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Abstract

Memory traces and associations between them are fundamental for cognitive brain func-

tion. Neuron recordings suggest that distributed assemblies of neurons in the brain

serve as memory traces for spatial information, real-world items, and concepts. How-

ever, there is conflicting evidence regarding neural codes for associated memory traces.

Some studies suggest the emergence of overlaps between assemblies during an associa-

tion, while others suggest that the assemblies themselves remain largely unchanged and

new assemblies emerge as neural codes for associated memory items. Here we study
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the emergence of neural codes for associated memory items in a generic computational

model of recurrent networks of spiking neurons with a data-based rule for spike-timing-

dependent plasticity (STDP). The model depends critically on two parameters, which

control the excitability of neurons and the scale of initial synaptic weights. By modi-

fying these two parameters, the model can reproduce both experimental data from the

human brain on the fast formation of associations through emergent overlaps between

assemblies, and rodent data where new neurons are recruited to encode the associated

memories. Hence our findings suggest that the brain can use both of these two neural

codes for associations, and dynamically switch between them during consolidation.
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1 Introduction

The formation of associations between memory traces is a fundamental operation in

cognitive computations of the brain. However, whereas there is common agreement

about the role of assemblies of neurons as neural codes for memory items (Buzsáki 2010,

Josselyn et al. 2015, Quian Quiroga 2016), there are conflicting experimental data and

models regarding neural codes for associated memory items.

An overview of models for the formation of associations in neural networks can be found

in (Kahana et al. 2008, Kahana 2012). Two types of models can be distinguished:
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chaining models and hierarchical models. A chaining model postulates that synaptic

connections between the assemblies for two memory items are enhanced when both

items become associated, and that none or only few additional neurons are recruited for

representing the combination of the two memory items. In contrast, in a hierarchical

model the combination of two memory items is encoded by a new set of neurons that

do not belong to the assembly codes for the individual memory items, see e.g. (Norman

and O’Reilly 2003).

In abstract memory models each memory item is represented by a vector of numbers.

The combination of two memory items is then postulated to be encoded by an addition,

concatenation, or convolution of the two vectors of numbers (Fodor and Pylyshyn 1988,

Smolensky 1990, Kanerva 1994, Rizzuto and Kahana 2001, Plate 2003). In a common

method for mapping such vectors of numbers to activity patterns in neural networks, see

e.g. (Eliasmith 2013), the neural activity that represents the new vector contains many

neurons that are not active in the neural representation of either of the two original

vectors. This convention makes these abstract models similar to hierarchical models

with regard to the question whether new neurons are recruited for the combined memory.

Also a model from theoretical computer science (Valiant 2000a;b; 2005) predicts that

the neural code for two associated memory items consists of neurons that do not belong

to either of the assemblies for the two memory components.

Experimental support for the hierarchical model was provided by (Komorowski et al.

2009), where neurons in the rodent brain were found that responded to a combinations

of an object and a place, but not to the individual object or place. However only

associations between items from these two categories, objects and places, were studied

in (Komorowski et al. 2009). These associations resulted from extensive training, rather

than from associations that were formed “on the fly”.
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The rapid formation of associations between two images, or rather the concepts which

they evoke, were studied with in vivo single-neuron recordings in human epilepsy patients

implanted, for clinical reasons, with depth electrodes in the Medial Temporal Lobe

(MTL) (Ison et al. 2015, De Falco et al. 2016). These studies found that very few neurons

in the MTL responded only to a combined image, but not to any of its two components.

Instead, their data suggest that an association between two memory items is encoded

through a modification of the assemblies of neurons that encode the two memory items

involved: Each of them expands and recruits neurons from the other assembly. Hence

these data support a chaining model for the formation of associations.

We investigated the question which of these conflicting models and experimental data

for the formation of associations could be reproduced by a generic model for a recurrent

network of neurons in the brain, with a data-based rule for synaptic plasticity. In order

to make the dynamics of the model similar to that of networks of neurons in the brain, we

used standard models for excitatory and inhibitory spiking neurons, and included data-

based short-term synaptic plasticity, i.e., individual mixtures of synaptic facilitation

and depression that vary according to (Gupta et al. 2000) with the type (excitatory

or inhibitory) of the pre- and postsynaptic neuron. We modelled longterm synaptic

plasticity with a data-based rule for Spike-Timing Dependent Plasticity (STDP), the

triplet rule (Pfister and Gerstner 2006). This rule can reproduce a variety of experiments,

such as pairing experiments with frequency effects (Sjöström et al. 2001), and triplet

and quadruplet experiments (Wang et al. 2005). We show that the resulting neural

network model can reproduce the data on emergent neural codes for associations in the

human MTL from (Ison et al. 2015, De Falco et al. 2016). In fact, several details of

the experimental data of (Ison et al. 2015) are reproduced by the model. On the other

hand, we find that a different parameter setting for the same neural network reproduces

the neural code that is postulated by hierarchical models, where a new assembly of
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neurons is assumed to become the memory trace for the combined memory. Hence

our results suggest that the brain is able to generate both types of neural codes for

combined memories. It is even possible that the same neural network in the brain

switches between these two different representations of associated memories in the course

of consolidation.

By making explicit the conditions under which memory traces and different types of

neural codes for associations can be reproduced by a generic neural network model,

these results pave the way for larger memory models that enable an analysis of the

complex web of associations in the brain.

2 Methods

2.1 Details of the network model

Our network model is a generic recurrent network of spiking neurons. The details of

the results of our simulations depend on the specific parameter settings, such as the

specific realization of the synaptic connectivity matrix that is drawn according to given

connection probabilities, the choice of initial values of synaptic weights, delays, and

short-term synaptic plasticity from given distributions, and on the specific realization of

rate patterns that serve as inputs to the network.

In the following subsections, the default setting of parameter values that were used in

our model can be found. They are referred to as the standard values. We refer to

one specific randomly drawn realization of the network based on these standard values,

together with a fixed triple of input patterns (see Section 2.2.1), as the standard model.
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Specifically, the results that are reported in Figures 3 to 6, and S4 in the Supplementary

Material are based on this standard model. We additionally analyzed in Figures 5C-E

and 6 how the results depended on the specific realization of the network and input

patterns by randomly generating different networks (with newly drawn connectivity and

initial parameters) and input pattern triples.

As a control, we also considered other values for some of the parameters and analyzed

the impact of parameter variations on the emergence of memory traces and associa-

tions. Specifically, we analyzed in Figures 7 and S6 in the Supplementary Material how

the results depended on the values of five selected parameters (see Section 2.5) which

are thought to be important for the balance between excitation and inhibition in the

recurrent network. We considered in these figures randomly generated networks (with

newly drawn connectivity and initial parameters) and input patterns for a large range

of parameter values.

2.1.1 Neuron model

Our network model was a randomly connected recurrent neural network consisting of 432

excitatory and 108 inhibitory point process neurons (without adaptive threshold) with a

stochastic firing criterion, to capture the natural variability of neurons. The parameters

of this model were set to the mean values of the experimental data given in (Jolivet et al.

2006). In this model, the response kernel defines the shape of postsynaptic potentials

(PSPs). We defined the response kernel of both excitatory and inhibitory neurons as a
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double-exponential function

ε(t) =


K(e−t/τf − e−t/τr) if 0 ≤ t < Tε

0 otherwise,

(1)

with a rise time constant of τr = 2 ms, a fall time constant of τf = 20 ms, and a cut-off

at Tε = 100 ms. The scaling factor K was computed to obtain a peak value of 1. The

instantaneous firing rate r of a neuron i depended on the current membrane potential

ui(t) and was given in our simulations by the transfer function

ri(t) = r0e
0.25ui(t), (2)

with r0 = 1.238 Hz. The membrane potential of an excitatory neuron i was given by

ui(t) =
∑
j

wInp
ji yj(t) +

∑
k

wEE
ki zk(t)−

∑
l

wIE
li hl(t) + Eexc,i + Eexc,generic, (3)

which was the weighted sum of PSPs yj(t) caused by external inputs, PSPs zk(t) caused

by excitatory neurons in the recurrent circuit, PSPs hl(t) caused by inhibitory neurons,

and its excitability. The term wInp
ji denotes synaptic weights from all input neurons j

projecting to neuron i, wEE
ki denotes recurrent synaptic weights from all excitatory neu-

rons k projecting to neuron i, and wIE
li denotes synaptic weights from all inhibitory

neurons l projecting to neuron i respectively. The (unweighted) sum of PSPs caused by

input neuron j was defined as

yj(t) =
∑
f

ε(t− t(f)
j ) (4)

for N input spikes at spike times t
(1)
j , t

(2)
j , . . . , t

(N)
j . The (unweighted) sums of PSPs zk(t)

and hl(t) were defined in an analogous manner. The neuronal excitability consisted of
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an individual component Eexc,i for neuron i drawn from a log-normal distribution across

neurons with µ = 2.64 · 10−3 and σ = 0.23 · 10−3 (of the underlying normal distribution)

which was shifted by −600 · 10−3 towards negative values, and a generic excitability of

the excitatory population given by

Eexc,generic = γexc · 300 · 10−3. (5)

A positive scaling factor γexc was introduced to scale the relative contribution of the

generic neuronal excitability of the excitatory population, to investigate the functional

impact of certain network parameters (see Section 3.5). In the standard model, this

factor was set to γexc = 1. The membrane potential for inhibitory neurons was defined in

an analog way but without external inputs and a larger value for the generic excitability

Iexc,generic = 450 · 10−3 of the inhibitory population. After generating a spike, neurons

entered a refractory period of random length drawn from gamma distributions (shape

parameter k = 2) with a mean value of 10 ms for excitatory and 3 ms for inhibitory

neurons.

2.1.2 Network

Figure 1A shows a schematic representation of the network architecture. A pool of

432 excitatory and a pool of 108 inhibitory neurons were reciprocally connected, while

each pool was also recurrently connected. Additionally, a pool of 200 external neurons

(termed input neurons) was connected to the excitatory population.
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A

C

B

Figure 1: (A) Network architecture, consisting of 200 input neurons (Inp), 432 excitatory

neurons (E), and 108 inhibitory neurons (I). Inp→E as well as recurrent E→E synapses were

subject to STDP. (B) Illustration of the distribution of UDF parameter values for short-term

synapse dynamics in three-dimensional parameter space for different types of connections (blue:

E→E; green: E→I; red: I→E; black: I→I). UDF values were generated from bounded gamma

distributions with means and SDs given in Table 2. (C) STDP triplet rule that was used in

our model for synapses from external inputs and recurrent excitatory synapses, showing the

relative weight change after 10 spike pairings at a pairing frequency of 20 Hz for different initial

weight values.

All 540 network neurons were arranged in a 3D grid of 6×6×15 neurons. The recurrent

connectivity among excitatory neurons was uniform, in accordance with experimental

data on the anatomy of CA3 which show a rather uniform recurrent connectivity among

excitatory neurons within this area (Guzman et al. 2016). We chose in our standard

model a connection probability of pE→E = 50 % to assure a sufficient number of connec-

tions between excitatory neurons despite the small network size. All other connection

probabilities between excitatory and inhibitory neurons were exponentially distance-

dependent, resulting in very strong and local inhibition. The distance-dependent con-
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nection probabilities between pairs of neurons were defined as

p(d) = ce−d/λ, (6)

where d denotes the distance between the neurons in grid units, λ = 0.25 denotes the

length scale, and c is a scaling parameter with values that depended on the connection

type as shown in Table 1. This resulted in average connection probabilities of around

4 % for E→I and I→I, and around 5 % for I→E connections (100 % in close vicinity).

The pool of input neurons was randomly connected to the excitatory population with a

uniform connection probability of 50 %.

Synaptic delays for input and recurrent excitatory connections, as well as delays to and

from inhibitory neurons were drawn from normal distributions with mean values as given

in Table 1 and a coefficient of variation CV = 0.5.

Initial synaptic weights were drawn from gamma distributions with mean values as given

in Table 1 and CV = 0.7. Specifically, the mean initial input weights w̄Inp→E,init and the

mean initial recurrent excitatory weights w̄E→E,init were given by

w̄Inp→E,init = γw · 15 (7)

and

w̄E→E,init = γw · 2.5 (8)

respectively. A positive scaling factor γw was introduced to scale the contributions of

the synaptic weights between input and excitatory as well as between excitatory neurons

relative to the other weights in the network, to investigate the functional impact of

certain network parameters (see Section 3.5). In the standard model, this factor was

set to γw = 1. From the modelling perspective it was important for the generation of
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memory traces (see Section 3.2) to use initial recurrent weights lower than input weights

so that the network operated in a stable input-driven regime from the beginning, and

to allow recurrent weight to successively increase through long-term plasticity processes

(see Section 2.1.4). After initialization, all weights between excitatory and inhibitory

neurons in the circuit were adjusted as described in Section 2.1.3 to account for effects

of short-term synaptic plasticity.

Connection Conn. prob. Dist.-dep. Init. weights Delays

Inp→E 50 % uniform µ = γw · 15 µ = 5 ms

CV = 0.7 CV = 0.5

E→E 50 % uniform µ = γw · 2.5 µ = 5 ms

CV = 0.7 CV = 0.5

E→I 4 % c = 2 · 105 µ = 1000 µ = 2 ms

λ = 0.25 CV = 0.7 CV = 0.5

I→E 5 % c = 4 · 105 µ = 1375 µ = 2 ms

λ = 0.25 CV = 0.7 CV = 0.5

I→I 4 % c = 1 · 105 µ = 6000 µ = 2 ms

λ = 0.25 CV = 0.7 CV = 0.5

Table 1: Connection parameters of the standard model between input (Inp), excitatory (E),

and inhibitory (I) pools of neurons. The connection probabilities were either constant (uniform)

or exponentially distance-dependent with parameters c and λ. Initial weights were drawn from

gamma distributions, synaptic delays from normal distributions with given means µ and CVs

and a positive scaling factor γw = 1.
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2.1.3 Short-term synaptic plasticity

Our model for synaptic connections included data-based short-term plasticity, i.e., a

mixture of paired-pulse depression and facilitation that depended on the type of the

pre- and postsynaptic neuron. This can be described by three parameters (Markram

et al. 1998): U (release probability), D (time constant for depression), and F (time

constant for facilitation). Values of UDF parameters for synapses between different cell

types and layers in the somatosensory cortex of rats have been reported in (Gupta et al.

2000) and more recently in (Markram et al. 2015). Additionally, for the adult human

brain (Testa-Silva et al. 2014) find in synaptic connections between layer 2/3 pyrami-

dal neurons frequency-dependent depression but no facilitation. In our model, values

for UDF parameters were drawn from bounded gamma distributions with mean values

and standard deviations (SD) for E→E synapses taken from human experimental data

(Testa-Silva et al. 2014), for E→I and I→I synapses taken from the range of values

among the most frequent connection types of the recent experimental results reported

in (Markram et al. 2015), and for I→E synapses taken from (Gupta et al. 2000). The

UDF parameters were bound between [0.001, 0.999] (parameter U) and [0.1 ms, 5000 ms]

(parameters D, F) respectively. The used mean and SD values are summarized in Ta-

ble 2 and the corresponding distributions are illustrated in the three-dimensional UDF

parameter space in Figure 1B.
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Connection U D (ms) F (ms) Type

E→E 0.45 ± 0.17 144 ± 67 0 ± 0 depressing

E→I 0.09 ± 0.12 138 ± 211 670 ± 830 facilitating

I→E 0.16 ± 0.10 45 ± 21 376 ± 253 facilitating

I→I 0.25 ± 0.13 706 ± 405 21 ± 9 depressing

Table 2: Parameters for short-term plasticity in the model: U (release probability), D (time

constant for depression), and F (time constant for facilitation). Mean ± SD values were taken

from experimental results given in (Testa-Silva et al. 2014; E→E connections), (Gupta et al.

2000; I→E connections) and (Markram et al. 2015; remaining connections) respectively.

After random initialization of the weights and UDF parameters according to the distri-

butions specified above, all weights were adjusted based on their steady-state values in

the following way (Markram et al. 1998, Sussillo et al. 2007). For a given constant presy-

naptic firing rate f0, steady-state values of the synaptic weights w∗dyn of the dynamic

synapses can be computed as

w∗dyn(f0) = A ·R∗(f0) · u∗(f0), (9)

where A is the absolute synaptic efficacy. The steady-state values for the synaptic

availability R and the synaptic utilization u at a given rate r are given by

R∗(r) =
1− exp(−1/rD)

1− (1− u∗(r)) exp(−1/rD)
(10)

and

u∗(r) =
U

1− (1− U) exp(−1/rF )
. (11)

Based on these steady-state values, the initial weight winit (absolute synaptic efficacy)

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/188938doi: bioRxiv preprint 

https://doi.org/10.1101/188938


of each dynamic synapse in the network was adjusted so that its dynamic weight at

an assumed constant presynaptic firing rate f0 = 5 Hz corresponded to its previously

assigned initial weight value, by

w′init =
winit

R∗(f0) · u∗(f0)
. (12)

This adjustment of initial weights was beneficial to reduce initial transients and to

decrease the burn-in time of the network needed to reach steady-state activity after

starting the simulation.

2.1.4 Long-term synaptic plasticity

Synaptic connections from input to excitatory as well as between excitatory neurons in

our model were subject to a data-based rule for STDP: the triplet rule (Pfister and Ger-

stner 2006). This rule was implemented through the stdp triplet synapse model pro-

vided in NEST, implementing all-to-all interactions (Pfister and Gerstner 2006). Weight

updates for each pre- and postsynaptic spike arriving at time tpre and tpost respectively

were given by

∆w(t) =


−o1(t)

[
A−2 + A−3 r2(t− ε)

]
if t = tpre

+r1(t)
[
A+

2 + A+
3 o2(t− ε)

]
if t = tpost

(13)

The variables r1 and r2 were presynaptic and o1 and o2 were postsynaptic detector

variables which were increased by 1 upon pre- and postsynaptic spike arrival and decayed

with time constants τr1 = 25 ms, τr2 = 25 ms, τo1 = 1000 ms and τo2 = 25 ms respectively.

The amplitude parameters were chosen as A+
2 = 10.0, A−2 = 0.5, A+

3 = 10.0 and A−3 = 0.5

respectively. The symbol ε denotes a small positive constant indicating that weight
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updates were done before updating the detectors r2 and o2. The amplitude parameters

and time constants were qualitatively chosen based on the experimental data in (Pfister

and Gerstner 2006; hippocampal culture set) but then adapted to the magnitude of

weights and temporal dynamics of our model so that the emergence of stable memory

traces through STDP (see Section 3.2) for the given input patterns was possible. The

STDP induction rule is illustrated in Figure 1C in a typical pairing experiment with a

pairing frequency of 20 Hz. Synapses from input neurons to excitatory neurons as well

as between excitatory neurons in the network were subject to the same plasticity rule.

Total relative weight changes were limited to [0 %, 200 %] for input synapses and to [0 %,

1000 %] for recurrent excitatory synapses respectively.

2.2 Details to emergent memory traces

2.2.1 Input patterns

In each simulation, we repeatedly presented three input patterns to the network (see

Section 2.2.3). In total, we generated 20 different random network realizations each of

which had a specific triple of input patterns. Each input pattern was a sparse stationary

rate pattern over 100 ms with 20 of 200 randomly drawn on-channels (i.e., 10 % of all

channels) with firing rates of ron = 40 Hz, while all other 180 off-channels remained silent

(i.e., roff = 0 Hz). On-channels were drawn in such a way that the maximum overlap

between patterns (i.e., number of shared channels) in a triple was limited to 2 (i.e., 10 %

of on-channels).

From each pattern triple, we chose an arbitrary pattern and termed it the blue pattern,

another one the green pattern, and the third one the red pattern for easy reference in

the text. As detailed below, a neural assembly emerged for each of these patterns due
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to synaptic plasticity, and these were termed the blue, the green, and the red assembly

respectively.

At each presentation of such a pattern, fresh Poisson spike trains were independently

generated for each of its on-channels with a rate of ron. In addition, each of the 200

input channels was superimposed with a freshly generated Poisson spike train with a

rate of 3 Hz. In periods where no input patterns were presented, input neurons emitted

freshly generated Poisson spike trains at 5 Hz.

2.2.2 Network simulation and analysis

All network simulations and data analyses were done in Python 2.7.13 using the NEST

Simulator 2.12.0 (Kunkel et al. 2017) with some user-defined optimizations, together

with the PyNEST Interface (Eppler et al. 2009). A time resolution of 1 ms was used for

all simulations.

The experimental setup consisted of the main simulation and various analyses of the

network, as depicted in Figure 2 and described in the following.
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Figure 2: Scheme of the experimental setup, showing the five input phases of the main sim-

ulation during which different kinds of input patterns or noise was presented as input to the

network. The network was analyzed at time points indicated by circular markers (green:

analysis to determine assembly codes, see Section 2.2.4; red: stepwise analyses to determine

association codes for neuronal and functional learning curves, see Section 2.4; blue: analysis

to determine numbers of PCUs and HUs, see Sections 2.3.2 and 2.3.4).

Main simulation: The main simulation consisted of five input phases during which

STDP was always active for synapses from input to excitatory as well as between ex-

citatory neurons. The different phases differed only in their length and in the type of

input patterns that were presented to the network. An overview of the sequence of used

input phases is given below, more details can be found in the respective sections as

indicated:

1. Initialization phase (250 s), during which only noise was presented (no patterns).

2. Encoding phase for the emergence of memory traces (250 s), during which three

input patterns were randomly presented to the network (see Section 2.2).

3. Resting phase 1 (250 s), during which only noise was presented.

4. Association phase for the emergence of associations (36 s), during which a combined

pattern (blue and green) was repeatedly presented to the network (see Section 2.3).
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5. Resting phase 2 (250 s), during which only noise was presented.

Network analyses: Different aspects of the network at certain time points during the

main simulation (as indicated in Figure 2) were analyzed (or just plotted) in separate

simulation runs. For this purpose, synaptic weights were kept constant (i.e., STDP dis-

abled) while different types of input patterns were applied to the network. In all analyses,

the network was generated in exactly the same way as in the main simulation using the

same global random seed for the connection matrix, the initial parameter values, and

the specific realization of the input patterns. After generating the network, new initial

weights were loaded which had been extracted at a certain time point from the main

simulation. So the initial state of the network corresponded to the state of the network

during the main simulation at the respective time point the weights had been extracted

from. Only internal state variables of the network, e.g. regarding short-term plastic-

ity, were not identical to the main simulation. In addition, the sequence of presented

input patterns differed from the main simulation by choosing another random seed for

the pattern sequence generation, but which was the same for all analyses. Specifically,

separate network analyses without STDP were conducted for illustration purposes of

the network activity shown in Figures 3, 5B-E, and S5B. More details about what other

types of analyses were conducted in this way can be found in the following sections.

2.2.3 Encoding phase for the emergence of memory traces

During the encoding phase for the emergence of memory traces – which lasted for around

250 s – input patterns were presented at random time points to the network as input.

After a pattern presentation, a time period was randomly chosen from the uniform

distribution between 0.5 s and 3 s during which input neurons emitted freshly generated

Poisson spike trains at 5 Hz. After this noise period, the next pattern was randomly
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chosen and presented and so on. The first pattern at the beginning of a phase was

chosen randomly with a uniform probability over the three patterns (but not presented

to the network; see below). Subsequent patterns were drawn based on a switching

probability of 75 %, meaning that with probability 75 %, there was a switch to another

pattern (drawn uniformly from the other patterns), and with 25 % probability the same

pattern was repeated.

When generating such a sequence of input patterns and noise periods of a given length,

the exact duration of the resulting input phase was determined by the following rules:

The first pattern was always omitted so that each sequence started with a noise period

at the beginning. In case there was a pattern exactly at the end of a sequence, also the

last pattern was omitted so that each sequence ended with a noise period. If there was

already a noise period at the end of a sequence, this noise period was not truncated. So

when referring to an input phase of 250 s, the exact duration could be (with a pattern

duration of 100 ms) in a range between [249.8 s, 253.0 s] and was 250.85 s on average.

The same rules apply to all other input phases involving input patterns accordingly.

2.2.4 Definition of assembly neurons

The experiments of (Ison et al. 2015) studied the formation of associations between

memory traces for a specific set of images. Neurons were classified as belonging to

the memory trace (assembly) for a specific image if they significantly responded to this

image based on a Wilcoxon rank-sum test (p < 0.05) between baseline and response

intervals. As additional criterion, a median firing rate in response intervals across trials

of at least 2 Hz was required. Neurons that satisfied these criteria for any of the images

were termed visually responsive units (VRUs).
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In an analogous manner we defined that a neuron in our recurrent network belonged to

the assembly for a particular input pattern if it satisfied the same firing rate criterion

and significantly responded to this input pattern based on the same Wilcoxon rank-sum

test. For this purpose, the state of the network after the encoding and subsequent resting

phase 1 (i.e., directly before the association phase) was analyzed (see Section 2.2.2) to

identify assembly neurons. We ran this network analysis for around 325 s (see exact

rules in Section 2.2.3) during which the blue, green, red, and the combined pattern

(blue and green) were repeatedly presented to the network. We extracted the average

firing rates for each excitatory neuron within the baseline interval [-100 ms, 0 ms] and

response interval [10 ms, 110 ms] relative to the onsets of each blue, green, and red

pattern presentation (termed trial; between 33 and 44 trials per pattern). Based on

this, we computed the median firing rate in the response interval across all trials. Using

a Wilcoxon rank-sum test (p < 0.05) we tested if the firing rate of a neuron across all

trials was significantly higher in the response than in the baseline interval for the blue,

green, and red input patterns. A neuron that showed a significant response to an input

pattern and had a median firing rate in the response interval of at least 2 Hz was defined

as an assembly neuron for the present input pattern, called the preferred pattern.

We refer to the neurons that belonged to the assembly for at least one of the three

input patterns as pattern responsive units (PRUs). Neurons belonging to more than one

assembly are referred to as multi-responsive units (MRUs).
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2.3 Details to emergent associations

2.3.1 Association phase for the emergence of associations

During the association phase, a combined pattern was repeatedly presented to the net-

work. The sequence of input patterns and noise periods was randomly generated ac-

cording to the same rules as described in Section 2.2.3 for a duration of around 36 s,

but using only the combined input pattern. However, in contrast to all other phases,

exactly 20 patterns were presented. Since the whole sequence of input patterns and noise

periods was precomputed beforehand at the beginning of the simulation, this could be

done by repeating the random generation process until the number of input patterns

was 20, resulting in an average duration of 36.97 s.

Here, we always combined the blue and the green pattern (the identity of which was

arbitrarily assigned before as discussed above). The combined pattern was constructed

by adding the stationary rates of the 200 external input neurons for the two input

patterns. For the overlapping channels between the two patterns (0-2 channels), the

resulting firing rates were truncated again at 40 Hz so that all channels in the combined

pattern were either on-channels with ron = 40 Hz (38-40 channels, consisting of the

on-channels of the blue and green pattern) or off-channels with roff = 0 Hz (160-162

channels). Again, during a presentation of a combined pattern, fresh Poisson spike

trains were independently generated for each of its on-channels with a rate of ron, while

each of the 200 input channels was superimposed with a freshly generated Poisson spike

train at 3 Hz.
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2.3.2 Definition of pair-coding units (PCUs)

PCUs were determined in a similar way as assembly neurons by analyzing the network

directly after the association phase (see Section 2.2.2). We ran this network analysis

for around 325 s (see exact rules in Section 2.2.3) with the blue, green, red, and the

combined pattern (blue and green) as used in the association phase (see Section 2.3.1)

repeadetly presented to the network. The average firing rates for each excitatory neuron

within the baseline and response intervals (as defined in Section 2.2.4) relative to the

onsets of the blue, green, and red pattern presentations were extracted (between 33 and

44 trials per pattern). Again, we used a Wilcoxon rank-sum test (p < 0.05) to test if

the firing rate of a neuron across all trials was significantly higher in the response than

in the baseline interval for the blue, green, and red input patterns.

We only considered PRUs that had exactly one of the components of the combined

pattern as their preferred (P) stimulus, i.e., the blue (green) input pattern for neurons

belonging to the blue (green) assembly. Accordingly, the other component was defined

as their non-preferred (NP) stimulus, i.e., the green (blue) input pattern for neurons

belonging to the blue (green) assembly. The red input pattern (which was not part of

the combined pattern) was defined as the non-associated (NA) stimulus for this subset

of PRUs.

PCUs were defined as PRUs within this subset that had a non-significant response before

and a significant response after the association phase to their NP stimulus. Additionally,

single-trial increases after the association phase in the response intervals of the NP

stimulus were required to be significantly larger (Wilcoxon rank-sum test; p < 0.05)

than the ones of the NA stimulus. Single-trial increases were computed as the firing

rates in the response interval of a given stimulus during the network analysis after
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minus the mean firing rates in the response interval of this stimulus over all trials during

the network analysis before the association phase. So PCU were identified in the same

way as described in the experimental procedures in (Ison et al. 2015), but with different

baseline and response intervals. Instead of baseline and response intervals of [-500 ms,

100 ms] and [200 ms, 800 ms] respectively relative to stimulus onsets in (Ison et al. 2015)

we chose [-100 ms, 0 ms] and [10 ms, 110 ms] respectively. This was done to account for

the shorter pattern presentation interval of 100 ms in our model as compared to single

pictures shown for 1000 ms to the participants in (Ison et al. 2015). As an additional

constraint we excluded neurons which showed no longer a significant response to the P

stimulus after the association phase (< 1 neuron on average out of all PCUs identified

otherwise).

2.3.3 Stability of the emergent number of PCUs

Over 20 simulations with different network initializations and input patterns, we found

an average number of 22.2 ± 7.0 SD (min: 11; max: 35) PCUs. We found that after

the formation of associations, 18.1 ± 5.3 SD previously non-responsive units (to any

of the three input patterns) became responsive to a single input pattern and 5.7 ± 2.5

SD units, so-called hierarchical units (HUs; exact definition in Section 2.3.4), to the

combined pattern respectively. Over all 20 simulations we found a weak but significant

linear correlation between the assembly sizes and the resulting numbers of PCUs per

assembly (r = 0.45, p < 0.01). Details can be found in Figures S2 and S3 in the

Supplementary Material.
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2.3.4 Definition of hierarchical units (HUs)

In hierarchical memory models (Kahana et al. 2008, Kahana 2012), a new memory trace

is thought to emerge for the combined input pattern in form of HUs responding only

to the combined pattern. We tested whether such HUs existed and defined them as

units that did not respond to any separate pattern before the formation of associations

(i.e., non-PRUs), but became responsive to the combined pattern only (but not to any

separate pattern) after the emergence of associations. Responsiveness to the combined

pattern was determined in the same network analysis that was conducted to identify

PCUs (during which also combined patterns were presented; see Section 2.3.2)) using

the same criteria as for assembly neurons defined in Section 2.2.4. According to this

definition, HUs also included rare cases of units that were responsive to the combined

pattern even before the association phase (< 1 neuron on average).

2.4 Details to neuronal and functional learning curves

Behavioral performance of learned associations in (Ison et al. 2015) was tested during

learning by showing an image and asking the participant to select the corresponding

associated image from a list of images (Task 3). Similarly, in our network model, we

investigated after which combined pattern presentation in the association phase (see

Section 2.2.2) the formed associations became functionally useful, in the sense that a

downstream network could infer the associated pattern for a given input pattern. For this

purpose, we ran stepwise network analyses after an increasing number of combined input

patterns (from 0-20) presented during the association phase. Weights were extracted

from the main simulation at intermediate time points directly before the pattern onsets

of all 20 combined patterns as well as at the end of the association phase, to be used
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in these network analyses. We then extracted the resulting numbers of PCUs, weight

changes between the associated assemblies, and readout performance using two different

kinds of readout strategies.

2.4.1 Readout A: Readout based-on spike counts

Spike counts from all neurons belonging to an assembly were extracted from the baseline

interval of [-100 ms, 0 ms] and the response interval of [10 ms, 110 ms] relative to stimulus

onsets of the blue, green, and red patterns. These spike counts were determined in all of

the stepwise network analyses after the presentation of increasing numbers of combined

input patterns during the association phase (between 33 and 44 trials per pattern in each

analysis). For each assembly, the mean spike count differences between the response and

the baseline interval over all neurons belonging to the corresponding assembly were

computed. When presenting a blue (green) input pattern, the spike count differences

for its associated (green (blue)) and non-associated (red) assembly were compared, and

the assembly with a higher spike count difference was selected as output of the readout.

This readout can be seen as mimicking the task to select the associated image from a

list of images in a multiple choice test in the experiments of (Ison et al. 2015). The

total readout performance was estimated by computing the fraction of times (of all blue

(green) trials) the correct (i.e., the associated) assembly was selected.

2.4.2 Readout B: Linear readout

For each of the three assemblies (red, blue, and green), a linear readout was trained with

the standard algorithm for a support vector machine with parameter C = 1 to detect its

activation in response to its preferred (P) input pattern. We used the LinearSVC im-
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plementation from the scikit-learn 0.18 library (Pedregosa et al. 2011). 432-dimensional

feature vectors for this readout were extracted by taking the non-weighted PSPs (simi-

lar to zk(t) in Equation (3), but with longer time constants τr = 4 ms, τf = 40 ms, and

Tc = 200 ms, to get a more stable output of the readout) summed over time at time

point 100 ms relative to pattern onsets from all excitatory neurons (i.e., without any

prior knowledge about the actual assembly neurons). Each classifier was then trained

on 50 % of the data to distinguish target patterns (i.e., assembly activation at its pre-

ferred pattern presentation; around 19 presentations) from non-target patterns (around

39 presentations) during the network analysis directly before the association phase (i.e.,

the same analysis assembly neurons were determined in; see Section 2.2.4).

We then tested whether this readout was able to detect during the network analysis

directly after the association phase (i.e., the same analysis PCUs were determined in;

see Section 2.3.2) an indirect activation of its corresponding assembly via its associated

non-preferred input pattern (again, based on around 19 target and 39 non-target pat-

tern presentations). To take unbalanced classes into account (there were always twice

as many non-target as target patterns), the class weight of the smaller class was in-

creased by a factor of 2, using the class weight argument of LinearSVC. Details of

the LinearSVC implementation can be found in the web-based API documentation of

scikit-learn (LinearSVC 2016). We used the balanced accuracy as performance measure

which is defined as bacc = TPR+TNR
2

, with TPR being the true positive rate and TNR

the true negative rate. The TPR (TNR) is defined as the fraction between the number

of samples that were correctly classified as positive (negative) examples and the total

number of positive (negative) examples in the test set. Moreover, to increase the sen-

sitivity of the readouts to detecting associations, the separating hyperplane was shifted

towards the non-target class by decreasing the corresponding class weight by a factor of

1 · 10−3.
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2.5 Details to the functional impact of network parameters

In Section 2.1, we described the network parameters and the chosen standard values

we used throughout our simulations. We investigated the impact of certain network

parameters and the robustness of the results against variations of network initialization

(i.e., specific network connectivity and initial parameter values) and input patterns. To

this end, we ran extensive computer simulations and varied one or two parameters at

a time while keeping the standard values for all other parameters. To have comparable

ranges of values despite the fact that different parameters have different scales and units,

we used relative parameter changes with respect to the corresponding standard value.

To cover a reasonably wide range of values, we used nine logarithmically spaced steps

from 25 % to 400 % of the standard parameter values. When two parameters at a time

were varied, 9×9 grid points were computed and intermediate values were estimated by

bicubic interpolation to create 2D surface plots. For the connection probability between

excitatory neurons we used absolute probability values in nine linearly spaced steps from

10 % to 90 %.

All simulations were done using 10 different global random seeds, having an effect on

both network generation (e.g., connection matrix, initial parameter values) and the

specific realization of input patterns. The average results over these 10 simulations are

reported. Parameters that were investigated are summarized in Table 3, together with

short descriptions and their standard values, and include Eexc,generic, Iexc,generic, pE→E,

γexc, and γw. In a subset of the simulations, the combined scaling factor γ := γexc = γw,

which was not an intrinsic parameter of the network, was treated as single parameter used

to simultaneously control both scaling factors, γexc and γw, in the same way. Results for

variations of parameters γexc and γw can be found in Figure 7 while results for parameters

Eexc,generic, Iexc,generic, γw, and pE→E can be found in Figure S6 in the Supplementary
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Material.

Symbol Parameter description Standard value

Eexc,generic Generic excitability of the excitatory population 300 · 10−3

Iexc,generic Generic excitability of the inhibitory population 450 · 10−3

pE→E E→E connection probability 50 %

γexc Scaling factor of generic neuronal excitability of

the excitatory population

1.0

γw Scaling factor of initial synaptic weights between

Inp→E and E→E connections

1.0

γ Combined scaling factor γ := γexc = γw 1.0

Table 3: List of selected network parameters that were varied to investigate their functional

impact, with a short description and their standard values. In a subset of simulations, the

combined scaling factor γ was treated as single parameter used to simultaneously control the

scaling factors γexc and γw.

2.6 Details to the balance between excitation and inhibition

The E/I balance based on membrane potentials was continuously measured during the

main simulation. Following the general definition of Okun and Lampl (2009), we com-

puted the E/I balance as the mean ratio over all excitatory neurons of the excitatory

(i.e., positive) and inhibitory (i.e., negative) contributions to the membrane potentials

ui (see Equation (3)), which is arguably the most direct way of measuring the relative

contributions of excitatory and inhibitory synaptic inputs to a neuron. Since the to-

tal neuronal excitabilities Eexc,total,i = Eexc,i + Eexc,generic across neurons i were usually

negative, they were counted as inhibitory contribution. In case values of Eexc,total,i ex-

ceeded zero (when testing the functional impact of network parameters; see Section 2.5)

28

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/188938doi: bioRxiv preprint 

https://doi.org/10.1101/188938


they were counted as excitatory contribution. For this purpose, the total excitability of

neuron i was splitted into its positive and negative contributions, using

Eexc,total,pos,i =


Eexc,total,i if Eexc,total,i > 0

0 otherwise

(14)

and

Eexc,total,neg,i =


|Eexc,total,i| if Eexc,total,i < 0

0 otherwise

(15)

respectively. To avoid numerical problems (divisions by zero), we first divided the ex-

citatory by the inhibitory contributions, since the inhibitory contributions were usually

never zero due to the negative generic excitability Eexc,generic (except for at spike times

where the membrane potential was reset to 0 mV for one time step). We then averaged

over all excitatory neurons (excluding neurons where this ratio was not finite in a given

time step) and smoothed the resulting mean ratio over time with a moving average

(MAV) filter with a filter length of 10 s to get a stable continuous estimate. Finally,

since inhibition was larger than excitation, we inverted this smoothed curve, resulting

in an I-to-E ratio of

β̄u = filterMAV (κ̄u)
−1 , (16)

with

κ̄u =

〈∑
j w

Inp
ji yj(t) +

∑
k w

EE
ki zk(t) + Eexc,total,pos,i∑

l w
IE
li hl(t) + Eexc,total,neg,i

〉
(17)

Discrete values of β̄u were extracted from this inverted smoothed curve at three points

of interest during the course of the simulation (compensated for filter delays): (i) after

the initialization phase, (ii) directly before, and (iii) directly after the association phase
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(see Section 2.2.2).

3 Results

3.1 The network model

We examine emergent neural codes for the association of memory items in a generic

recurrent network of excitatory and inhibitory spiking neurons. In contrast to artificial

neural network models, one can readily compare network responses and neural codes of

such a model with experimental data from electrode recordings in the brain, since both

have the form of spike trains and spike rasters. Similarly to the model for area CA3

of (Guzman et al. 2016) we assume that the connection probability between excitatory

neurons is distance-independent. However the probabilities of all other types of synaptic

connections were assumed to drop exponentially with the distance between the somata

of neurons, which were arranged on a 3D grid. We included data-based short-term

plasticity of synapses in the model because it has a significant impact on the network

dynamics. In particular, the short-term plasticity of synaptic connections between ex-

citatory neurons was modelled according to data from the human brain (Testa-Silva

et al. 2014), which showed that these synapses are depressing. In addition, we used

a standard data-based rule for long-term spike-timing-dependent plasticity (STDP) of

synapses between excitatory neurons, the triplet rule of (Pfister and Gerstner 2006).
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3.2 Generation of memory traces

The experiments of (Ison et al. 2015) studied fast formation of associations between two

unrelated memory items, represented through images of familiar faces and landscapes.

One commonly assumes that each such memory item is represented in the human MTL

by a sparse distributed set of concept cells, often referred to as memory trace or assembly

of neurons (Quian Quiroga 2016). In order to study the formations of associations, we

first needed to generate such memory traces in our model through STDP. We reasoned

that such a memory trace should emerge for each sufficiently often occurring external

input to the model. This external input was produced by a separate pool of excitatory

spiking neurons, that had randomly generated connections to neurons in the recurrent

network.

Input patterns: We chose as external input patterns three firing rate patterns of

200 external Poisson neurons, called input neurons in the following. These firing rate

patterns consisted of stationary rate patterns over 100 ms. In each pattern 20 of the

200 input neurons fired at 40 Hz, the others at 0 Hz (except for superimposed noise see

below). At each presentation of a pattern, fresh Poisson spike trains were independently

generated for each of the input neurons. We called the resulting three input patterns

the blue, green, and red pattern. These input patterns were superimposed during each

presentation with noise: freshly generated Poisson spike trains at 3 Hz in each of the 200

input channels. This caused a rather realistic trial-to-trial variability of network inputs

and network responses, see Figure 3.

After an initialization phase of 250 s without an external input, each of the three in-

put patterns was represented repeatedly and interlaced to the network, at random time

points within a continuous spike input stream over 250 s (Fig. 2). Each input pattern was
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presented on average 39 times. During this “encoding phase”, in which the emergence

of memory traces through STDP was studied, the three input patterns with superim-

posed noise were interleaved with periods of pure noise: freshly generated Poisson spike

trains at 5 Hz, with randomly drawn durations between 0.5 s and 3 s (see the top row of

Figure 3).

A B

Figure 3: Emergence of assembly codes for repeated input patterns. (A) Initial network

activity in response to the three input patterns, before any synaptic plasticity took place.

The excitatory neurons are grouped into the assemblies to which they will belong after the

encoding and subsequent resting phase 1. (B) Emergence of assemblies after the encoding and

subsequent resting phase 1. Neurons in the three assemblies responded preferentially to one of

the three input patterns. Spike trains are shown (from top to bottom) for input neurons (only

the first 100 of 200 are shown), assembly neurons, multi-responsive units (MRUs, responding

to more than one input pattern), (future) hierarchical units (HUs), other excitatory neurons,

and inhibitory neurons. Note the different y-axis scalings to highlight neurons in assemblies,

MRUs, and HUs.
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More precisely, we analyzed the emergence of pattern responsive units (PRUs). These

were defined exactly as in (Ison et al. 2015) as neurons that significantly responded to

at least one of the three input patterns. We refer to the set of neurons in the network

that preferentially responded after this encoding and a subsequent resting phase 1, see

Figure 2, to one of the three input patterns as the blue, green, and red assembly (see

second row of Figure 3, (Future) Assembly 1-3). Figures 3A and B illustrate the network

activity in response to the three input patterns (A) at the initial state of the network

before any plasticity took place and (B) after the encoding and subsequent 250 s resting

phase 1, which is the time point at which PRUs and assembly neurons were determined

(see Section 2.2.4). Overall the network response was quite sparse, as found in most

recordings from cortex, with inhibitory neurons being more active than excitatory neu-

rons. Furthermore the network response became even sparser once memory traces were

generated, see Figure 3B. A sparsening of responses is commonly reported as an impact

of perceptual learning (Hoffman and Logothetis 2009). For the sake of completeness

we show in Figure 3 also the response of a very small number of multi-responsive units

(MRUs), defined as in (Ison et al. 2015), and of hierarchical units (HUs, hardly visible

in Figure 3). These populations of neurons will become relevant for the emergence of

neural codes for the association of two input patters, see Sections 3.3 and 3.5.

The evolution of synaptic weights under STDP, which explains the difference between

the network responses in panels A and B of Figure 3, is shown in Figure 4A and in the

upper three traces of Figure 4B. Weights from input neurons to neurons in an assembly

k (see Fig. 3A) were computed by taking only those input neurons into account which

fired during pattern k at a high rate; k = 1, 2, 3. Figure 3B shows that the weights

of synaptic connections within an assembly increased significantly during the encoding

phase.
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A

B

Figure 4: Mean weight changes of (A) connections from input neurons to the three assemblies,

taking only on-channels of the stationary input rate patterns into account (see text) and (B)

internal connections within the three assemblies during all phases of the main simulation. The

following 5 phases were analyzed, which were defined by the external input: (1) Initialization

phase of 250 s with just noise input, (2) encoding phase of 250 s with three input patterns

randomly presented to the network, (3) resting phase 1 of 250 s with just noise input, (4)

association phase of 36 s with a combined pattern repeatedly presented to the network, and

(5) resting phase 2 of 250 s with just noise input. The input neurons fired with a baseline

rate of 5 Hz during the 3 resting phases. During all 5 phases, both Inp→E and E→E synapses

were subject to STDP. Colored lines show mean weight changes as defined in the legends.

Black lines denote mean weight changes of all other synaptic connections between excitatory

neurons, i.e., cross-connections between other pairs of assemblies and connections not related

to any assembly. The gray line shows that also weights to non-PCUs increase during the

association phase.
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The three assemblies that emerged were rather sparse and distributed over the whole

3D volume of the network, with their means approximately centered at the center of the

volume. In this trial STDP gave rise to 78 PRUs, with assemblies of sizes 27, 27, 18 for

the three input patterns. The exact assembly sizes and numbers of PRUs and MRUs

depended on the random choice of the network initialization and input patterns (see

Section 3.5). Twenty simulations with random networks realizations (with newly drawn

connectivity and initial parameters) and new input patterns yielded average assembly

sizes of 28.4 ± 5.6 SD (min: 17; max: 45). The total number of PRUs was found to

be 91.2 ± 10.4 SD (min: 67; max: 111), the number of MRUs 6.1 ± 4.3 SD (min:

0; max: 16). Relative differences between the three assembly sizes were measured by

computing their standard deviation for each simulation individually, which resulted in

a mean standard deviation of 4.5 over all 20 simulations. An overview over these 20

simulations can be found in Figure S1 in the Supplementary Material.

The emergence of assemblies as memory traces in networks of spiking neurons has already

previously been modelled (Klampfl and Maass 2013, Litwin-Kumar and Doiron 2014,

Zenke et al. 2015). In comparison with these preceding models we used here a simpler

model that did not require a specific connectivity structure, homeostasis, or long-term

plasticity of inhibitory synapses. The neural recordings of (Ison et al. 2015) show that

the firing activity of neurons that belong to an assembly tend to return to baseline

activity soon after the stimulus that evoked this memory trace has been removed. This

feature is duplicated in our model, see Figure 3B.
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3.3 Emergence of associations

Associations between memory items emerged in the experiments of (Ison et al. 2015) by

repeatedly presenting to a human subject combinations of two images from a fixed set of

images: a particular face image was shown in front of a particular landscape image.The

firing activity of a total of 613 units in the human MTL was recorded before, during,

and after this creation of an association. Only those images were used for this pairing

protocol for which its presentation had previously caused increased firing of at least one

neuron in the MTL from which one recorded. These neurons can be viewed as members

of the memory traces that encode the corresponding image or concept. A key finding

of Ison et al. (2015) was that the two assemblies that encoded the two components of a

combined image changed during the formation of an association between them: each of

them expanded, and recruited neurons from the other assembly.

In order to mimic this experimental setup in our model, we repeatedly presented com-

binations of two of the previously used external input patterns, the blue and the green

pattern. This combined pattern was constructed by superimposing (adding) the station-

ary rate patterns of the 200 external input neurons for the two input patterns, truncated

at 40 Hz. At each presentation of the combined pattern, fresh Poisson spike trains were

independently generated for each channel. All 200 input channels were again superim-

posed with fresh Poisson spike trains at 3 Hz. The resulting combined input pattern

with superimposed noise was presented 20 times at random time points within 36 s of

a subsequent “association phase” (see Fig. 2). Figure 4B shows that synaptic weights

between neurons in the two associated assemblies were rapidly increased during this

phase.

Figures 5A and B illustrate the network activity in response to (A) the first presenta-
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tion of the combined pattern during the association phase and (B) a presentation of the

combined and the three separate input patterns directly after the association phase. We

found that in this simulation 9 neurons in the blue assembly 1 (indicated by the green

horizontal lines in Figure 5B) became also members of the green assembly. Simulta-

neously 15 members of the green assembly 2 (indicated by the blue horizontal lines in

Figure 5B) became also members of the blue assembly. In analogy to the terminology of

(Ison et al. 2015) we refer to these neurons in the resulting overlap of the two assemblies

as pair-coding units (PCUs; exact definition in Section 2.3.2). We also say that the blue

input pattern is the preferred (“P”) stimulus for neurons in the blue assembly, whereas

the green pattern is the non-preferred (“NP”) stimulus for neurons in this assembly

(analogous for the green assembly).
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A B

C D E

Figure 5: Emergence of overlap between memory traces in the model. During the association

phase, the network was exposed to a combination of two previously shown rate patterns (blue

and green). (A) Response of the network to the first presentation of such a combined pattern

during the association phase. (B) After 20 presentations of this combined input pattern during

the association phase, the green input pattern also activated a fraction of neurons from the

assembly that encoded the blue input pattern, and vice versa. Such pair-coding units (PCUs;

Ison et al. 2015) are indicated by a shaded background and small arrows on the right side.

(C-E) Mean spike densities over all PCUs (estimated with a Gaussian kernel with σ = 10 ms)

before (BL) and after (AL) learning of associations, averaged over 20 simulations with different

random network realizations and input pattern triples in response to their (C) preferred (P),

(D) non-preferred (NP), and (E) non-associated (NA) pattern. The stimulus onset was at t =

0 ms, dashed vertical lines indicate the pattern presentation period. Colored curves represent

the mean and shaded areas represent the SEM over all 20 simulations (very small, hardly

visible). After learning, a significantly increased firing rate in response to the NP stimulus,

but not to the NA stimulus could be observed. Compare with Figure 5A-C of (Ison et al.

2015).
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21 out of 51 neurons in the data of (Ison et al. 2015) initially preferred one of the two

image components (P stimulus), but responded after the association with an increased

firing rate also to the non-preferred (NP) stimulus. A very similar scenario emerged in

our network model, where 24 out of 54 neurons in the blue and green assembly responded

after the association phase with an increased firing rate to the NP stimulus. We will

analyze in Section 3.5 how this fraction depends on parameters of the model.

Since the neurons in our model produce spike trains, we can directly compare changes in

firing responses of neurons before and after the induction of the association between the

data (Figure 5A-C of Ison et al. 2015) and our model (see Figure 5C-E). We find that the

neural coding properties of PCUs in the blue and green assemblies change through STDP

after repeated presentations of combined input patterns in a way that is very similar to

the data of (Ison et al. 2015): The firing response remains significant for the preferred

stimulus, changes from insignificant to significant for the non-preferred stimulus, and

remains insignificant for the red (“non-associated” or “NA”) input pattern that was not

part of the combined stimulus (see Figure 5C-E).

A neuron can become through synaptic plasticity in two different ways a member of the

assembly for the previously non-preferred stimulus: By increasing its weights from input

neurons that are highly active during the NP stimulus, or by increasing the weights from

neurons in the assembly for the NP stimulus. A latency analysis in (Ison et al. 2015)

arrived at the conclusion that a combination of both effects occurred. In our model we

can measure directly how much synaptic input a neuron that starts to respond to the

NP stimulus after the association induction gets from the external input neurons, and

how much from the original assembly for the NP stimulus. For that purpose we carried

out experiments where (i) all internal connections from the assembly of the NP or (ii) all

connections from the input were disabled. The resulting PCU activities in response to
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the NP stimulus can be found in Figure S4 in the Supplementary Material. These results

show that also in the model a combination of both effect occured, with the contribution

from the external input neurons being somewhat stronger.

3.4 Neuronal and functional learning curves

A key point of the experimental data of (Ison et al. 2015) was that the overlap of

assemblies emerged at about the same presentation of the combined stimulus when the

association between the two memory traces became functional, i.e., when the subject

was able to select in an interjected multiple choice test the correct background that had

previously been shown in conjunction with a face.

We asked whether the same effect would occur in our model, i.e., whether the overlap

between the associated blue and green assembly would emerge at about the same pre-

sentation (“trial”) when a downstream network would be able to detect a functional

association between the two assemblies, i.e., detect an activation of an assembly when

its associated assembly was activated via an external input. In addition, we were able

to investigate in the model a question that could not be probed through recordings from

the human MTL: will weights of synapses that interconnect neurons in the two assem-

blies increase significantly through the association process, and will a significant weight

increase appear at about the same time as the overlap between the two assemblies? If

this is the case, it suggests that, in addition to the emergent overlap, this weight increase

is also related to the emergent functionality of the association.

In order to assess the functionality of an association we modelled the readout in down-

stream networks in two ways:
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Readout A: Integration of evidence by counting spikes in the associated and the non-

associated assembly, with a subsequent symbolic multiple choice test, where the assembly

with the higher spike count is selected as associated assembly.

Readout B: Linear readout neurons are trained for each of the assemblies to fire when-

ever this assembly is activated through the corresponding external input. Then test

whether the readout neuron for the green assembly signals that the green assembly is

activated when the external input for the blue assembly is injected, and vice versa.

The results are shown in Figure 6. Solid curves show averages over 20 experiments with

random network realizations and input pattern triples. Small circles show results for

the standard model. One finds that the functional performance of readout B tracks the

evolution of both the overlap between the two assemblies (PCU fraction in A) and mean

synaptic weight between neurons in these two assemblies (panel B) very well. Readout

A in panel C, which models a multiple choice test, shows good performance already after

just one presentation of the combined stimulus.
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A

B

C

D

Figure 6: Time course of changes in synaptic weights, assembly organization, and computa-

tional function in the recurrent network during 20 presentations (“trials”) of the combined input

pattern (trial 0: initial state). Solid lines represent average results over 20 simulations with

different random network realizations and input pattern triples. Small circles depict results for

the standard model. (A) Mean fraction of PCUs relative to their corresponding assembly sizes.

(B) Mean weight changes of synaptic connections between the two associated assemblies. (C)

Mean readout performance A using spike counts. (D) Mean readout performance B using a

linear readout.

One should point out that the interleaved tests of associations for the human subjects

(interleaved Tasks 2 and 3 in Ison et al. 2015) may have enhanced learning processes

beyond the learning from passive presentation as in our model.
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3.5 Emergence of a hierarchical neural code for associated memory

traces

The previously discussed results of the model were based on our standard values for

parameters that affect the size of the network response to single and combined external

stimuli, and thereby also the impact of STDP for synaptic connections between exci-

tatory neurons. In this way they also affect the number of PRUs, i.e., the number of

neurons that become members of an assembly, and the number of PCUs, i.e., the result-

ing size of the overlap of the two assemblies for which combinations of the corresponding

patterns had been presented.

We show here that if one changes two of these parameters, a different neural code emerges

for associated memories, namely the hierarchical model in the terminology of (Kahana

et al. 2008, Kahana 2012). According to this model neurons emerge, which we call HUs,

that are activated by a combined input pattern, but are not activated by either of its

components. The relative sizes of the number of HUs and PCUs can be seen as a measure

to what extent a hierarchical model or a chaining model is expressed.

Critical parameters for switching between the two competing memory models are γexc,

which scales the excitability of excitatory neurons, and γw, which scales initial weights

to excitatory neurons. Figure 7 shows their impact on the mean assembly size and the

numbers of MRUs, PCUs, and HUs in 2D surface plots. The black star marks their

values in the previously discussed standard model. Intersections of grid lines indicate

computed values (9× 9 grid), whereas intermediate grid values were interpolated.
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A B

C D

Figure 7: Impact of the scaling factors γexc and γw on (A) the mean assembly size, (B) the

number of MRUs, (C) the number of PCUs, and (D) the number of HUs. Mean values were

estimated over 10 simulations with different random seeds. The * symbols mark the values in

the standard model.

Figure 7D shows a peak value of HUs at γw = 1.0 and γexc = 0.25 (with a low value

of PCUs) and a peak value of PCUs at γw = 0.71 and γexc = 0.25 (with a low value of

HUs). Hence our model can switch between a hierarchical and a chaining model for the

formation of associations by changing these two parameters. The absolute numbers of

PCUs or HUs were found to be increasing with increasing values of γexc. Figure S5 in

the Supplementary Material illustrates the network activity in response to different input

patterns for the setup with γw = 1.0 and γexc = 0.25, where the hierarchical memory
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model emerges through STDP (compare with Figure 5, representing the chaining model).

No overlap (i.e., no PCUs) between the blue and green assemblies was found in this

case.

In order to test whether the network operated for both of these parameter settings in

a biologically reasonable regime, we computed the I-to-E ratio β̄u based on membrane

potentials at three time points of interest: (i) after the initialization phase, (ii) directly

before, and (iii) directly after the association phase The impact of γexc and γw on the

E/I balance is shown in Figure S7 in the Supplementary Material for these three time

points. A small increase of β̄u during the course of the simulation can be seen. We

found that inhibition dominates excitation for both of the previously discussed ranges

of γexc and γw, that yield different neural codes for associations. This finding in the

model is in agreement with experimental findings in neocortex (Haider et al. 2013) and

area CA3 of the hippocampus (Calfa et al. 2015, Atallah and Scanziani 2009). Hence

both the parameter values where STDP induces many PCUs, i.e., the chaining model

for associations, and where STDP induces many HUs, i.e., the hierarchical model, yield

a biologically plausible regime where inhibition dominates excitation.

The impact of other network parameters, such as Eexc,generic, Iexc,generic, and pE→E is

shown in Figure S6.

4 Discussion

The emergence of memory traces and associations between memory traces are funda-

mental for most higher cognitive functions of the brain. Nevertheless, it remains poorly

understood how these processes are implemented in neural networks of the brain. The-
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oretical and modelling analyses are likely to shed light on this problem. We propose

that a recurrent network of spiking neurons with data-based short-term and long-term

synaptic plasticity provides a suitable framework for that. We found that the emergence

of memory traces for repeatedly occurring external inputs can be reproduced in such a

model through STDP for synaptic connections between excitatory neurons. Furthermore

we found that two different coding mechanisms for the formation of associations between

memory traces can be reproduced in the model. One coding mechanism relies on the

emergence of overlaps between memory traces, as proposed by chaining models (Kahana

et al. 2008, Kahana 2012), and supported by recordings from the human MTL (Ison

et al. 2015, De Falco et al. 2016). A different neural coding mechanism was proposed

by hierarchical models (Kahana et al. 2008, Kahana 2012, Valiant 2000a;b, Norman and

O’Reilly 2003), and was supported by recordings from the rodent brain (Komorowski

et al. 2009). It postulates that the memory traces themselves remain largely unchanged

during the formation of an association between them, and that instead new neurons are

recruited for encoding the combined memory.

We identified two parameters of the model, which control the excitability of excitatory

neurons and the scale of initial synaptic weights between them, as being critical for the

resulting type of neural code for associated memories (Fig. 7). Both of these parameters

appear to be “soft” parameters, whose values can be changed in an adaptive manner

by the brain. Hence our model suggests that the brain is able to use both of these two

neural codes, and possibly switch between them during consolidation.

On the side our model shows that -in contrast to an assumption of a recently published

theoretical model (Legenstein et al. 2018)- an assembly that emerges as neural code for

a memory item in our model does not need to have a higher connectivity within the

assembly. Indeed, an analysis of recurrent connection probabilities within assemblies
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for 20 simulations with random realizations and input patterns showed that connection

probabilities within these assemblies were higher than within random subsets in just

25 % of the cases (α = 5 % Monte-Carlo permutation test with N = 1000).

In contrast to the large scale model for the formation of memory traces -without asso-

ciations between them- in (Guzman et al. 2016), we have investigated here a minimal

model with more physiological details for the formation of associations. The next step

will be to combine both modelling approaches in a large scale model with neurophysio-

logical details. Such a model is likely to provide theoretical insight into the way how the

intricate web of associations is formed and continuously updated in the human brain.

Thereby it will help us to understand one of the most amazing information processing

capabilities of the human brain.
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Supplementary Material

Generation of memory traces

Figure S1: Overview of assembly sizes (blue, green, red) and MRUs (yellow) over 20 simula-

tions with different random seeds.
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Emergence of associations

Figure S2: Overview of the numbers of PCUs per (blue and green) assembly over 20 simula-

tions with different random seeds.

Figure S3: Scatter plot showing a weak but significant linear correlation between the assembly

sizes and the resulting numbers of PCUs per (blue and green) assembly over 20 simulations

(r = 0.45, p < 0.01).
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Figure S4: Sources of synaptic inputs to PCUs for the NP stimulus. Grey bars: Firing rates

of PCUs with all connections intact. Yellow bars: Firing rates after the internal connections

from the assembly of the NP stimulus were disabled. Magenta bars: Firing rates after the

input connections were disabled.
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Functional impact of network parameters

A B

Figure S5: HUs as emergent neural code for associations, shown for a network with γw = 1.0

and γexc = 0.25 (compare with Figure 5). (A) Response of the network to the first presentation

of such a combined pattern during the association phase. (B) After 20 presentations of this

combined input pattern during the association phase, a new memory trace represented by 51

HUs encoding the combined input patterns, instead of an overlap between the blue and green

assemblies (i.e., no PCUs), emerged.

51

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/188938doi: bioRxiv preprint 

https://doi.org/10.1101/188938


A B

C D

E F

Figure S6: Impact of various network parameters on the mean assembly size, and the numbers

of MRUs, PCUs, and HUs. Mean values were estimated over 10 simulations with different

random seeds. Error bars represent the SEM. The * symbols mark the standard parameter

values. (A-D) The parameter values of Eexc,generic, Iexc,generic, and γ := γexc = γw were varied

in logarithmic steps from 25 % to 400 % relative to the respective standard values. (E-F) The

recurrent excitatory connection probability pE→E was varied in linear steps from 10 % to 90 %.

More details can be found in the supplemental text below.
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In Figure S6A-D, the dependence of the mean assembly size and the numbers of MRUs,

PCUs, and HUs on three parameters was investigated in logarithmic steps: Eexc,generic

regulates the generic excitability of the excitatory population, Iexc,generic regulates the

generic excitability of the inhinitory population, and γ scales the relative contributions

of the generic excitability of the excitatory population and the initial synaptic weights

between Inp→E and E→E connections. We found that the mean assembly size and the

number of PCUs roughly peak for values close to the standard value of γ and Eexc,generic

while they are constantly low for Iexc,generic larger than the standard value and constantly

large otherwise. The number of MRUs is negatively correlated with Iexc,generic while being

constantly low and largely unaffected by the two other parameters. The number of HUs

was found to be negatively correlated with Eexc,generic while being constantly low and

largely unaffected by the two other parameters, with a small peak at γ = 70.7 %.

In Figure S6E-F, we investigated the impact of the connection probability pE→E between

pairs of excitatory neurons in the recurrent network, using again standard values for all

other parameters. The mean assembly size and number of PCUs were found to peak at a

connection probability of pE→E = 60 % whereas the number of HUs is largely unaffected

by the connection probability. The number of MRUs is highly increasing with increasing

levels of pE→E. A proper choice of this connection probability is difficult for a model,

because its impact on the number of PCUs depends on the size of the neural network

model. From the functional perspective it is essential from how many neurons in the

same and the associated assembly a neuron in an assembly receives synaptic connections.

If this number, which depends on the connection probability and the network size, is

too low, few PCUs are likely to emerge.

A simple calculation shows the following for the subarea CA3 of the hippocampus, which

is estimated to consist of 2.83 million pyramidal cells in humans (Andersen et al. 2007)
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and has an estimated connection probability between pyramidal cells of 0.92 % in rodents

(Guzman et al. 2016): An assembly for a memory item in the human MTL was estimated

to consist of between 0.2 and 1 % of the pyramidal cells in the MTL (Waydo et al. 2006).

If one assumes that this also holds for area CA3, one arrives at an estimate of 5660 to

28300 for the number of neurons in an assembly in area CA3. Thus with a connection

probability of 0.92 %, each neuron in one assembly receives on average synaptic input

from 52 to 260 neurons in any other assembly. This suggests that models of different

network sizes should have a connection probability that scales this number of presynaptic

neurons from another assembly into a comparable range, so that they can contribute

significantly to its firing probability. In our small neural network model this number of

presynaptic neurons from another assembly had an average value of 12, but in order to

achieve that we had to increase the connection probability between excitatory neurons

to an unrealistically large value of 50 %.
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Balance between excitation and inhibition

A After initialization phase B Before association phase C After association phase

Figure S7: Impact of the scaling factors γexc and γw on the E/I balance based on membrane

potentials at time points (A) after the initialization phase, and directly (B) before and (C) after

the formation of associations. Mean values were estimated over 10 simulations with different

random seeds. The * symbols mark the standard parameter values. The parameter values

were independently varied in logarithmic steps from 25 % to 400 % relative to the respective

standard values, as indicated by the black dots. Intermediate grid values were interpolated.
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