste reaction ensues (Fig. 1C). If the shortest pathway of unlinking a 2m-crossing replication link77

has exactly 2m steps, it is natural to ask how many such pathways exist and whether some are more78

likely than others. Under the assumption that each step strictly reduces the topological complexity79

of its substrate (as measured by minimal crossing number), Shimokawa et al.7 showed that the only80

possible pathway of unlinking a 2m-crossing replication link is that in Fig. 1A . Using tangle calculus,81

they proposed a 3-dimensional topological mechanism to take the parallel 2m-cat to the unlink. This82

mechanism incorporates three solutions obtained by tangle calculus at each step of the process, and the83

last three steps are fully characterized. The results in Shimokawa et al.7 provide unprecedented detail84

in the study of the topological mechanism of DNA unlinking by site-specific recombination. Going85

beyond the original problem of unlinking newly replicated circular chromosomes, these results apply86

to any reconnection event that can be modeled using tangles as in Fig. 1. For example, the same87

unlinking pathway proposed for DNA links under site-specific recombination has been observed during88

reconnection events in physical fields such as vortices in fluid flow.11–13 Further mathematical research89

on this subject can be found in the literature.14–1890
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Successful unlinking by XerCD-FtsK of newly replicated plasmids containing dif sites was shown in.1091

Quantification of these data gave weak justification to the assumption of stepwise reduction in complex-92

ity during the unlinking reaction.7 As can be seen in Fig. 2, the gel quantification clearly illustrates93

the reduction of replication links by XerCD-FtsK site-specific recombination at dif sites. However,94

because of the complexity of the data, in order to confirm stepwise reduction one would need to repeat95

the time course experiments10 for each individual topology. This motivates the current work where96

we remove the assumption of stepwise decrease in complexity, and design mathematical and numerical97

methods to assess the different unlinking pathways and the identification of the most probable ones.98

We ask whether there are other minimal unlinking pathways and hypothesize that the minimal pathway99

previously proposed7,10,19 and illustrated in Fig. 1A is the most likely among all the possible minimal100

pathways that arise. First, we allow the complexity of the products to decrease or remain the same at101

each step of the reaction. We provide analytical proof that there are exactly nine minimal pathways102

of unlinking a parallel 6-cat; many of the resulting transitions are fully characterized. Characteriz-103

ing minimal pathways of unlinking by local reconnection and resolving the topological mechanisms104

involved are problems of high theoretical complexity since the number of possibilities quickly increases105

with the number of crossings of the substrate. Likewise, characterizing the topological mechanism(s)106

taking a link Li to a knot Kj is equivalent to characterizing all band surgeries between Li and Kj (see107

Fig. 1C).108

In order to discriminate between different minimal unlinking pathways for a given substrate and to109

extend the study to higher crossing numbers, we eliminate the complexity assumption and develop a110

Monte Carlo method to simulate local reconnection events. The method can be applied to a substrate111

with any topology, allows products of varying topological complexity, and facilitates the rigorous quan-112

tification of the transition probabilities along each obtained pathway. Using this method we embark113

on a numerical study relevant to unlinking of DNA replication links by site-specific recombination a114

dif sites. More specifically, we restrict the numerical study to knotted chains of fixed length with115

two reconnection sites (representing the dif sites) that are evenly spaced along the chain, and linked116

chains consisting of the union of two circles of same length with one reconnection site in each compo-117

nent. Details on the numerical experiments can be found in the Numerical Methods section and in the118

Supplementary Methods online.119

The computational approach provides a rigorous means to discriminate between mathematically equiv-120

alent unlinking pathways. The combination of the mathematical and computational studies provides121

strong quantitative support for the hypothesis that the unlinking pathway from Fig. 1A is the most122
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Figure 2: Quantification of the time-course experiments.10 The gel presented in Fig. 1B in Grainge
et al.10 showed a time course of unlinking by XerCD-dif-FtsK50C at 25oC of newly replicated plasmids
containing dif sites. Line scans of the gel were previously published.7 In this figure each topological
class is shown as a separate series of points with linear interpolation. The caption assumes the bands
observed correspond to the topologies expected from a substrate composed of replication links, i.e.
2m-crossing links (e.g. 2m-cats), and some of the corresponding knotted intermediates (open circle or
01,31, 51). "Unlink" corresponds to the two unlinked components in monomeric state (topology type
021), and "Unknot" corresponds to the dimeric unknot (01). The quantification clearly illustrates the
reduction of replication links by XerCD-FtsK site-specific recombination at dif sites. The complexity
of the data is also evident, with the relative proportions of all the different topologies fluctuating from
one step to the next, thus obscuring the signal.

likely, even under the weakened assumptions.123

Nomenclature for knots and links It is important at the outset to say a word about the naming124

convention used for the knots and links which arise in this study (490 knots and 391 two-component125

links). A local reconnection event on a two component link with one cleavage site in each component126

yields a knotted chain with two sites in direct repeats (cf. Fig. 1A). Rolfsen’s Knot Table20 summarizes127

the knot nomenclature used in the mathematics community, which was not intended to distinguish128

between mirror images nor between oriented links, an important consideration when dealing with129

circular DNA and other biopolymers. Chirality is relevant, and indeed crucial, to characterize biological130

and chemical compounds. In this paper, we use the writhe-based knot nomenclature proposed in131

Brasher et al.21 The writhe is a geometrical invariant that provides a measure of a chain’s entanglement132

complexity and chirality. It is computed analytically using a Gauss double integral and can be estimated133

numerically by taking the average of the writhe of a planar diagram taken over all projection directions134

(the projected writhe). The mean writhe of a knot K refers to the average of the writhes of all knotted135

chains of type K. Numerically this is estimated by averaging over a sufficiently large, randomly136
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Figure 3: (A) Illustration of some of the knots relevant to the present study and their nomenclature.
The chirality is consistent with that in Brasher et al.21 The green arrows along the unknot 01 represent
the two reconnection sites. The sites shown are equidistant and in direct repeats. A complete table of
prime knots with up to 10 crossings and information on how they compare to those in Rolfsen20 can
be obtained from the authors upon request. (B) Nomenclature for two component links relevant to the
present study. The green arrows represent the reconnection sites, which confer an orientation to each
link component. The nomenclature is described in the Supplementary Methods and in Supplementary
Fig. S5 online. For 2-component links with 9 or more crossings we revert to the default Knotplot
naming convention. (C) The four possible combinations of chirality and orientation for the 4-crossing
torus link. A comparison between the nomenclature used in this paper and that in Rolfsen20 and in
works by Kanenobu23,24 is included in Supplementary Fig. S5 online. Arrows indicate the relative
orientations of the sites.

generated ensemble of conformations of type K. A representative of a chiral pair is chosen based on137

its mean writhe.21 We extend this nomenclature to the 2-component links depicted in Fig. 3. For138

prime 2-component links with 9 or more crossings we use the default notation from Knotplot.22 For139

more details and a comparison with other published nomenclature for links refer to the Supplementary140

Methods and to Supplementary Fig. S5 online.141
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2 Results142

2.1 There are exactly 9 shortest pathways to unlink the 6-cat that do not increase143

substrate complexity144

We consider an event where two oriented sites come together and undergo cleavage followed by recon-145

nection. If the substrate is a single circle, then the oriented sites are in direct repeat, i.e. they induce146

the same orientation into the circle. If the substrate consists of two circular chains, then there is one147

site in each chain. Note that such an event always changes the topology of the substrate: reconnection148

between two sites in separate components of a link yields a knot with two sites in direct repeats, and149

reconnection on a knot with two directly repeated sites yields a 2-component link with one site in each150

component. The reconnection event is modeled as a system of tangle equations as described in Fig.151

1(B). In the context of DNA unlinking, as in Shimokawa et al.,7 we model dsDNA as a curve defined by152

the axis of the DNA double helix, and the synapse formed by the enzymes bound to the core regions of153

the dif recombination sites as the 2-string tangle P . Reconnection changes P into R. If we assume that154

each reconnection is modeled as a coherent band surgery, i.e. P = (0) and R = (w, 0) for some integer155

w, then any minimal pathway to unlink an n-crossing torus link with parallel sites (e.g. 421 or 621) has156

exactly n steps. Furthermore, if each reconnection step is assumed to strictly reduce the complexity157

of its substrate, then the minimal pathway is unique: i.e. RH 2m-cat, RH (2, 2m− 1)-torus knot, RH158

(2m − 2)-cat, · · · , RH trefoil, Hopf link, trivial knot, trivial link. Fig. 1A illustrates the 6-cat case.159

Since the experimental data10 only gives weak support to the assumption that the complexity goes160

strictly down at each step of the reaction (Fig. 2), we here examine the case where no reconnection161

step increases the number of crossings and provide analytical characterization of all shortest pathways162

from the 6-cat to the unlink.163

Assumption 1. Consider a reconnection pathway from a parallel RH 2mcat to the unlink. Assume164

that each product along the pathway is a knot or a 2-component link, that the pathway is shortest, and165

that no reconnection event increases the number of crossings of its substrate.166

Recall that any shortest reconnection pathway from (2m)21 to the unlink has exactly 2m steps.7 In167

Theorem 2 we show that there are exactly nine unlinking pathways satisfying Assumption 1.168

Theorem 2. A pathway from the parallel RH 6-cat that satisfies Assumption 1 is one of the 9 shown169

in Fig. 4.170

The 9 pathways found in Theorem 2 involve 16 possible transitions taking a knot to a link or vice171
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Figure 4: The substrate at the top left corner is the link 621 with two reconnection sites in parallel
orientation. The pathways are represented as an oriented graph where the nodes are the knot or link
types, and two nodes are connected by an edge if one can go from one to the other via a reconnection
event. The substrate and product of each reconnection are indicated by the orientation of the edges.
The diagrams above each edge illustrate an example of the corresponding reconnection event by showing
the band where the band surgery will be performed. The weights on the edges correspond to transition
probabilities obtained numerically. Details of the simulations are in the Numerical Methods section
below, and in the Supplementary Methods and Supplementary Data online.

versa; 6 of the transitions have fully characterized mechanisms. The proof of the theorem and the172

characterization of the mechanisms are presented in the Supplementary Methods online. Fig. 4 sum-173

marizes the results as an oriented graph where each node is a knot/link type and each edge represents174

the transition between two topologies by one reconnection step. All minimal pathways taking the175

parallel 621 to the unlink 021, and satisfying Assumption 1 are shown. In the next section we undertake176

a thorough computational study with the objective of discriminating between minimal pathways while177

minimizing the number of assumptions. In particular, we use the numerical work to assign frequencies178

to each transition in the pathway graph (represented in Fig. 4 as weights on the edges).179

We here give a draft of the proof of Theorem 2. More details, including Lemmas S1-S8, Propositions180

S9-S17, and Figs. S1 and S2 exhibiting the steps of the proof and relevant band surgeries for each of181

the transitions in Fig. 4, are included in the Supplementary Methods online. In order to characterize182

the minimal pathways starting from the parallel 621 link, we first investigate the effect of band surgeries183

on certain topological invariants such as the signature, the Jones polynomial, the Q polynomial and184

the Arf invariant of the knots and links involved in those pathways. By Lemma S6, the sequence of185
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the signatures of knots and links is −5,−4,−3,−2,−1, 0, 0. Lemma S7 shows that split links can not186

appear in a shortest pathways. Lemma S8 identifies the candidate topologies for the minimal pathways187

from 621188

Outline of the proof189

(First step) From Proposition S9, the product knot obtained from 621 is either 51 or 31#31.190

(Second step) From Proposition S10, the product link obtained from 51 is either 421 or 31#221. From191

Proposition S11, the product link obtained from 31#31 is either 623 or 31#221.192

(Third step) From Proposition S12, the product knot obtained from 623 is 52. From Proposition S13,193

the product knot obtained from 31#221 is either 52 or 31. From Proposition S14, the product knot194

obtained from 421 is 31.195

(Fourth step) From Proposition S15, the product link obtained from 52 is either 221 or 42∗1
′. From196

Proposition S16, the product link obtained from 31 is 221.197

(Fifth step) From Proposition S17, the product knot obtained from 42∗1
′ is 01. The product obtained198

from 221 is 01. In the last step, the recombination event changes 01 into 021. These steps cover all199

transitions satisfying the Assumption 1.200

2.2 Topological mechanisms of reconnection201

The topological mechanisms of events between the following (substrate, product) pairs have been fully202

characterized:7 (31, 2
2
1), (2

2
1, 01), (01, 0

2
1). The topological mechanisms between pairs (52, 221), (52, 42∗1

′
),203

(42∗1
′
, 01) are characterized in the proposition below. For all transitions along the 9 minimal pathways,204

Fig. 4 illustrates one possible band surgery relating the knot to the link. The proof of Proposition 3 is205

given in the Supplementary Methods online, Characterization of Mechanisms section (Supplementary206

Fig. S3, Proposition S18, Theorem S19, Lemma S20).207

Proposition 3. A. 25 Suppose N(O + P ) = 52, N(O + R) = 221, P = (0) and R = (w, 0). Then208

O = ( 7
−7w−2).209

B. 25 Suppose N(O + P ) = 52, N(O +R) = 42∗1
′, P = (0) and R = (w, 0). Then O = ( 7

−7w−4).210

C. 26 Suppose N(O + P ) = 42∗1
′, N(O +R) = 01, P = (0) and R = (w, 0). Then O = ( 4

−4w−1).211
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Because XerC and XerD are tyrosine recombinases and act through a Holliday Junction Intermediate,212

the tangle pairs (P,R) that are relevant to unlinking of DNA replication links by Xer recombination are213

(P,R) = ((0)p, (−1)), (P,R) = ((0)a, (0, 0)) (P,R) = ((0)p, (1)) as illustrated in Fig. 1C. The above214

proposition allows to determine all the topological mechanisms for each of the three combinations215

of substrate and product in the statement. We illustrate the solutions in Proposition S18 and in216

Supplementary Fig. S3 in the Supplementary Methods online. Just as in Shimokawa et al.,7 here217

each system of tangle equations yields three solutions, and the three solutions can be interpreted as218

representing a unique 3-dimensional topological mechanism.219

2.3 Which unlinking pathways are most probable?220

In the previous section, we proved analytically that under Assumption 1 there are 9 minimal path-221

ways of unlinking the parallel 6-cat, 621. The mathematical analysis that includes enumeration of222

pathways and characterization of topological mechanisms becomes difficult for substrates with high223

crossing numbers. Furthermore, if the assumption of reduction in complexity –which is equivalent to224

imposing a topological filter in the physical system– is lifted, then the number of possible pathways225

increases rapidly and the detailed mathematical analysis quickly becomes intractable. We here remove226

Assumption 1 and set out on a numerical exploration of reconnection pathways starting from a broader227

set of substrate topologies. We develop software which finds reconnection sites along polygonal chains228

in the simple cubic lattice and simulates the reconnection event. Fig. 5C illustrates the basic recon-229

nection move on a simplified polygon. Fig. 5A shows a lattice trefoil with one single reconnection230

site, before and after local reconnection. We simulate reconnection to explore different topological231

transitions, to quantify transition probabilities and to discriminate between unlinking pathways that232

are mathematically indistinguishable when only substrate, product and length are specified.233

We provide numerical evidence that, of all minimal pathways starting with the RH parallel 6-cat, the234

one in Fig. 1A is the most likely. The weights in Fig. 4 correspond to the transition probabilities235

obtained in the numerical simulations. More generally, our numerical data suggest that this trend holds236

for any substrate that is a RH 2m-cat with parallel sites, or a RH (2m− 1)-torus knot with two sites237

in direct repeats. It is important to emphasize that the simulations do not use Assumption 1. Fig. 5B238

is a circos figure that shows all observed reconnection transitions that maintain or decrease minimal239

crossing number and that belong to an observed minimal pathway from the 91 knot. The thickness of240

the arcs corresponds to the directed transition probability between two topologies. Transitions in the241

most probable minimal pathway from 91 are colored red. The predominance of these most probable242
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Figure 5: (A) The substrate (left) is a lattice trefoil with 120 segments and two directly repeated
reconnection sites indicated by a white sphere. The product (right) is a 2-component link obtained
after one reconnection event. All substrate knots have directly repeated sites that are 60 segments
apart, with a tolerance of ±6 segments, and all links have two components 60 ± 6 long so that the
sum of the lengths is exactly 120. Reconnection on links is only performed between sites in different
components. (B) Circos figure: all reconnection transitions in a minimal pathway from the 91 that
satisfy Assumption1. 2-component links (resp. knots) are arranged by increasing crossing number
from bottom to top in the left (resp. right) hemisphere, and are color-coded blue (resp. red). Color
intensity increases with decreasing crossing number. An arc between K and L indicates at least one
observed reconnection event between K and L. The thickness of the arcs corresponds to the directed
transition probability between two topologies. Transitions with an observed probability < .2 are
thickened to be more visible. Transitions are colored according to the probability of the most probable
minimal pathway they are a member of. The first, second, and third most probable unlinking pathways
from 91 are colored red, orange, and yellow, respectively. If no arc appears between a pair {K,L},
this means that no reconnection between them was observed. Observed transitions for all substrate
topologies, including those in non-minimal pathways, are included in Supplementary Data and in Fig.
S6 in the Supplementary Methods online. (C) Local reconnection move between two directly repeated
sites. In the juxtaposition the reconnection sites, indicated with hashed lines, are at distance 1 and
in antiparallel alignment. (D) L are T (2, n) torus knots and links (Fig.1). Pmin(L) is the number of
minimal unlinking pathways observed for L under Assumption1. P (L) indicates the total number of
minimal pathways observed for L without Assumption1. It is known that there are infinitely many
minimal unlinking pathways for any T (2, 2n) link with parallel sites.17 NHOMFLY-PT is the number of
distinct HOMFLY-PT polynomials observed after one reconnection.
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unlinking pathways is consistent with the experimental observations for XerCD-FtsK-dif site-specific243

recombination on DNA replication links,10 and for reconnection in fluid vortices,12 and is also consistent244

with the predictions in the literature.7,11245

The minimum distance between the link type Li and the knot type Kj in terms of band surgeries246

is called nullification distance.27,28 In the numerical experiment we started by choosing knots and247

2-component links that are at nullification distance 1-3 from one of the 11 knots or links along one248

of the 9 minimal pathways of Theorem 2 and Fig. 4, or are obtained from these topologies by taking249

mirror images or reversing the orientation of one of the components. For completeness, we expanded250

the initial set to include 491 substrate topologies representing almost all knots and links with 9 or251

fewer crossings. Reasons for omitting a handful of 9-crossing split links from the substrate set are252

described in detail below. We use the BFACF algorithm to generate large independent ensembles of253

conformations for each substrate topology. BFACF is a dynamic Monte Carlo method which samples254

uniformly the set of all lattice polygons of fixed topology for a given mean length.29 The BFACF moves255

used to perturb each chain are illustrated in Fig. S4 in the Supplementary Methods online. Split links256

such as the unlink 021 or 01∪31 (see Fig. 3), even though they appear as reconnection products, are not257

used as substrates due to the difficulty of keeping the components together without altering the Monte258

Carlo procedure. In order to improve the efficiency of sampling statistically independent conformations259

we implemented BFACF as a Composite Markov Chain (CMC). Details of the simulations, including a260

description of the algorithms and different parameters, are included in the numerical methods section261

and in the Supplementary Methods. Fig. S6 in the Supplementary Methods online illustrates all the262

transitions observed between 881 topologies in the numerical experiment, including those that do not263

appear in minimal pathways from 91. The resulting transition probabilities are available in matrix264

form in the data spreadsheet provided as Supplementary Information (Supplementary Data).265

Fig. 5D contains exact counts for the number of minimal unlinking pathways for torus knots and266

links with up to 6 crossings, and the corresponding numerical estimates for 7 and 8 crossings. Under267

Assumption 1 there are 9 minimal pathways of unlinking the 621 link. In the numerical study, we268

find 36 minimal unlinking pathways for the 71 knot and 208 minimal unlinking pathways for the 821269

link, under Assumption 1 (Pmin(L)). Once the Assumption is removed, we observe P (71) = 2760270

minimal pathways for the knot 71 and P (821) = 6434 minimal pathways for the link 821 (in this case the271

crossing number can increase at any given step). However it has been shown analytically that there272

are infinitely many possible minimal pathways between any 2n torus link with parallel sites and the273

unlink.17 The numerical data can provide biologically-relevant information by establishing a ranking of274
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the most likely pathways. The third row in Fig. 5D indicates the number of distinct product topologies275

(as detected by the HOMFLY-PT polynomial) observed for torus knots and links of the type T (2, n)276

with 8 or fewer crossings after a single reconnection step.277

3 Discussion278

In Theorem 2 we prove that there are exactly 9 shortest unlinking pathways for the 621, assuming279

that at every step the complexity of the substrate goes down or remains the same. The 9 pathways280

are illustrated in Fig. 4. We solve the topological mechanisms involved for 6 of the 16 steps along281

these pathways. We develop a new Monte Carlo based numerical method which allows us to model282

local reconnection on chains of fixed length and topology. We run the numerical simulation on each283

topology found to be within 3 nullification steps from any topology in Fig. 4. Notice that in these284

experiments there is nothing preventing the complexity of a substrate from going up at any given step.285

We can determine the set of all minimal pathways from any of the substrate topologies, and single286

out the most probable pathway. In Fig. 5 we provide numerical estimates for the number of minimal287

pathways for torus knots and links with 7 and 8 crossings. In our numerical data the most probable288

minimal pathway from a torus link (or knot) to the unlink is the one where every intermediate is289

also in the torus family as in Fig. 1A. The data from the numerical experiments can be found in the290

Supplementary Data.291

Mathematically, extending Theorem 2 to determine all minimal pathways for T (2, N) torus knots and292

links is difficult. In general, if the substrate is a torus knot or link T (2, N) one can find multiple293

pathways that preserve the minimal crossing number at many steps. The complexity of the problem294

grows with the minimal crossing number of the substrate. For example, using numerical simulation295

we estimate the number of minimal pathways from the 71 (resp. 821) to the unlink to be at least 36296

(resp. 208) under Assumption 1. These are not tight bounds due to the limitations with using links297

of the form K#221 as substrates in the numerical experiments. It is known that when the assumption298

is removed, there are infinitely many shortest pathways between the T (2, 2N)p torus link and the299

unlink.17 In our numerical work, once Assumption 1 is removed we count at least 744, 2760 and 6434300

shortest unlinking pathways for 621, 71 and 821, respectively.301

The problem of computing the nullification distance between a knot and a link is of interest to the302

mathematical community.17,23,24,27,28 In cases where the analytical tools fail to provide an exact303

nullification distance, one can estimate the distance between two topologies using the numerical method304
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and possibly remove ambiguities by exhibiting the relevant band surgeries.305

The numerical simulations in this study posed a number of challenges. For example, in order to306

generate an ensemble of essentially independent unknots 01 of length 120 we had to go through at307

least twice as many iterations of the BFACF algorithm than for any other substrate topology. Further,308

these unknots contained synapses meeting the reconnection criteria approximately once every 7.5×109309

iterations. In order to improve the efficiency of such runs, we implemented the BFACF algorithm as310

a Composite Markov Chain process.30–33 Similar challenges extend to any topology consisting of a311

connected sum of a knot and a Hopf link K#221, or the disjoint union of a knot and an unknot K ∪ 01312

(see examples in Fig. 3). In the first case, the unknotted component tends to shrink, making it difficult313

to satisfy the equal-length criteria for recombination. In the second case, even though these topologies314

appear as reconnection products, they cannot be used as substrates due to the difficulty of keeping the315

components together (without biasing the simulations for those specific substrates). Now consider an316

example where a bacterial chromosome dimer forms a 31 knot with two equidistant directly repeated317

dif sites. In our simulations we see that 0.025% of trefoils transition to 01 ∪ 31, the disjoint union of318

an unknot and a trefoil, and 95.2% of trefoils transition to 221. In the first case the knotted dimer319

is effectively unlinked in one step, but one of the components will remain knotted, which can pose320

problems during chromosome segregation. In the second case unlinking of the trefoil can be achieved321

in 3 steps, with a combined probability of 0.925; the final product is 021, a union of two circles which322

can then segregate at cell division.323

In the case of unlinking of DNA replication links, each component of the link corresponds to a newly324

replicated chromosome from E.coli with one dif site in each component. This example motivated our325

choice to let two reconnection sites within a single circle be equidistant, and the two components of326

a linked product or substrate have the same length. In different contexts, such as that of site-specific327

recombination between non-equidistant sites, more general homologous recombination, and possibly328

other reconnections in physics, the distance between sites will be an important parameter, requiring329

further exploration of the length and topology dependence of the transition probabilities obtained by330

the numerical method.331

Furthermore, in nature, DNA molecules are often found tightly packaged in crowded environments.332

A study of reconnection on confined chains would shed light on whether confinement plays a role in333

driving topological simplification by any process involving local reconnection. Existing studies of the334

confinement of polygonal chains inside and outside the lattice suggest methods for generating ensembles335

of conformations.34,35336
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4 Materials and Methods337

4.1 Mathematical Methods338

The tangle method is briefly summarized in Fig. 1. The naming convention used for knots and339

links is reviewed in the Introduction. More detailed mathematical methods and results used in the340

proof of Theorem 2 are provided in Fig. 4 and in the Supplementary Methods online. A site-specific341

recombination event is modeled as a local reconnection and is represented mathematically as a system342

of tangle equations as described in Fig. 1B. The circular chain represents the starting knot or link,343

and P is a 2-string tangle that encloses the reconnection sites. Reconnection changes P into R. We344

assume that each reconnection is modeled as a coherent band surgery, i.e. P = (0) and R = (w; 0) for345

some integer w (Fig. 1C).346

4.2 Numerical Methods: modeling reconnection347

Computer simulations of local reconnection.348

We use an integrated set of computational tools to generate and filter ensembles of conformations,349

perform reconnection, identify product topologies, generate transition probabilities and facilitate sta-350

tistical analysis of the results. Given an ensemble of lattice conformations with fixed length and351

constant topology, our algorithm searches for possible synapses along each conformation, selects one352

uniformly at random, and performs reconnection as illustrated in Fig. 5A. Our original motivation353

came from XerC/D site-specific recombination at dif sites in newly replicated chromosomes with one354

site in each component or in chromosome dimers with two equidistant directly-repeated sites. In this355

case reconnection events are constrained by the position and orientation of the dif sites. We therefore356

impose a set of constraints on where to perform reconnection. These can be seen as topological filters357

that can be adjusted to best fit the scenario to be modeled. Here, a reconnection synapse is defined358

as a pair of coplanar edges of distance one apart with antiparallel orientation; each of the two oriented359

edges is a reconnection site. Reconnection exchanges each edge of the synapse for one perpendicular to360

it as shown in Fig. 5C. The set of possible edge pairs on which to form a synapse is further constrained361

by step distance along the conformation. Here we adjust this parameter to constrain the location of362

the synapse so that the arc lengths on each side are equal within a ±6 range, while enforcing the total363

length of the knotted polygon, or the sum of the lengths of the components of interlinked polygons, to364

be fixed. For knots this models two equidistant sites in the synapse. For two component links, it mod-365
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els two components of equal length with a single site in each of the two components. We exclusively366

sampled conformations of total length 120 which contain at least one reconnection synapse.367

Generation of reconnection substrates.368

Self-avoidance is an important property when modeling biopolymers such as circular DNA. Here,369

conformations in the simple cubic lattice, Z3, are self-avoiding polygons whose vertices have integer370

coordinates and whose edges are parallel to one of the three coordinate axes. The BFACF algorithm371

is a dynamic Monte Carlo method which samples from the space of lattice conformations of a fixed372

topology.29 The states of the resulting Markov Chain are conformations obtained by first randomly373

selecting an edge, then attempting one of the three moves shown in Fig. S4 in the Supplementary374

Methods online ((-2)-move, (+2)-move or (0)-move). None of these moves can ever change the link375

type of the conformation.29,36376

Generating large ensembles of conformations for each topology with at least one valid synapse posed377

significant technical challenges. The 01 knot and links of the type K#221 where K is a knot with high378

crossing number were particularly problematic. This is because the component with trivial topology379

tends to have a short average length, making sampled conformations that form a reconnection synapse380

very rare. For example, the 01 forms such a synapse in fewer than 1 in 1.3 × 106 sampled conforma-381

tions. To address these challenges and gain the computational performance needed for this study, we382

here extend the efficient, constant time (in knot length) implementation of the BFACF algorithm used383

in previous work34,35,37,38 by employing it as a Composite Markov Chain (CMC) Monte Carlo pro-384

cess.30–33,39 CMC BFACF iterates simultaneously on multiple Markov chains with different fugacity385

parameters, swapping conformations between chains when certain weighted random criteria are met;386

more details of the implementation are included in the Supplementary Methods online. CMC Monte387

Carlo improves efficiency by exchanging conformational states between chains, thus improving the388

speed at which the conformations are randomized. We sample conformations at a frequent fixed rate389

and correct for dependent samples using block mean analysis,40 therefore standardizing the sampling390

methodology across all of the topologies in the study and avoiding reliance on direct estimations of391

integrated autocorrelation time. With this methodology, we generated in the range of 107 conforma-392

tions for every substrate topology. Of the topologies for which a reconnection event was observed,393

the number of conformations containing at least one reconnection synapse ranged from approximately394

1.5 × 106 for the 9∗13 knot, to as little as 86 for the 62#221 link. Two component topologies in which395

the two components are of different topology are difficult to sample efficiently because of the rarity396

of conformations that meet our stringent arclength criteria. Split links, i.e. those topologies in which397
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the two components are not interlinked, are even more problematic because both components tend398

to travel away from each other, thus dramatically reducing the probability of sampling conformations399

that contain a valid synapse. We identified those topologies as products of reconnection, but did not400

include them in the set of substrate topologies described in the next paragraph.401

Recall that 9 minimal unlinking pathways from the 6-cat were obtained analytically in Theorem 2402

under the assumption that each reconnection step either preserves or reduces the complexity of the403

substrate. Our simulations eliminate that assumption, enabling wider exploration of possible topo-404

logical reconnection pathways. We start with 491 substrate topologies, including those along the 9405

unique pathways from Fig. 4 (excluding the unlink 021). With CMC BFACF we generate ensembles406

of conformations with fixed topology to be used as reconnection substrates. The number of substrate407

conformations generated ranges from 1.2× 107 for the 726 link, to more than 6.9× 108 for the 01. We408

perform one reconnection per conformation and identify the resulting topology. Including all substrate409

topologies and the identifiable products after reconnection, there are 881 topologies being analyzed in410

the study (490 knots and 391 two component links).411

Knot identification412

Our simulations require a rigorous, unambiguous way of identifying the knot or link conformation413

types in Z3. With the exception of chiral knots 817 and 942 which have the same HOMFLY-PT as414

their mirror images, and 912 which has the same HOMFLY-PT as 41#52, all prime knots with nine415

or fewer crossings can be unambiguously identified using the HOMFLY-PT polynomial.41,42 Our knot416

identification software is based on the other published algorithms.43,44 In order to identify product417

topologies, we first perform 20,000 BFACF iterations with randomly chosen (0) and (-2) moves. At each418

step, the conformation either remains the same length or becomes shorter, in many cases approaching419

the minimal length for that topology.38 The final conformation goes through an energy minimization420

algorithm,22 we compute an extended Gauss code and identify the topology using the HOMFLY-PT421

polynomial. Information on those oriented knots or links with 10 or fewer crossings that HOMFLY-PT422

fails to identify uniquely is included in the Supplementary Methods online.423

Recombination between two directly repeated sites along a single circular chain yields a 2-component424

link. The number of product topologies increases dramatically with the complexity of the substrate.425

Fig. 3 shows a selection of some of the expected products, including composite links that are not426

normally shown in knot tables. Composites are of two types: connected sums of prime knots or links;427

and disjoint unions. In this study, we perform recombination on two types of substrates: (i) knots with428
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two (approximately) equidistant directly repeated sites; and (ii) links with 2 components of identical429

total length and with one site in each component. More specifically, each substrate knot is a self-430

avoiding lattice polygon of length 120 and recombination occurs on two directly repeated sites that are431

between 54 and 66 units apart (Fig. 5A). Each linked substrate consists of two self-avoiding polygons432

between 54 and 66 units long, such that the sum of their lengths is exactly 120. Recombination is433

restricted to synapses where two sites, one in each component, are found at unit distance apart and434

in anti-parallel alignment as illustrated in Fig. 5(A and C). A small representative subset of the knot435

and link types used in the simulations is shown in Fig. 3, and the naming convention is described in436

the nomenclature section, in the Supplementary Methods and in Supplementary Fig. S5 online.437
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