
“flashfry” — 2017/9/14 — page 1 — #1

.
..

Application Note

Sequence Analysis

FlashFry: a fast and flexible tool for large-scale
CRISPR target design
Aaron McKenna 1∗ and Jay Shendure 1,2

1Genome Sciences, University of Washington, Seattle, WA, USA and
2Howard Hughes Medical Institute, Seattle WA, USA

∗To whom correspondence should be addressed.

Abstract

FlashFry is a fast and flexible command-line tool for characterizing large numbers of CRISPR target
sequences. While several CRISPR web application exist, genome-wide knockout studies, noncoding
deletion scans, and other large-scale studies or methods development projects require a simple and
lightweight framework that can quickly discover and score thousands of candidates guides targeting an
arbitrary DNA sequence. With FlashFry, users can specify an unconstrained number of mismatches to
putative off-targets, richly annotate discovered sites, and tag potential guides with commonly used on-
target and off-target scoring metrics. FlashFry runs at speeds comparable to widely used genome-wide
sequence aligners, and output is provided as an easy-to-manipulate text file.
Availability: FlashFry is written in Scala and bundled as a stand-alone Jar file, easily run on any system
with an installed Java virtual machine (JVM). The tool is freely licensed under version 3 of the GPL, and
code, documentation, and tutorials are available on the GitHub page: http://aaronmck.github.io/FlashFry/
Contact: aaronmck@uw.edu

1 Introduction
The CRISPR prokaryotic immune system has transformed genome
engineering. As typically used, CRISPR proteins are directed to create
double-stranded DNA breaks at location(s) in a genome matching a
specified guide sequence (Wright et al. (2016)). These double-stranded
breaks are commonly repaired by a non-homologous end joining (NHEJ)
pathway, which can leave small insertions or deletions (indels) at the
genomic target site. The site-specific introduction of such indels can be
used to perturb endogenous gene function (Wang et al. (2017)), encode
information (McKenna et al. (2016)), or characterize the function of
genomic sequence (Gasperini et al. (2017); Chen et al. (2015); Liu et al.
(2017)).

Although CRISPR editing is highly specific (Doench et al. (2014)), not
all guides function with the same efficiency or specificity. For instance,
double-stranded breaks can occur at genomic locations (’targets’) that are
an imperfect match to the supplied guide sequence (termed ’off-targets’).
To reduce the chance of such unintended genome editing, guide sequences
can be chosen that contain less overlap with all possible alternate targets in
the genome. The importance of specific differences in the guide sequence,
the genomic location and chromatin environment of the target, and the
method of guide delivery all have effects on the distribution and rate of
off-target cutting (Haeussler et al. (2016)).

To help users choose both specific and active guide sequences, the
community has created a large number of CRISPR design tools, most
of which are made available as web applications (Labun et al. (2016);
Haeussler et al. (2016)). These web tools are convenient for researchers

screening a small set of guides, or scanning a single genomic locus like an
exon. Unfortunately, these tools require batched queries for large sets,
which makes it more challenging to scan loci or whole genomes for
guides. Additionally, some guide screening tools rely upon genome-wide
alignment tools to generate putative off-target lists for each guide. For
practical reasons, these aligners are generally designed to quickly discover
only the most similar sequences with a limited number of mismatches
in comparison to the guide (typically k ≤ 3), whereas experimental
efforts have shown activity at off-target sequences containing upwards
of six mismatches to the guide (Tsai et al. (2014)). Some of these tools
also miss a subset of potential off-targets altogether, regardless of the
mismatch distance (Doench et al. (2016)). To address these issues, and to
meet our needs for high-throughput guide selection from arbitrary genomic
regions, we’ve created FlashFry, a command-line tool for discovery and
characterization of CRISPR guide sequences.

2 Materials and methods

2.1 Database creation

FlashFry generates a block-compressed binary database of all potential
CRISPR targets for a given reference sequence. This database is CRISPR
enzyme specific, and can be generated in a few hours on a standard
computer (supplemental table 1). In this database, target sequences
that contain the CRISPR enzyme’s protospacer adjacent motif (PAM) are
encoded with their positions and counts into a hierarchy of sorted prefix-
bins (figure 1A). This prefix length can be specified at runtime, with larger
bins being automatically sub-indexed to reduce lookup times. Within each
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bin, target sequences and the number of occurrences in the genome are
stored as a 64 bit-encoded value. This is followed by additional binary
encoded values for each target’s position within the genome.

2.2 Search

Given the inherent inefficiencies of high-mismatch searches, FlashFry
uses a filtering approach to find candidate off-targets. It does so by
precomputing a traversal over prefix bins with less than k mismatches to
each guide in the candidate set using a prefix tree (such filtering approaches
are reviewed in Navarro (2001)). When a large number of bins are to be
searched, which is common with large guide screens or with a high k
mismatch threshold, FlashFry will instead search the full database to avoid
the cost of disk seeks. To further reduce search times, target sequences
and their occurrences are stored as a bit-encoded value, allowing bit-
parallelism comparisons when determining mismatches (Navarro (2001)),
supplementary figure 1). FlashFry is compatible with target sequences
up to 24 bases in length, although it could be expanded to longer target
sequences as the bins encode their prefix. Lastly, off-target discovery is
halted for candidate guides that have exceeded a user defined number of
off-target hits, saving compute time by eliminating poor candidates early
from the putative guide pool. Per-guide search times decrease with the
number of guides and the allowed number of mismatches (figure 1B), and
compare favorably to similar CRISPR command line tools or FM-index
based tools (supplementary figure 2).

2.3 Guide characterization and scoring

The goal for most users is to pick some subset of highly active and
specific guide sequences from a full list of candidate targets within a region
of interest. Therefore, FlashFry reports many commonly used scoring
approaches for both on-target efficiency as well as off-target performance,
including Cutting-frequency determination (CFD)(Doench et al. (2016))
the Hsu et. al. off-target scoring scheme (Hsu et al. (2013)), and both
the Moreno-Mateos and Vejnar et. al. and the Doench et. al. 2014 on-
target metrics (Moreno-Mateos et al. (2015); Doench et al. (2014)). We
have also included a set of basic design criteria filters, including high
and low GC content, warnings for poly T tracts (which halt Pol. III
transcription), and targets that have reciprocal off-targets within the region
of interest (potentially leading to deletions of the intervening sequence).
Lastly, regions can be annotated with information from external BED files,
which may be useful for highlighting repetitive sequences or putative
regulatory regions. To demonstrate the utility of FlashFry for creating
CRISPR libraries, we scored 254,848 candidate SpCas9 target sequences
(allowing both NGG and NAG PAMs) within 1 megabase of the human
MYC gene (supplementary figure 3). The results were scored with two
on-target and two off-target metrics from the literature, and intersected
with a list of known repetitive elements. The aggregate table could then be
used to design a perturbation screen; for instance, 8,038 candidate guide
sequences had no other exact occurrence within the human genome, had
a Hsu et. al. score above 70, and did not overlap a repetitive element
annotation.

3 Discussion
The needs of genome-wide knockout studies, noncoding deletion scans,
and other large-scale studies or methods development projects are
unfortunately not well-met by the abundant CRISPR web applications.
FlashFry, an efficient and flexible toolset, fills this void, and can be used to
rapidly discover and characterize tens to hundreds-of-thousands of guides
from an arbitrary sequence quickly and with a low memory footprint. For
methods developers, we also expose a simple interface for implementing

Fig. 1. (A) FlashFry schematic. The genome of interest is scanned for targets that
match the PAM of the specified CRISPR enzyme, which are then aggregated by
their prefix and bit-encoded into a compressed, hierarchical database of genomic
targets. This database can then be searched for off-targets by comparing the guide
prefix against the contents of bins within k mismatches. (B) Median runtime and
median absolute deviation (MAD) of batched random guide sequences (twenty
replicates) with an increasing number of allowed mismatches to targets.

additional scoring schemes, given the sequence context of a guide and its
off-target hits. FlashFry has no system dependencies outside of the JVM,
and avoids many of the pitfalls and complexity of tools that rely on genome
aligners to discover off-target sequences.
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Supplementary Figure 1. Guide-to-target comparisons per-second. Comparisons per-second for 1, 3, and 5 allowed mismatches over an increasing number of candidate
guides. Smaller numbers of guides and lower mismatch counts achieve lower comparison rates as the initialization and output times are amortized over the whole run.
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Supplementary Figure 2. Runtime comparison of FlashFry and BWA. Comparison of runtimes for FlashFry and BWA version 0.7.13-r1126 (Li and Durbin 2009) over
an increasing number of guides and permitted mismatches. Twenty-five random CRISPR guide sets were run for each guide-count (x-axis) and permitted mismatch level
(2,777,775 potential guides per mismatch level). BWA runtime includes the initial alignment step (aln) and mapping to genomic coordinates (samse), and BWA was run
with parameters taken from Haeussler et al. (2016): bwa aln -o 0 -m 20000000 -n mismatches -k mismatches -N -l 20. Plotted are the median runtime with median absolute
deviation (MAD) bars for each set of 25 runs. (A) Using the NGG motif for off-target selection, (B) using the NRG motif for off-target selection. FlashFry benefits from
aggregating all guide-to-genome comparisons in one pass of the database, matching BWA’s performance at hundreds of guides for 5 mismatches, and thousands of guides
at 4 mismatches.

Genome Cas9 (NGG) Cas9 (NGG or NAG) CPF1 (TTTN)
Caenorhabditis elegans - 235 0:3:21 0:6:03 0:5:35
Human - hg38 3:19:29 5:24:55 2:50:59
Mouse - mm10 2:36:53 4:36:03 2:11:35
Drosophila melanogaster- BDGP6 0:6:33 0:10:48 0:5:44

Supplementary Table 1. Off-target database generation times. A sample of computational times (h:m:s) required to build a FlashFry database for versions of the
Caenorhabditis elegans, human, mouse, and Drosophila melanogaster genomes for common CRISPR enzymes. This analysis was run on a disk-based network area
storage (NAS) system.
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Supplementary Figure 3. Candidate guide discovery over the human MYC region. (A) FlashFry was run for a 1 Mb region flanking the human MYC gene
(chr8:127,000,000-128,000,000, human reference hg38), generating 254,848 candidate sites, which were scored for both on and off-target activity. Average off-target
specificity scores from Hsu et al. are are shown, averaged over 100 basepair windows. (B) Enlargement of the 25Kb region (chr8:127,300,000-127,325,000) highlighted in
A. The observed off-target specificity tracks well with known repetitive elements. (C) Cumulative density function plot of on and off-target scoring metrics for all targets over
the region highlighed in A.

Data set Amazon EC2 (G2) instance Local distributed cluster nodes
10000 guide (set A) 351.12 776.22
10000 guide (set B) 348.53 825.57
10000 guide (set C) 347.86 1397.88
10000 guide (set D) 344.26 783.44
10000 guide (set E) 347.30 776.44
mean 347.81 911.91
Standard deviation 2.46 272.47

Supplementary Table 2. Effects of SSD storage on runtime. Off-target discovery times (seconds) for 10,000 random guide sequences on an G2 Amazon EC2 node
with an SDD drive for off-target database storage, compared to a distributed node on a local cluster with a disk-based network area storage (NAS). Both jobs were run with
identical parameter sets and memory allocations.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted September 14, 2017. ; https://doi.org/10.1101/189068doi: bioRxiv preprint 

https://doi.org/10.1101/189068
http://creativecommons.org/licenses/by-nc-nd/4.0/

