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Abstract 

Background 

This paper describes a heuristic method for allocating low-coverage 18 

sequencing resources by targeting haplotypes rather than individuals. Low-coverage 19 

sequencing assembles high-coverage sequence information for every individual by 20 

accumulating data from the genome segments that they share with many other 21 

individuals into consensus haplotypes. Deriving the consensus haplotypes accurately 22 

is critical for achieving a high phasing and imputation accuracy. In order to enable 23 

accurate phasing and imputation of sequence information for the whole population we 24 

allocate the available sequencing resources among individuals with existing phased 25 

genomic data by targeting the sequencing coverage of their haplotypes. 26 

Results 

Our method, called AlphaSeqOpt, prioritizes haplotypes using a score function 27 

that is based on the frequency of the haplotypes in the sequencing set relative to the 28 

target coverage. AlphaSeqOpt has two steps: (1) selection of an initial set of 29 

individuals by iteratively choosing the individuals that have the maximum score 30 

conditional to the current set, and (2) refinement of the set through several rounds of 31 

exchanges of individuals. AlphaSeqOpt is very effective for distributing a fixed 32 

amount of sequencing resources evenly across haplotypes, which results in a 33 

reduction of the proportion of haplotypes that are sequenced below the target 34 

coverage. AlphaSeqOpt can provide a greater proportion of haplotypes sequenced at 35 

the target coverage by sequencing less individuals, as compared with other methods 36 

that use a score function based on the haplotypes population frequency. A refinement 37 

of the initially selected set can provide a larger more diverse set with more unique 38 

individuals, which is beneficial in the context of low-coverage sequencing. We extend 39 
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the method with an approach to filter rare haplotypes based on their flanking 40 

haplotypes, so that only those that are likely to derive from a recombination event are 41 

targeted. 42 

Conclusions 

We present a method for allocating sequencing resources so that a greater 43 

proportion of haplotypes are sequenced at a coverage that is sufficiently high for 44 

population-based imputation with low-coverage sequencing. The haplotype score 45 

function, the refinement step, and the new approach of filtering rare haplotypes make 46 

AlphaSeqOpt more effective for that purpose than methods reported previously for 47 

reducing sequencing redundancy.  48 
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Introduction 

This paper describes a heuristic method for allocating low-coverage 49 

sequencing resources by targeting haplotypes rather than individuals so that 50 

haplotypes have a coverage that is sufficiently high for population-based imputation. 51 

The use of whole-genome sequencing data has great potential in livestock 52 

breeding programs. It may increase the power of discovery of causative variants [1–3] 53 

and may enable more accurate and persistent predictions of breeding values than 54 

marker array genotypes [4,5]. To capture the full potential of sequence data in 55 

livestock, sequence and phenotype data on a large number, perhaps millions, of 56 

individuals may be required to accurately estimate the effects of the large number of 57 

causative variants that underlie quantitative traits [6]. 58 

Low-cost sequencing strategies combined with imputation can be utilised to 59 

generate the required amount of sequence information for a large number of 60 

individuals at an affordable cost [7–11]. The strategies for low-cost sequencing can be 61 

classified into three groups: (1) to sequence a certain number of key individuals at 62 

high coverage, as in the 1,000 Bull Genomes project (KeySires) [2,5]; (2) to sequence 63 

a larger number of individuals at low coverage (LCSeq) [6,12,13]; and (3) to 64 

sequence a set of chosen individuals at a wide range of coverages (VarCoverage) 65 

[14]. 66 

The LCSeq approach exploits the fact that the population structures that are 67 

typical in livestock breeding result in individuals being sufficiently related to share 68 

large genome segments. LCSeq focuses sequencing on the haplotypes in the 69 

population rather than on any individual. LCSeq sequences individuals at low 70 

coverage and assembles high-coverage sequence information for every haplotype by 71 

accumulating the low-coverage sequence data from the genome segments that are 72 
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shared between many individuals to derive the ‘consensus haplotypes’. The consensus 73 

haplotypes are then used to impute the sequence data of the individuals. Deriving the 74 

consensus haplotypes accurately is critical for achieving a high phasing and 75 

imputation accuracy under the LCSeq strategy. 76 

With the LCSeq approach potentially many more individuals can be sequenced 77 

than with the KeySires or VarCoverage approaches. This provides three advantages to 78 

the LCSeq approach: (1) higher variant discovery rates, particularly for low-frequency 79 

variants [15]; (2) inclusion of rare haplotypes; and (3) a more precise capture of the 80 

recombination events that have occurred in the population, which would enable better 81 

definition of the haplotypes that are present in the population and thus better 82 

imputation of these haplotypes into the individuals that carry them. 83 

There are methods to optimise the selection of individuals for sequencing for 84 

the three alternate sequencing approaches. Most of these methods focus only on the 85 

choice of which individuals to sequence with the aim to impute their sequence 86 

information into their relatives [5,16–18]. Recently, Gonen et al. [14] proposed a 87 

method that identifies the individuals with the largest genetic footprint on the 88 

population and optimises the allocation of sequence resources across these focal 89 

individuals and their ancestors with the aim to maximise phasing accuracy of their 90 

sequenced haplotypes when using family-based phasing methods. 91 

Although LCSeq could be used alone, we envisage a sequencing strategy in 92 

two stages for facilitating the imputation of sequence data. The first stage uses the 93 

method developed by Gonen et al. [14] with the aim of producing a set of accurately 94 

phased haplotypes that are shared by a lot of individuals in the population. The second 95 

stage seeks to complement the first stage by applying the LCSeq approach as 96 

described above to spread low-coverage sequence data across the population so that 97 
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whole-genome sequence data can be imputed to the whole population, which in turn 98 

will be enhanced by the phasing of the most common haplotypes achieved in the first 99 

stage. To do this effectively a method for optimising the allocation of sequencing 100 

resources under the LCSeq approach should be developed. 101 

We hypothesise that such a method should maximise the sequencing coverage 102 

of the maximum possible number of haplotypes because this would enable 103 

population-based phasing and imputation methods rather than family-based 104 

imputation methods to accurately phase and impute the data to all individuals. For 105 

such population-based phasing and imputation methods, a certain level of sequence 106 

coverage must be accumulated for accurate inference of a consensus haplotype. With 107 

a prototype of such a population-based phasing and imputation method we observed 108 

that there is a positive relationship between the coverage that a particular haplotype 109 

accumulates across individuals and the imputation accuracy of a consensus haplotype 110 

(for a description, see Additional file 1: Figure S1). A random allocation of 111 

sequencing resources under the LCSeq approach results in some haplotypes being 112 

sequenced many times, some rarely, and some not at all. To optimise the allocation of 113 

sequencing resources under LCSeq we need to maximise the proportion of haplotypes 114 

that are sequenced at the target coverage and minimise the proportion of haplotypes 115 

that are under- or over-sequenced. Similarly, we need to minimise the sequencing 116 

resources allocated to haplotypes that are too rare to have consensus haplotypes 117 

inferred or their effects estimated accurately. 118 

The objective of this work was to develop a method that uses haplotypes 119 

derived from existing phased marker array genotypes to identify which individuals 120 

should be sequenced, and at what coverage, to maximize the proportion of consensus 121 

haplotypes sequenced at a minimum target coverage. Our method uses a score 122 
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function to identify a set of individuals based on the coverage at which their 123 

haplotypes are sequenced and then it refines the initial set of individuals through 124 

rounds of exchanges. We extend the method with an approach to filter out rare 125 

haplotypes so that we only target those that are likely to derive from the 126 

recombination of common haplotypes. We tested the performance of the algorithm 127 

using simulated data and the results showed that our method is efficient in distributing 128 

the sequencing resources evenly across a large proportion of the haplotypes observed 129 

in the population. 130 

 131 

Materials and Methods 

 132 

Description of the AlphaSeqOpt method 

Our method utilises existing phased marker array genotypes to identify which 133 

individuals should be sequenced, and at what coverage, so that the maximum 134 

proportion of haplotypes are sequenced at any minimum target coverage with a fixed 135 

sequencing budget. The method has two main steps. In the first step, referred as 136 

‘initial set selection’, an initial set of individuals is selected by iteratively choosing the 137 

individuals that are the most complementary to the ones already in the set according 138 

to a score function. In the second step, referred as ‘set refinement’, the initial set of 139 

individuals is refined through several rounds of exchanges. The method was 140 

implemented in a software package called AlphaSeqOpt, which also implements the 141 

method of Gonen et al [14]. Throughout the rest of the paper, AlphaSeqOpt is used 142 

when referring to our method. 143 

 144 

Initialisation step: 145 
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0a: Construct a haplotype library for the population using existing phased 146 

marker array genotypes. Split each chromosome into c cores of length m markers. A 147 

‘core’ is each of the strings of m consecutive marker positions used to determine the 148 

haplotypes. Within a core, strings of alleles (previously phased) are compared to 149 

define which haplotype each individual carries in each parental chromosome. Strings 150 

of alleles that are identical between two individuals are defined as a unique haplotype 151 

and strings with multiple mismatches are defined as different haplotypes. A 152 

predefined number of mismatches can be allowed before two strings of alleles are 153 

defined as different haplotypes to account for sequencing errors. 154 

0b: Calculate the maximum size of the sequencing set. Assuming linear 155 

sequencing costs, the sequencing budget divided by the cost of 1x sequencing 156 

determines the total amount of sequencing coverage that could be produced, 157 

represented by the number of slots of the sequencing set. A ‘slot’ is each of the 158 

positions in the set, which can be assigned to any given individual following the steps 159 

below. Each slot corresponds to 1x sequencing. 160 

 161 

Initial set selection (step 1): 162 

1a: Calculate a score for each haplotype in each core. We derived a score 163 

function that prioritizes the haplotypes that are closer to reaching the target coverage. 164 

The score function is based on the frequency of a haplotype in the sequencing set 165 

relative to the target coverage. The score function is: 166 

Score � �  exp �� ��������

	
���
�������

	� ,      if HapCount � 2 � TargetCov

                     0,                           if HapCount � 2 � TargetCov , 167 

where HapCount is the number of times that a haplotype appears in the current 168 

sequencing set and TargetCov is the target haplotype coverage (Figure 1). The score 169 
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increases every time that an individual that carries a given haplotype is added to the 170 

sequencing set. When the haplotype count in the set reaches twice the target coverage, 171 

which is the haplotype count required to produce the target coverage assuming that 172 

for each x of coverage of an individual there is a probability of 0.5 of reading either 173 

the paternal or maternal haplotype, the score is set to 0 to prevent over-sequencing of 174 

well-covered haplotypes in favour of allocating sequencing resources to other 175 

haplotypes. 176 

1b: Calculate the total score for every individual as the sum of the scores of 177 

the haplotypes that each individual carries at each core. 178 

1c: Add the individual with the maximum score to the first available slot of the 179 

initial set. If there is more than one individual satisfying this condition, one individual 180 

is selected at random amongst those individuals with the maximum score. Repetition 181 

of individuals in several slots of the set is allowed. The number of slots occupied by 182 

the same individual indicates at what coverage it should be sequenced (i.e., an 183 

individual that appears n times in the set should be sequenced at nx). 184 

1d: Calculate the total cost of sequencing the current set as the cost of library 185 

preparation times the number of individuals in the set plus the cost of 1x sequencing 186 

times the total sequencing coverage produced. 187 

1e: Repeat steps 1a to 1d until the initial set is complete (i.e., we have a set of 188 

individuals at variable coverage that exhausts all the sequencing resources). Because 189 

some resources are used for library preparation some slots will be left empty. 190 

 191 

Set refinement (step 2): 192 

2a: Choose randomly a predetermined number of slots of the set. Remove the 193 

individuals assigned to these slots from the set. 194 
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2b: Repeat steps 1a to 1d to fill the emptied slots. Individuals removed in step 195 

2a can go back into the set if they have the maximum individual score.  196 

2c: If the exchanges result in the same or a greater percentage of unique 197 

haplotypes sequenced at (or above) the target coverage, keep the new set. Otherwise, 198 

discard the new set in favour of the previous set. 199 

2d: Repeat steps 2a to 2c for a predefined number of exchange rounds. 200 

 201 

If there are individuals that have been sequenced previously, AlphaSeqOpt can 202 

account for the available sequence data easily by adding the pre-existing coverage of 203 

their haplotypes to HapCount during the calculation of the haplotype scores in step 1a. 204 

If there are not any individuals that have been sequenced previously, all haplotypes 205 

will have the same starting score and the first individual will be selected at random 206 

amongst those that have more non-missing haplotypes. 207 

For any given target haplotype coverage, AlphaSeqOpt will produce a set of 208 

individuals to be sequenced from 1x to a maximum coverage equal to twice the target 209 

coverage. To ensure that all individuals are sequenced at a low coverage and that a 210 

larger number of individuals is sequenced it is also possible to restrict the coverage 211 

for the individuals in the set to a desired maximum (e.g., to 1x or 2x). 212 

In the implementation of AlphaSeqOpt we are making two assumptions 213 

regarding the yield of data from the sequencer: (1) that sequencing coverage is 214 

uniform across the genome; and (2) that for each x of coverage of an individual there 215 

is a probability of 0.5 of reading either the paternal or maternal haplotype and 216 

therefore each haplotype receives half the coverage. Even though these assumptions 217 

contradict empirical observations [19], there is no straightforward way of accounting 218 

for variation of coverage across genome or between alleles prior to performing 219 
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sequencing. Regarding the sequencing costs, we are assuming that when we increase 220 

the sequencing coverage we incur a linear increase of the sequencing costs. 221 

AlphaSeqOpt can also account for non-linear cost structures by modifying the cost 222 

equation used in step 1d. 223 

 224 

Algorithm testing 

The proposed method was tested against our implementation of the Inverse 225 

Weight Selection (IWS) method as described by Bickhart et al. [17], our adaptation of 226 

the IWS method to obtain more comparable results, and a method that selects the 227 

individuals randomly (referred to as Random). 228 

The IWS method as described by Bickhart et al. [17] follows the step 1 as 229 

described above but in step 1a it uses an inverted parabolic score function fi
2 –2fi +1, 230 

where fi is the population frequency of the haplotype. Note that this function uses the 231 

population frequency, while the score function that we propose uses the frequency of 232 

the haplotype in the sequencing set relative to the target coverage. The two score 233 

functions are compared in Figure 1. Another major difference with AlphaSeqOpt is 234 

that Bickhart et al. [17] proposed targeting only homozygous haplotype cores based 235 

on the marker array genotypes. Thus, the IWS method only scores such haplotypes 236 

and it stops after the initial set is constructed, without a step of refinement. 237 

Our adaptation of IWS mirrored the method that we propose more closely, 238 

including a step of refinement of the initially selected set, with the only difference 239 

being the score function used. This method follows both steps 1 and 2 as described 240 

above but in step 1a it uses the inverted parabolic function fi
2 –2fi +1. We did not 241 

follow the suggestion of targeting only the haplotypes at cores that are predicted to be 242 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188896doi: bioRxiv preprint 

https://doi.org/10.1101/188896
http://creativecommons.org/licenses/by-nc-nd/4.0/


homozygous based on the marker array genotypes, because this would disadvantage 243 

the adapted IWS method. 244 

The Random method also used the algorithm described but individuals were 245 

selected randomly instead of according to a score function. In the refinement step, 246 

random exchanges of individuals were performed. 247 

All methods were tested in a range of scenarios. The scenarios varied in the 248 

target haplotype coverage (5x, 10x, or 15x) and in the total available sequencing 249 

resources (£400,000, £800,000, or £1,600,000 GBP). We calculated the cost of each 250 

scenario assuming a cost in library preparation of £40 and a cost in 1x sequencing of 251 

£80. The tested sequencing resources would produce a total of 5,000x, 10,000x, or 252 

20,000x whole-genome reads, respectively, if cost of library preparation was ignored. 253 

Haplotypes observed only once or twice in the population were excluded from the 254 

analyses unless stated otherwise. Additional tests were performed with a restriction of 255 

maximum individual coverage of 1x, for different numbers of exchanges per round, 256 

ranging from 1 slot to the total size of the set, and for different costs of library 257 

preparation, ranging from no cost to £40. We performed 10 repetitions for all 258 

analyses. The percentage of unique haplotypes sequenced at (or above) the target 259 

coverage was used as the main criterion, together with the number of individuals 260 

sequenced. 261 

For simplicity, in some instances we will focus on the scenarios with a target 262 

haplotype coverage of 10x but the algorithm can be used with any desired target 263 

coverage. 264 

 265 
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Filtering of rare haplotypes based on flanking context 

A new approach for filtering the rare haplotypes included in the analyses was 266 

also developed. In this approach we filtered the rare haplotypes so that only those rare 267 

haplotypes that are likely to derive from a recombination event between two common 268 

haplotypes were targeted. 269 

The filtering was based on two assumptions: (1) rare haplotypes that were 270 

derived from a recombination event between common haplotypes will be flanked by 271 

common haplotypes; and (2) there will be no other individuals that carry the same 272 

combination of haplotypes at the cores that flank the rare recombined haplotype. The 273 

second assumption could be false if, for example, there had been multiple 274 

recombination events at different positions of the same core that produced multiple 275 

rare recombinant haplotypes from the same two common haplotypes, but note that 276 

this is a method for directing the sequencing resources among rare haplotypes, not an 277 

exact method for capturing all recombination events. Note also that combinations of 278 

consecutive cores with rare haplotypes could indicate either genomes that are 279 

unrelated to the population or phasing errors. 280 

We implemented the above filtering approach according to the population 281 

count of the haplotypes at each core. In any given core, haplotypes with population 282 

count below a predefined threshold are included in the analysis only if all of the 283 

following conditions are met: (1) the rare haplotype is not at the first or last core of a 284 

chromosome; (2) the counts of the flanking haplotypes are greater than a predefined 285 

threshold (FlankCount); and (3) there are less than a predefined number (nComb) of 286 

individuals carrying the same combination of haplotypes flanking the rare haplotype. 287 

In our implementation of AlphaSeqOpt we used this filtering approach on 288 

those rare haplotypes with population count ≤2 (observed only once in the population, 289 
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referred to as ‘singletons’, or twice, referred to as ‘doubletons’) using FlankCount=2 290 

and nComb=3. The same method could be applied for any population count. This 291 

approach for filtering the rare haplotypes was tested against the reference case with no 292 

filtering and against the approach in which all singletons and doubletons were filtered 293 

out. 294 

 295 

Simulated dataset 

To demonstrate the implementation of the algorithm, a testing dataset was 296 

simulated to mimic a typical livestock population with known structured pedigree. 297 

Sequence data was generated for 1,000 base haplotypes for each of ten 298 

chromosomes using the Markovian Coalescent Simulator [20] and AlphaSim [21,22]. 299 

Chromosomes were simulated to be 100 cM and 108 base pairs in length, with a per 300 

site mutation rate of 2.5×10-8 and a per site recombination rate of 1.0×10-8. The 301 

effective population size (Ne) was set to specific values during the simulation based 302 

on previously estimated Ne values within the Holstein cattle population [23]. These 303 

set values were: 100 in the base generation, 1,256 at 1,000 years ago, 4,350 at 10,000 304 

years ago, and 43,500 at 100,000 years ago, with linear changes in between. The 305 

resulting sequence had approximately 650,000 segregating SNP loci across the ten 306 

chromosomes. 307 

To enable the selection of sires for the generation of a pedigree, a quantitative 308 

trait influenced by 10,000 QTN distributed equally across the ten chromosomes was 309 

simulated. QTN positions were randomly chosen from the 650,000 segregating 310 

sequence loci and their effect sizes sampled from a normal distribution with a mean of 311 

zero and standard deviation of 0.01 (1.0 divided by the square root of the number of 312 
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QTN). The QTN effects were used to compute the true breeding value (TBV) for each 313 

individual. 314 

To emulate livestock breeding populations, a pedigree of 15 generations was 315 

simulated. Each generation comprised 1,000 individuals in equal sex ratio (i.e., 500 316 

males and 500 females). In the first generation, chromosomes for each individual 317 

were sampled from the 1,000 sequence haplotypes in the base generation. In 318 

subsequent generations, chromosomes of each individual were sampled from parental 319 

chromosomes, assuming recombination with no interference. In each generation, the 320 

25 males with the highest TBVs were selected as sires of the next generation. No 321 

selection was performed on females, and all 500 females were used as parents. 322 

All individuals were assumed to be genotyped with a panel of 10,000 SNP 323 

markers distributed equally across the ten chromosomes. Marker genotypes of all 324 

individuals were phased using AlphaPhase [24–26] as input for AlphaSeqOpt. The 325 

parameters used for determining the population haplotype libraries were: (1) 326 

population haplotype libraries were created using individuals and SNPs with at least 327 

90% phased genotype data; (2) sharing of haplotypes was determined as 100% 328 

identity matches; and (3) core lengths were set to 100 SNPs per chromosome. 329 

In summary, the algorithm was tested using a dataset with 15,000 individuals. 330 

Individuals had 10 chromosomes and 10 cores per chromosome. The total number of 331 

haplotypes in the population was 8850 (on average, 88.5 haplotypes per core). Further 332 

details on the simulated dataset can be found in Gonen et al. [14]. 333 

 334 

Software availability 

The method has been implemented in the AlphaSeqOpt software package. 335 

AlphaSeqOpt is available for download at 336 
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http://www.alphagenes.roslin.ed.ac.uk/alphaseqopt/, along with a detailed user 337 

manual. 338 

 339 

Results 

 340 

Performance of algorithm 

AlphaSeqOpt allocated sequencing resources to enable a greater percentage of 341 

haplotypes in the population to be sequenced at the target coverage than other 342 

methods previously reported.  343 

Figure 2 shows the comparison of AlphaSeqOpt with IWS, the adapted IWS, 344 

and Random when the target haplotype coverage was 10x. We tested different 345 

scenarios in which the total available sequencing resources were £400,000, £800,000, 346 

or £1,600,000. Figure 2a shows the percentage of haplotypes that would be sequenced 347 

at (or above) the target coverage of 10x by sequencing the set of individuals selected 348 

with AlphaSeqOpt. Figure 2b shows the number of individuals selected for 349 

sequencing in each of the scenarios. AlphaSeqOpt delivered the highest percentage of 350 

haplotypes sequenced at the target coverage, followed by the adapted IWS method, 351 

which achieved a lower percentage even though it sequenced a number of individuals 352 

similar to AlphaSeqOpt. The IWS method resulted in only a very small set of 353 

individuals being sequenced and these individuals captured only a small percentage of 354 

haplotypes sequenced at the target coverage. This result occurred because, as done by 355 

Bickhart et al. [17], we only targeted haplotypes that appeared in a homozygous state 356 

in at least one animal, which represent a small proportion of the haplotypes observed 357 

in the population, and therefore the IWS method did not exhaust all the available 358 

sequencing resources in any of the cases tested. The Random method sequenced a 359 
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very large set of individuals but it was inefficient for obtaining the haplotypes 360 

sequenced at the target coverage. 361 

The AlphaSeqOpt method was further tested to assess the effect of its main 362 

features on the percentage of haplotypes sequenced at (or above) the target coverage, 363 

the number of individuals sequenced, the performance under restriction of the 364 

maximum coverage per individual, and the performance of the refinement step with 365 

different number of exchanges per round. 366 

 367 

Percentage of haplotypes sequenced at the target coverage: 368 

The advantage provided by the AlphaSeqOpt score function and the step of 369 

refinement over the adapted IWS method is shown in Figure 3. Figure 3a shows the 370 

percentage of the haplotypes that would be sequenced at (or above) the target 371 

coverage by sequencing the set of individuals selected with AlphaSeqOpt. We tested 372 

nine scenarios in which the target coverage was 5x, 10x, or 15x and the total available 373 

sequencing resources were £400,000, £800,000, or £1,600,000. Each scenario was 374 

tested with either the AlphaSeqOpt score function or the IWS score function (adapted 375 

IWS method), and both the initial and refined sets were examined. 376 

The AlphaSeqOpt score function provided a greater percentage of haplotypes 377 

sequenced at the target coverage than the IWS score function in all scenarios. The 378 

AlphaSeqOpt score function gave 1.8 to 6.6% more haplotypes sequenced at the 379 

target coverage than the IWS score function. The advantage of the AlphaSeqOpt score 380 

function was observed both in the initial and refined sets. The refinement step 381 

increased the percentage of haplotypes sequenced at the target coverage by 1.0 to 382 

3.1% with the AlphaSeqOpt score function and 1.4% to 4.7% with the IWS score 383 

function. In total, using the AlphaSeqOpt score function and a refinement step 384 
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delivered 6.6 to 9.3% more haplotypes sequenced at the target coverage than using the 385 

IWS score function without a refinement step. 386 

AlphaSeqOpt performed better because it was more efficient at allocating the 387 

sequencing resources so that there were very few haplotypes that received some, but 388 

insufficient, sequencing coverage. 389 

Figure 4a shows the distribution of the population count of the haplotypes and 390 

Figure 4b the distribution of the sequencing coverage that the haplotypes receive by 391 

sequencing the set of individuals selected with each method. Note that the x-axis in 392 

Figure 4b is half that of Figure 4a because for each x of coverage of an individual 393 

there is a probability of 0.5 of reading either the paternal or maternal haplotype in the 394 

diploid species that was simulated. Because the results for all scenarios were similar, 395 

for illustration purposes from here onwards we only show results for the scenario in 396 

which the target coverage was 10x and the sequencing resources were £800,000. Also 397 

note that the haplotypes with population count ≤2 are shown in Figure 4a but were 398 

excluded from the analyses shown in Figure 4b. 399 

As a reference, choosing individuals randomly followed by random exchanges 400 

of individuals followed the distribution of the population frequencies, with a large 401 

percentage of haplotypes sequenced at coverages below the target 10x (54.0% of the 402 

haplotypes had sequence coverage between 0.5x and 9.5x). The AlphaSeqOpt score 403 

function reduced this percentage to only 6.3% in the initial set and 5.6% in the refined 404 

set. This percentage was greater with the adapted IWS method than with 405 

AlphaSeqOpt in both sets (17.3% in the initial set was reduced to 14.7% in the refined 406 

set). The percentage of haplotypes that received no coverage at all in the refined set 407 

were 19.2% for AlphaSeqOpt, 14.9% for the adapted IWS, and 6.3% for Random. 408 

 409 
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Number of individuals sequenced: 410 

The initial sets that were selected by AlphaSeqOpt produced greater 411 

percentages of haplotypes at the target coverage by sequencing less animals than the 412 

sets selected by the adapter IWS method. The refinement step with the AlphaSeqOpt 413 

score function produced sequencing sets that contained a larger number of unique 414 

individuals than with the IWS score function. The extent to which the size of the 415 

sequencing set was increased depended on the cost of library preparation and the 416 

amount of sequencing resources available. 417 

Figure 3b shows the number of individuals in the sets selected in each of the 418 

scenarios explored in Figure 3a. The initial set was smaller with the AlphaSeqOpt 419 

score function than with the IWS score function by between 122 and 340 individuals. 420 

During the refinement step with the AlphaSeqOpt score function, the set maintained 421 

approximately the same size when a small amount of sequencing resources was 422 

available but increased by up to 457 individuals when more sequencing resources 423 

were available. In contrast, during the refinement with the IWS score function, the 424 

size of the sequencing set decreased when few sequencing resources were available 425 

but remained more stable with a large amount of sequencing resources. 426 

Figure 5 shows the effect of the cost of library preparation on the percentage 427 

of haplotypes sequenced at (or above) the target coverage (Figure 5a) and the number 428 

of unique individuals (Figure 5b) in the refined set produced with the AlphaSeqOpt 429 

score function or the IWS score function. With both score functions, the percentage of 430 

haplotypes sequenced at the target coverage increases linearly with decreasing library 431 

costs. When library cost is low, the AlphaSeqOpt score function produces larger sets 432 

with more unique individuals than the IWS score function, and these larger sets 433 

produce greater percentages of haplotypes sequenced at the target coverage. When the 434 
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library costs are high, the difference between the sizes of the sets obtained with the 435 

two score functions is reduced. Figure 5c shows the distribution of the sequencing 436 

coverage across sequenced individuals in the refined set produced with the 437 

AlphaSeqOpt score function considering two extreme library costs. Low library costs 438 

allowed for the sequencing of more individuals at low coverage while high library 439 

costs resulted in a greater number of individuals being sequenced at twice the target 440 

coverage of the haplotypes. With a library cost of £5 the number of individuals 441 

sequenced was 1307.6 (302.2 at 1x to 124.3 at 20x) and with a library cost of £40 it 442 

decreased to 1036.4 (136.6 at 1x to 176.7 at 20x). 443 

 444 

Restriction of individual coverage: 445 

The size of the sequencing set can be maximised by restricting the maximum 446 

coverage that each individual can get, so that the target coverage of the haplotypes is 447 

achieved by accumulating individuals sequenced only at or below a certain coverage. 448 

Figure 6 shows the comparison of AlphaSeqOpt with the adapted IWS when the 449 

maximum individual coverage is restricted to 1x. Under this restriction, only 450 

haplotypes with a population count ≥10, ≥20, and ≥30 can reach the target coverages 451 

of 5x, 10x, and 15x, respectively, and therefore haplotypes with lower population 452 

counts were excluded from the analyses. Figure 6a shows the percentage of targeted 453 

haplotypes that would be sequenced at (or above) the three levels of target coverage 454 

by sequencing the set of individuals selected with AlphaSeqOpt. Figure 6b shows the 455 

number of individuals selected for sequencing in each of the scenarios. 456 

With a budget of £400,000 a total of 3,333 individuals could be sequenced at 457 

1x. Under this setting, AlphaSeqOpt delivered greater percentages of haplotypes 458 

sequenced at the target coverage than the adapted IWS method. If the budget was 459 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188896doi: bioRxiv preprint 

https://doi.org/10.1101/188896
http://creativecommons.org/licenses/by-nc-nd/4.0/


unrestricted, IWS selected a smaller set than AlphaSeqOpt to sequence all the targeted 460 

haplotypes at the desired coverage. 461 

 462 

Effect of the number of exchanges per round during refinement: 463 

For the refinement of the set, there was an optimum number of exchanges per 464 

round that maximized the percentage of haplotypes sequenced at the target coverage 465 

given a fixed total number of exchanges. Figure 7a shows the percentage of 466 

haplotypes sequenced at (or above) the target coverage with a fixed number of total 467 

exchanges but with different numbers of rounds and exchanges per round, considering 468 

two extreme costs of library preparation. Figure 7b shows the size of the resultant set. 469 

Doing 1 to 100 exchanges per round improved the percentage of haplotypes 470 

sequenced at the target coverage of the refined set to similar values. In this case, the 471 

set that produced the maximum percentage of haplotypes sequenced at the target 472 

coverage was obtained by doing 10 exchanges per round. Even though this greater 473 

percentage was generally achieved by increasing the number of unique sequenced 474 

individuals, the size of the refined set slightly decreased when the library cost was 475 

high and few exchanges per round were made. Doing more than 500 exchanges per 476 

round did not improve the results of the initial set when library cost was £40 and 477 

made the algorithm less robust when library cost was £5. However, the most extreme 478 

scenario of exchanging the whole set, which is equivalent to selecting a new initial set 479 

without any refinement in each round, provided the best improvement of the initial 480 

percentage of haplotypes sequenced at the target coverage and the greatest reduction 481 

of the sequencing set. 482 

 483 
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Filtering of rare haplotypes based on flanking context 

As the target haplotype coverage increases, the least frequent haplotypes can 484 

be sequenced at the target coverage only if a large amount of resources is available. 485 

More sequencing resources can be focused on sequencing common haplotypes if the 486 

number of rare haplotypes included in the analyses is reduced either by excluding 487 

them all or by filtering them based on their flanking context. 488 

Figure 8 shows the distribution of the sequencing resources depending on the 489 

population count of the haplotypes with the three different approaches to deal with the 490 

rare haplotypes: to include all singletons and doubletons in the analysis, to exclude 491 

them, or to filter them based on their flanking context. Almost half of the haplotypes 492 

in the test population were observed only once (singletons; 31.7%) or twice 493 

(doubletons; 13.2%), making a total of 3,971 singletons and doubletons. Of these, 953 494 

(19%) remained after filtering based on their flanking context and these were 495 

considered as likely to have derived from a recombination event of two common 496 

haplotypes. We only show results for the scenarios in which the target haplotype 497 

coverage was 10x, with the total available sequencing resources being £400,000, 498 

£800,000, or £1,600,000. 499 

With £800,000, when all singletons and doubletons were included in the 500 

analyses 72.4% of the haplotypes with population count ≥3 were sequenced at (or 501 

above) 10x. This percentage increased to 75.3% when all singletons and doubletons 502 

were excluded. This percentage also increased, but a little bit less, when they were 503 

filtered based on their flanking context (74.8%). A similar trend was observed with 504 

£400,000 and £1,600,000. 505 

When we have a large amount of sequencing resources we may be interested 506 

in targeting rare haplotypes as well as common haplotypes. By filtering based on their 507 
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flanking context we can target the rare haplotypes that are likely to derive from a 508 

recombination of common haplotypes. With £1,600,000, a total of 38.6% of the 953 509 

target singletons and doubletons were sequenced at 10x. Only 33.0% of these 953 was 510 

sequenced at 10x when all singletons and doubletons were included in the analyses 511 

without any restriction. This benefit of filtering by flanking context was not observed 512 

when less sequencing resources were available, probably because in such scenarios 513 

sequencing resources were implicitly focused on the common haplotypes. 514 

 515 

Discussion 

We have presented a method that identifies which individuals need to be 516 

sequenced and at what coverage they should be sequenced when a given amount of 517 

sequencing resources are available so that the maximum percentage of the haplotypes 518 

present in the population are sequenced at (or above) a coverage that is sufficiently 519 

high to ensure that the consensus haplotypes can be accurately derived. Deriving the 520 

consensus haplotypes accurately is a critical requirement for achieving high 521 

population-based imputation accuracy under the LCSeq strategy and we have 522 

observed with a prototype of a novel population-based phasing and imputation 523 

method that there is a relationship between the coverage that a particular haplotype 524 

accumulates across individuals and the imputation accuracy of the consensus 525 

haplotype (Additional file 1: Figure S1). We also developed and tested a new 526 

approach to deal with rare haplotypes by filtering them based on their flanking 527 

context rather than excluding them from the analysis. We compared AlphaSeqOpt 528 

with previously published methods and hereafter discuss the advantages and 529 

limitations of AlphaSeqOpt. 530 

 531 
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Advantages of AlphaSeqOpt over other methods 

AlphaSeqOpt has two features that make it effective for its purpose: (1) a 532 

score function based on the frequency of the haplotypes in the sequencing set relative 533 

to the target coverage instead of on the population frequency of the haplotypes; and 534 

(2) a step of refinement of the initial set. 535 

 536 

Score function: 537 

The score function that we propose allocates sequencing resources such that 538 

the percentage of haplotypes sequenced at any target coverage is greater than with 539 

other score functions based on the population frequency of the haplotype. The score 540 

function based on the population frequency of the haplotype used in the IWS method 541 

[17] was designed for producing the least redundant set that should be sequenced to 542 

have all the targeted haplotypes sequenced. The reduction of redundancy with the 543 

IWS method is achieved by giving a greater score to the least frequent haplotypes 544 

and, therefore, selecting the individuals that carry less frequent haplotypes first. 545 

Therefore, if the sequencing resources are sufficient for sequencing all the targeted 546 

haplotypes, the IWS method does so by sequencing a smaller set than AlphaSeqOpt. 547 

However, the IWS method is not ideal for identifying the set of individuals that would 548 

provide a more even sequencing coverage of the largest percentage of population 549 

haplotypes when the sequencing resources are limited and insufficient for sequencing 550 

all the targeted haplotypes at the desired coverage. With a score function that uses the 551 

population frequency the haplotype scores are constant until these haplotypes reach 552 

the target coverage, at which point they are set to zero. A score function based on the 553 

frequency of the haplotypes in the sequencing set relative to the target coverage like 554 

the one used in AlphaSeqOpt performs better for this purpose because, in contrast, the 555 
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haplotype scores change as the sequencing resources are allocated. With the 556 

AlphaSeqOpt score function all haplotypes start with an equal score of 1 and their 557 

score increases exponentially as they approach the target coverage. 558 

By doing this, the AlphaSeqOpt score function prioritizes the haplotypes that 559 

are already closer to the target coverage and, implicitly, the individuals that carry a 560 

larger number of these haplotypes. This reduces the percentage of haplotypes that are 561 

sequenced at a suboptimal coverage, but it increases the percentage of haplotypes that 562 

receive no coverage at all. With limited sequencing resources, AlphaSeqOpt selects a 563 

set for sequencing with a larger percentage of population haplotypes at the target 564 

coverage than the IWS method. These sequencing sets can be even smaller than the 565 

ones produced with IWS score function if the initial set is not refined.  566 

 567 

Refinement of the initial set: 568 

The other main feature of AlphaSeqOpt is the step of refinement of the initial 569 

set. The step of refinement adjusts the allocation of resources by replacing individuals 570 

that have become redundant after the last additions to the set or by reducing the 571 

sequencing coverage of these individuals. A refinement step as described here further 572 

increases the percentage of haplotypes sequenced at the target coverage obtained with 573 

the AlphaSeqOpt score function. A side benefit in the context of LCSeq is that the 574 

refinement step achieves this increase by diversifying the set of individuals that are 575 

sequenced. While the IWS score function restrains the number of sequenced 576 

individuals, the AlphaSeqOpt score function benefits from low library costs relative to 577 

the total amount of sequencing resources available to produce larger sets with more 578 

unique individuals that are sequenced at lower coverage. This benefit is greater when 579 

the cost of library preparation represents a small fraction of the total amount of 580 
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sequencing resources for LCSeq. Methods for reducing significantly the costs of 581 

library preparation for high-throughput LCSeq have already been described [27]. 582 

Increasing the number of individuals sequenced would empower subsequent 583 

imputation for more individuals (i.e., these individuals and their relatives) as well as 584 

any downstream analyses [12]. 585 

The refinement step can be fine-tuned by adjusting parameters such as the 586 

number of exchange rounds and the number of exchanges per round. The optimal 587 

parameters may depend largely on the size and structure of each dataset, but the 588 

following general observations were made: 589 

- AlphaSeqOpt was very robust across repetitions. A stable solution was 590 

produced after a relatively low number of exchange rounds (unpublished results). 591 

Small further increases of the percentage of haplotypes sequenced at the target 592 

coverage could be obtained by using a longer chain of exchange rounds, but the 593 

benefit of this was little. 594 

- To some extent, increasing the number of exchanges per round enables 595 

greater mobility across possible sets. Consequently, the algorithm can retrieve a better 596 

solution more easily. However, when too many exchanges are made per round, the 597 

benefit of this refinement of the existing set is diluted due to the drift towards 598 

solutions that are too divergent from each other and thus the final solution becomes 599 

less reliable. Exchanging all the individuals in the set is an extreme case of this that is 600 

equivalent to choosing the best of multiple initial sets without refinement. It can 601 

produce good results in terms of percentage of haplotypes for small sequencing sets. 602 

 603 

Practical implications for real populations: 604 
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Provided that the cost of library preparation is low enough or by restricting the 605 

maximum coverage of the individuals, AlphaSeqOpt will produce large sets of 606 

individuals with many unique individuals that are sequenced at low coverage. 607 

The performance of AlphaSeqOpt will likely be influenced by structure of the 608 

data, either intrinsic, like the number and size of the chromosomes in a species or the 609 

degree of relatedness between individuals, or extrinsic, like the core length used to 610 

define the haplotypes. AlphaSeqOpt assumes that coverage is uniform along the 611 

genome but variation in coverage at the level of nucleobase should be expected, as 612 

well as variation of coverage between samples. 613 

Although the criterion that is maximised in AlphaSeqOpt is the percentage of 614 

unique haplotypes sequenced at (or above) the target coverage, the method also 615 

provides good coverage in terms of total population haplotypes, i.e., haplotypes 616 

weighted by their population frequencies. Implicitly, the scores of more frequent 617 

haplotypes will increase faster than the scores of less frequent haplotypes because 618 

they are more likely to be carried by the individuals that are added to the sequencing 619 

set. In all scenarios tested, both AlphaSeqOpt and the adapted IWS method provided 620 

total percentages of haplotypes >99%, but the percentage was consistently greater for 621 

AlphaSeqOpt. Although both methods were similarly successful in covering the 622 

haplotypes of most of the population, AlphaSeqOpt captured a greater diversity of 623 

haplotypes at the desired coverage. 624 

The resolution of the haplotype library will depend on the density of the 625 

marker array used to construct it. However after sequencing the individuals it is 626 

possible that haplotypes that were considered to form a single consensus haplotype 627 

when defined with marker data actually correspond to a number of true haplotypes. In 628 
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such cases the sequence data can be clustered into the multiple consensus haplotypes 629 

and the pedigree information could enhance their imputation. 630 

 631 

Utility of filtering rare haplotypes based on flanking context 

We proposed an approach that uses the haplotype population frequencies at the 632 

cores flanking a particular core to identify those rare haplotypes that could have 633 

derived from a recombination event. Although rare haplotypes may contain relevant 634 

biological information, we may not be able to impute and estimate accurately the 635 

effect of most rare haplotypes. The rationale behind the filtering approach that we 636 

propose is that sequence data of those rare haplotypes that are potentially mosaic of 637 

common haplotypes could enable a more precise capture of the recombination events 638 

that have occurred in the population and that this sequence data would also contribute 639 

to the consensus haplotypes of the haplotypes that gave rise to the mosaic. The new 640 

approach that we propose, although not ideal, may be of a particular interest in cases 641 

in which large amounts of sequencing resources are available. 642 

In real populations we expect to identify large numbers of rare haplotypes. 643 

Preliminary tests indicated that in real populations our filtering approach based on 644 

flanking context can filter out around 92% of the singletons and doubletons observed, 645 

with the other 8% retained as potentially mosaic (unpublished results). 646 

The challenge of targeting rare mosaic haplotypes is that the individuals that 647 

carry them must be sequenced at a greater coverage so that the rare haplotypes reach 648 

the target coverage. Another approach, for which we do not show results here, 649 

involves setting a lower secondary target coverage for less frequent haplotypes. This 650 

is a compromise solution where reducing the sequencing coverage of the rare 651 

haplotypes will reduce their imputation accuracy but will allow more rare haplotypes 652 
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to be sequenced. In the particular case of potentially mosaic rare haplotypes having 653 

less coverage would be less critical because the information of the common 654 

haplotypes from which they derive will be also available. Any of the approaches 655 

discussed to filter low-frequency haplotypes can be combined using multiple 656 

frequency thresholds. 657 

 658 

Suitability of AlphaSeqOpt for low-coverage sequencing designs 

A number of optimisation methods that use haplotypes derived from existing 659 

phased marker array genotypes have already been proposed to identify which 660 

individuals should be sequenced under the KeySires approach. Druet et al. [5] 661 

proposed a method that maximizes the proportion of haplotypes observed in the 662 

population that are sequenced. This method was more effective in detecting rare 663 

variants (minor allele frequency <5%) than methods based solely on pedigree 664 

information and it provided good imputation accuracies for both common and rare 665 

variants. Bickhart et al. [17] proposed the IWS method, which reduces the number of 666 

individuals that need to be sequenced in order to have all haplotypes above a certain 667 

population frequency sequenced. The method by Gusev et al. [16] selects the 668 

individuals that share the largest proportion of the population haplotypes with other 669 

individuals identical-by-descent (IBD). More recently, Neuditschko et al. [18] 670 

proposed a method based on the eigenvalue decomposition of a genomic relationship 671 

matrix that identifies individuals that maximise genetic diversity within complex 672 

population structures. These four methods identify which individuals should be 673 

sequenced but do not make any decision on the coverage at which they should be 674 

sequenced. Gonen et al. [14] proposed an approach that distributes sequence at 675 

variable coverage across individuals in a population. This method accounts for 676 
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haplotype frequency and the ability to phase the resulting sequence data as criteria 677 

when choosing individuals to sequence and assigning sequencing coverage to those 678 

individuals and their recent ancestors. We have presented a method for optimizing the 679 

allocation of sequencing resources for the LCSeq approach so that the imputation 680 

accuracy of consensus haplotypes is high enough for enabling novel population-based 681 

imputation methods. 682 

In practice, it is likely that a combination of the three sequencing approaches 683 

discussed in this paper (KeySires, LCSeq, and VarCoverage) would yield similar or 684 

even better imputation accuracies than LCSeq alone [28]. AlphaSeqOpt is flexible in 685 

that it can take into account the already available sequence information. Therefore, 686 

AlphaSeqOpt for optimizing LCSeq can be used either alone or complementarily to 687 

other existing methods to top-up the coverage of those haplotypes that are under-688 

sequenced after using any other method. In this later case, however, existing methods 689 

or newly developed ones should be integrated to find the right allocation of resources 690 

into each of the three sequencing approaches. 691 

 692 

Conclusion 

We have presented a method for optimizing the allocation of sequencing 693 

resources so that the maximum proportion of population haplotypes are sequenced at 694 

a coverage that is sufficiently high for population-based imputation with low-695 

coverage sequencing. The haplotype score function and the refinement step make 696 

AlphaSeqOpt more effective for this purpose than methods reported previously for 697 

reducing sequencing redundancy. AlphaSeqOpt can account for sequence information 698 

already available for the population, which makes it a good complementary method to 699 

increase coverage of haplotypes that are not sufficiently covered when other 700 
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optimisation methods are used. We also explored a new approach to deal with rare 701 

haplotypes by targeting only those that are likely derived by recombination of 702 

common haplotypes. This approach frees resources to sequence greater proportion of 703 

distinct haplotypes, which can be useful particularly when large amounts of 704 

sequencing resources are available. 705 
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Figures 
 800 

 801 
Figure 1. Score functions: (a) in AlphaSeqOpt; and (b) in the IWS method proposed 802 
by Bickhart et al. [17]. Note the different axes: in (a) scores range from 1 to ek based 803 
on the frequency of the haplotype in the sequencing set relative to the target coverage, 804 
which is variable across rounds; in (b), scores range from 0 to 1 based on the 805 
population frequency, which is fixed. 806 
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 808 
Figure 2. Performance of the four methods tested with different amounts of 809 
sequencing resources, in terms of: (a) the percentage of population haplotypes 810 
sequenced at (or above) the target coverage of 10x; and (b) the number of individuals 811 
sequenced. Standard errors were less than 0.2% (a) and 25 (b).  812 
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 813 
Figure 3. Performance of AlphaSeqOpt and the adapted IWS method with three 814 
levels of target haplotype coverage and different amounts of sequencing resources, in 815 
terms of: (a) the percentage of population haplotypes sequenced at (or above) the 816 
target coverage of 10x; and (b) the number of individuals sequenced. Both the initial 817 
and refined sets were examined. Standard errors were less than 0.4% (a) and 40 (b). 818 
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 820 
Figure 4. Distribution of: (a) the population count of the haplotypes; and (b) the 821 
sequencing coverage of the haplotypes using the four methods tested. The target 822 
haplotype coverage was 10x, the sequencing resources were set to £800,000 and 823 
haplotypes with population count ≤2 were excluded from the analyses. Standard 824 
errors were less than 14 (b).  825 
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 826 
Figure 5. Effect of the cost of library preparation: (a) on the percentage of haplotypes 827 
sequenced at (or above) the target coverage of 10x; (b) on the number of individuals 828 
sequenced, using AlphaSeqOpt or the adapted IWS method; and (c) on the 829 
distribution of sequencing coverage of the individuals selected with AlphaSeqOpt. 830 
The sequencing resources were set to £800,000 and haplotypes with population count 831 
≤2 were excluded from the analyses. 832 
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 834 
Figure 6. Performance of AlphaSeqOpt and the adapted IWS method when individual 835 
coverage is restricted to 1x, in terms of: (a) the percentage of population haplotypes 836 
sequenced at (or above) the target coverage; and (b) the number of individuals 837 
sequenced. When the target coverage was 5x, 10x, or 15x only haplotypes with 838 
population count ≥10, ≥20, or ≥30 were targeted, respectively.  839 
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 840 
Figure 7. Effect of the number of exchanges per round: (a) on the percentage of 841 
haplotypes sequenced at (or above) the target coverage of 10x; and (b) on the number 842 
of individuals sequenced, with two costs of library preparation. The total number of 843 
exchanges is 5 millions in all cases. The sequencing resources were set to £800,000 844 
and haplotypes with population count ≤2 were excluded from the analyses. 845 
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847 
Figure 8. Number of haplotypes sequenced at (or above) the target coverage of 10x 848 
(filled section) using three different approaches to handle the rare haplotypes: to 849 
include all singletons and doubletons, to exclude all singletons and doubletons, or to 850 
filter them based on flanking context. Numbers are shown by haplotype population 851 
count and for different amounts of sequencing resources. The number of singletons 852 
and doubletons for each approach were 3,971, 0, and 953, respectively.  853 
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Additional files 

Additional file 1: Figure S1 

Format: pdf 854 

Title: Expected haplotype imputation accuracy against the accumulated haplotype 855 
sequencing coverage, as estimated using a novel population-based imputation method 856 
(Battagin and Hickey, unpublished). 857 

Description: A description of the prototype algorithm developed for the imputation of 858 
consensus haplotypes under the LCSeq approach and the simulated results on which 859 
the AlphaSeqOpt method is based. We generated 1x sequence data for the sires from a 860 
simulated population. The x-axis represents the expected accumulated coverage that 861 
each haplotype would receive. The y-axis represents the percentage of alleles phased 862 
and imputed for each haplotype. The imputation accuracy increased with the 863 
accumulated haplotype coverage until it platooned. Haplotypes with a sequencing 864 
coverage of 10x accumulated from 20 individuals sequenced at 1x were imputed to 865 
the whole population with an accuracy of 0.88. Haplotypes with a sequencing 866 
coverage of 15x or 20x accumulated from 30 or 40 individuals sequenced at 1x were 867 
imputed to the whole population with an accuracy of 0.93 or 0.97, respectively. For 868 
accurate inference of a consensus haplotype a certain amount of sequencing coverage 869 
must be accumulated. According to the results above, 10x or 15x could be good target 870 
coverages for the haplotypes. 871 
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