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Abstract 

We have undertaken an extensive Mendelian randomization (MR) study using 

methylation quantitative trait loci (mQTL) as genetic instruments to assess the 

potential causal relationship between genetic variation, DNA methylation and 

139 complex traits. Using two-sample MR, we observed 1,191 effects across 62 

traits where genetic variants were associated with both proximal DNA 

methylation (i.e. cis-mQTL) and complex trait variation (P<1.39x10-08). Joint 

likelihood mapping provided evidence that the causal mQTL for 364 of these 

effects across 58 traits was also likely the causal variant for trait variation. These 

effects showed a high rate of replication in the UK Biobank dataset for 14 

selected traits, as 121 of the attempted 129 effects replicated. Integrating 

expression quantitative trait loci (eQTL) data suggested that genetic variants 

responsible for 319 of the 364 mQTL effects also influence gene expression, 

which indicates a coordinated system of effects that are consistent with 

causality. CpG sites were enriched for histone mark peaks in tissue types 

relevant to their associated trait and implicated genes were enriched across 

relevant biological pathways. Though we are unable to distinguish mediation 

from horizontal pleiotropy in these analyses, our findings should prove valuable 

in identifying candidate loci for further evaluation and help develop mechanistic 

insight into the aetiology of complex disease. 
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Background 

The majority of genetic variants associated with complex traits are located in 

non-coding regions of the genome and therefore likely to influence disease via 

gene regulation(Edwards et al., 2013). To develop our understanding of these 

mechanisms, studies have incorporated data concerning genetic variants 

associated with gene expression into analyses (also known as expression 

quantitative trait loci (eQTL)(Zhu et al., 2016, Burkhardt et al., 2015, Mancuso et 

al., 2017). Recently, this type of methodology has been extended to integrate 

epigenetic data using genetic variants associated with DNA methylation levels 

(known as methylation quantitative trait loci (mQTL)) (Hannon et al., 2017, 

Richardson et al., 2017). In this study, we have built on this previous work to 

comprehensively investigate whether DNA methylation plays a mediatory role 

along the causal pathway from genetic variation to complex trait and disease 

susceptibility. 

As with complex traits, DNA methylation levels at CpG sites across the genome 

can be determined by both genetic and environmental factors. Moreover, both 

complex traits and DNA methylation are prone to confounding and reverse 

causation, which can undermine our ability to infer causal relationships (McRae 

et al., 2014, Relton and Davey Smith, 2010). An approach to address this 

limitation is Mendelian randomization (MR), a method by which the causal 

inference of one trait (the exposure) on another trait (the outcome) can be 

inferred. This is achieved by using genetic variants known to robustly associate 

with the exposure as instrumental variables (Davey Smith and Hemani, 2014, 

Davey Smith and Ebrahim, 2003). The sample size of studies with data on 

epigenome-wide DNA methylation, genome-wide genetic data and complex traits 

are modest compared to most genetic association studies of complex traits, 

primarily due to the current costs of DNA methylation arrays. A recent 

methodological development to circumvent this limitation is two-sample MR 

(2SMR), an approach where summary statistics for the observed effect of genetic 

instruments on exposure and outcome are obtained from two separate studies 

(Burgess et al., 2015, Pierce and Burgess, 2013). In doing so, causal relationships 
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can be investigated without requiring a sample of individuals with genotype, 

exposure and outcome data. 

As described in our previous work (Richardson et al., 2017), when a genetic 

variant is reliably associated with both DNA methylation and complex trait 

variation, we postulate that there are 4 possible scenarios that may account for 

this (Figure 1): 

1. The genetic variant has a causal effect on the complex trait which is 

mediated by changes in DNA methylation.  

2. The genetic variant has a causal effect on the complex trait (or a related 

complex trait which resides along the causal pathway to disease) which 

subsequently influences DNA methylation at this locus.  

3. The genetic variant responsible for changes in DNA methylation is in 

linkage disequilibrium (LD) with the genetic variant that influences 

complex trait variation. 

4. The genetic variant influences DNA methylation and the complex trait via 

two independent biological pathways (also known as horizontal 

pleiotropy).  

Within our analytical framework, we first attempt to distinguish between 

explanations 1 and 2 by using 2SMR to evaluate the causal influence of DNA 

methylation on complex traits and then conversely the opposite direction of 

effect (also known as bi-directional MR (Timpson et al., 2011, Vimaleswaran et 

al., 2013)). A limitation of this approach is that DNA methylation can only 

typically be instrumented by a single cis-acting variant, which means that an 

unreliable MR estimate of causality may arise due to the causal variant for DNA 

methylation simply being in linkage disequilibrium with the causal trait variant 

(explanation 3). The chances of this occurrence is dramatically increased when 

investigating causal relationship systematically as undertaken in our framework. 

A potential approach to mitigate this limitation is using a colocalization 

approach, such as the joint likelihood mapping (JLIM) method. This approach has 

been devised to investigate whether the underlying genetic variation at a 
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genomic region is responsible for observed effects on both an intermediate and 

complex trait (Chun et al., 2017). 

A single cis-acting instrument also means that we are unable to reliably 

distinguish between mediation (explanation 1) and horizontal pleiotropy 

(explanation 4).  Nevertheless, within our framework we use MR to investigate 

the relationship between DNA methylation and gene expression at loci where 

mediation is a potential explanation of observed effects. In doing so, we aim to 

identify a coordinated system of effects that are consistent with causality, such as 

genetic variants influencing gene expression via changes in DNA methylation. 

In this study, we have adapted our analytical framework developed previously to 

evaluate the causal relationship between DNA methylation and 139 complex 

traits taken from large-scale consortia using a two-sample framework (Hemani 

et al., 2016). We build on previous work (Hannon et al., 2017) by extending the 

survey to a much larger number of traits, interrogating bi-directional 

relationships, integrating gene expression data into analyses and undertaking 

exhaustive joint likelihood mapping analyses to investigate linkage as an 

explanation for observed effects. Validation of results with evidence of a causal 

relationship for a selection of traits was undertaken using data from up to 

334,398 individuals enrolled in the UK Biobank study (Sudlow et al., 2015). 

Functional annotation and enrichment analyses, including data for histone mark 

peaks and DNAse I hypersensitivity sites across 113 different tissue types, was 

undertaken for selected variants and CpG sites (Romanoski et al., 2015, Encode 

Project Consortium et al., 2007).  
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Results 

Systematic evaluation of the causal relationship between DNA methylation and 

complex traits 

The initial analysis involved over 4.2 million MR analyses to evaluate the causal 

relationship between DNA methylation at 30,328 CpG sites and 139 complex 

traits using MR-Base. A list of these traits can be found in Supplementary Table 1, 

which were selected based on the sample size and population analysed in their 

respective GWAS. We only investigated CpG sites using cis-mQTL (i.e. genetic 

instruments within 1MB distance of their associated CpG site) in order to reduce 

the risk of pleiotropy influencing our results. Subsequently the majority of CpG 

sites were instrumented using a single cis-acting mQTL (n=26,975) and 

therefore MR effect estimates were calculated using the Wald ratio. When more 

than one instrument was available the inverse variance weighted (IVW) method 

was used instead. 

There were 1,191 observed effects (i.e. associations between a CpG site and 

complex trait) which survived the multiple testing threshold across 62 different 

traits (P < 1.397 x 10-08, Supplementary Table 2). This threshold was based on 

the number of tests undertaken across independent traits using the PhenoSpD 

method (Zheng et al., 2017, Nyholt, 2004, Cichonska et al., 2016)). CpG sites were 

annotated based on evaluations of the Illumina 450K array (Naeem et al., 2014, 

Zhou et al., 2017). A heat map visualising the correlation of the z scores from the 

MR analysis across traits can be found in Supplementary Fig. 1, which highlights 

traits which may be influenced by changes in DNA methylation at shared loci. 

Figure 2 provides an overview of the analysis pipeline applied in this study for 

downstream analyses concerning these results.  

Identifying causal variants for both DNA methylation and complex traits 

Results surviving multiple testing in the previous analysis may arise due to an 

mQTL and trait-associated variant overlapping at a genomic locus due to chance. 

To investigate this, we applied the JLIM algorithm (Chun et al., 2017) which tests 

whether variation in two traits (i.e. DNA methylation and a complex trait in this 

study) are driven by a shared causal effect. This is ascertained by generating a 
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permutation-based null distribution for a trait with individual-level data (i.e. 

DNA methylation in our analysis) and assessing the likelihood that the causal 

variant for this trait is also responsible for variation on a different trait based on 

summary-level data (i.e. GWAS results for a complex trait). Permutation testing 

was implemented by the JLIM method to account for the 1,191 effects identified 

in the previous analysis (P < 4.20 x 10-5). The JLIM results suggested that 364 of 

the 1,191 CpG-trait effects were observed due to methylation and complex trait 

variation both being influenced by the same underlying genetic variant 

(Supplementary Table 3). We refer to these 364 effects hereafter as ‘CpG-trait 

effects’ as they represent associations where DNA methylation may reside along 

the causal pathway from genetic variant to complex trait. 

Consequently, the 805 effects which did not provide evidence from joint 

likelihood mapping in this evaluation were likely observed due to the causal 

variant for DNA methylation being in linkage disequilibrium with a separate 

variant responsible for complex trait variation. Figure 3 illustrates findings for 2 

of the 62 traits which had at least one effect that survived the multiple testing 

threshold, where individual points represent p-values from the 2SMR analysis. 

Interpretation of these findings are different to those illustrated by a 

conventional Manhattan plot in a GWAS. For instance, using the strongest 

observed effect in Figure 3 as an example, a standard deviation increase in DNA 

methylation at the SLC12A4 locus results in a 0.138 standard deviation decrease 

in HDL cholesterol (and vice versa). Points highlighted in red correspond to loci 

where the JLIM provided evidence that the same underlying causal variant 

influences both DNA methylation and complex trait. Manhattan plots for all 62 

traits can be found in Supplementary File 1. 

Reverse Mendelian randomization  

For the 364 CpG-trait effects identified in the previous analysis, we undertook 

reverse MR to evaluate evidence of genetic liability between complex traits and 

DNA methylation. This was undertaken by modelling a complex trait as our 

exposure and DNA methylation levels at a CpG as our outcome. The only 

evidence of liability was observed between number of cigarettes smoked per day 

and DNA methylation variation at the CHRNA5/PSMA4 region (Supplementary 
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Table 4). However, this complex trait currently only has a single genetic 

instrument which weakens our ability to robustly investigate direction of effect 

for this result.  

More broadly, all results from the reverse MR analysis should be interpreted 

with caution, as we do not have data on complex trait incidence. Therefore 

results can only be regarded as an association of the disease/trait liability as 

opposed to causality. For example, it is unlikely that incidence of coronary heart 

disease would have been frequent enough in the sample used to generate effect 

estimates on DNA methylation to identify a true causal effect. Furthermore, 

within a 2SMR framework, statistical power is determined by the sample size 

used to generate effect estimates on the outcome variable. Therefore, we may 

lack statistical power when modelling DNA methylation as our outcome variable, 

as samples sizes with DNA methylation were relatively modest compared to 

large-scale GWAS (n=~800). Nonetheless, this aspect of our framework is 

important to assess evidence of disease liability and should prove valuable as 

samples with DNA methylation data increases. 

Validation of findings within the UK Biobank 

We undertook validation analyses for 129 of the CpG-trait effects using complex 

trait data from the UK Biobank (Supplementary Table 5) (Sudlow et al., 2015). 

There was evidence of validation for 121 of the 129 effects (P < 3.88 x 10-04, 

Supplementary Table 6), although all observed effects had P < 0.075 and also 

consistent directions of effect with DNA methylation as observed in the 

discovery analysis. 

Evaluating the relationship between DNA methylation and gene expression 

We integrated gene expression data to investigate whether the genetic variants 

used to identify CpG-trait effects were known to influence gene expression as 

well as DNA methylation. Data from the GTEx consortium (Carithers and Moore, 

2015) and the blood eQTL browser(Westra et al., 2013) suggested that this was 

the case for 319 of the 364 CpG-trait effects. 2SMR was used to evaluate the 

relationship between DNA methylation and gene expression at each of these loci 
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i.e. whether an increase in DNA methylation results in either an increase or 

decrease in gene expression (Supplementary Table 7). 

Gene prioritisation, implicated biological pathways and druggable targets 

A suite of bioinformatics tools was used to calculate the predicted consequences 

and severity for genetic variants responsible for CpG-trait effects 

(Supplementary Table 8). At this stage, any CpG sites recommended for exclusion 

based on evaluations of the 450K array(Naeem et al., 2014) (as annotated in 

Supplementary Table 2) were excluded from all further downstream analyses to 

remove any potential bias incurred by including them. Likely impacted genes for 

CpG-trait effects were determined using the gene prioritisation algorithm from 

DEPICT (Data-driven Expression-Prioritized Integration for Complex Traits) 

(Pers et al., 2015). When DEPICT was unable to identify a likely impacted gene 

we used the nearest gene instead (Supplementary Table 9).  Annotated genes 

were then grouped into categories based on their associated trait 

(Supplementary Table 10). Each group of genes was then analysed in turn using 

ConsensusPathDB (Kamburov et al., 2013) to test whether likely implicated 

genes were enriched for biological pathways (Supplementary Table 11) and gene 

ontology terms (Supplementary Table 12) based on a false discovery rate < 5%. 

Overall there were 67 enriched pathway effects and 312 enriched GO term 

effects.  

Prioritised genes were also evaluated for druggability using the ChEMBL 

database (Bento et al., 2014) (version 23 accessed on 13th June 2017). Proteins 

encoded by implicated genes which are targets for therapeutic intervention were 

identified (Supplementary Table 13). These included approved drugs, such as 

estropipate and estradiol cypionate, which target ESR1, as well as compounds in 

development, such as cyclin-dependent kinase inhibitors, which target CDK12. 

Tissue specific enrichment for CpG sites 

CpG sites implicated in CpG-trait effects were annotated to determine whether 

they reside in regulatory regions using data from Illumina and Ensembl (Yates et 

al., 2016). DNAse I and histone mark peak data across 113 different tissue types 

from the ENCODE and the Roadmap Epigenomics projects was also used to 
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annotate CpG sites (Romanoski et al., 2015, Encode Project Consortium et al., 

2007). CpG sites were then grouped according to the category of their associated 

trait (Supplementary Table 10) and tested for enrichment after removing 

proximal probes which may be co-methylated (Supplementary Tables 14-22). In 

particular, evidence of enrichment for H3K4me1 histone marks was observed for 

associated CpG sites, as well as evidence of enrichment in tissue types relevant 

for associated traits. For instance, the top hit for autoimmune traits was 

observed for H3K4me1 marks in spleen tissue, whereas the top hit for 

haematological traits was observed for H3K4me1 marks in primary 

haematopoietic cells. Heat maps illustrating these results for histone mark peaks 

across different tissue types can be found in Supplementary Fig. 2a-g. 
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Discussion 

In this study we have extended an analytical framework to systematically 

evaluate the causal relationship between DNA methylation and complex traits 

using GWAS summary data. We identified 364 effects where genetic variants 

may be influencing disease via epigenetic processes. Although we are unable to 

robustly demonstrate that these effects occur along a common causal pathway to 

disease (e.g. the associations could be compatible with horizontal pleiotropy), we 

observed evidence that gene expression may also be influenced by genetic 

variants for 319 of these effects, suggesting a coordinated system that is 

consistent with causality. The genes impacted by changes in DNA methylation at 

these CpG sites represent promising candidates to explore the potential 

mediatory role of epigenetic modifications and their potential downstream 

effects on disease aetiology. 

An attractive advantage of using 2SMR to investigate this relationship is that it 

circumvents the requirement of having both intermediate and complex traits 

measured in the same sample. For instance, a recent epigenome-wide association 

study (EWAS) of lipids used a sample size of 725 individuals in their discovery 

analysis to identify 2 CpG sites associated with HDL cholesterol. However, as 

illustrated in the bottom plot of Figure 3, using findings from a large-scale 

genetic association study (with approximately 190,000 individuals) we have 

discovered 9 genetic loci (which are different to the 2 identified in the 

aforementioned EWAS), which may influence HDL cholesterol variation via 

changes in DNA methylation. Furthermore, by using genetic instruments we are 

also less at risk of confounding and reverse causation biasing results. An example 

of this can be found by contrasting the top plot in Figure 3 with results from a 

recent EWAS of educational attainment, which identified associations at 9 CpG 

sites that were all previously associated with cigarette smoking (Linnér, et al. 

2017). Although educational attainment may be an underlying cause of these 

changes in methylation levels (i.e. educational attainment influences smoking 

behaviour), such claims cannot be made with confidence in the presence of 

confounding factors. In contrast, none of the 7 independent CpG sites linked with 

educational attainment in this study are associated with exposure to cigarette 
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smoking. This is based on findings from the largest smoking EWAS to date of 

both own smoking (Joehanes et al., 2016) and exposure to maternal smoking in 

utero (Joubert et al., 2016). 

Integrating multiple types of ‘omic’ data into study designs is likely to become 

increasingly popular in the forthcoming years as the technologies required to 

generate data at scale become more feasible. Moreover, advancements in such 

technologies should allow a further detailed examination of the role of 

intermediate phenotypes in complex trait variation. For instance, the 450K 

Illumina Infinium Beadchip array used to generate the DNA methylation data in 

this study only covers ~1.7% of the 29 million CpG sites across the human 

genome (Ma et al., 2013). This suggests that a wealth of unmeasured data 

remains unexplored within this paradigm. Furthermore, although we have 

demonstrated the value of our analytical framework to investigate the role of 

DNA methylation in disease, we anticipate future studies will have success by 

investigating other intermediate traits in a similar manner, such as histone 

marks, metabolites and proteins. These endeavours will be valuable in 

uncovering signals which reflect a coordinated system of causality, as well as 

helping pinpoint the true causal gene at densely populated gene 

neighbourhoods. They should also prove particularly valuable to help identify 

and evaluate targets for therapeutic intervention. 

Studies with increasingly large sample sizes with ‘omic’ data will also allow more 

robustly associated QTL across different omics types to be uncovered across the 

genome. This will be hugely beneficial for frameworks such as the one portrayed 

in this study as it should improve causal inference amongst intermediate traits 

and downstream implications on disease susceptibility. Moreover, using multiple 

instruments can improve our ability to separate mediation from horizontal 

pleiotropy as the putative mechanism underlying the association (Bowden et al., 

2015, Bowden et al., 2016, Hartwig et al., 2017). The integration of co-

localization methods to assess whether changes in DNA methylation and 

complex traits are driven by shared causal variants will remain important to 

implement. In this study, we have been able to use the JLIM method due to 

having individual level data on epigenome-wide DNA methylation from the 
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ARIES project. Future endeavours, which may be restricted to using summary-

level data for omics trait, are able to utilise viable alternatives, such as the HEIDI 

(heterogeneity in dependent instruments)(Zhu et al., 2016) and ‘coloc’ 

(Giambartolomei et al., 2014) methods.  

The results presented in this study are likely only the tip of the iceberg for 

candidate loci which may influence complex traits via epigenetic mechanisms. 

Thorough evaluations of these loci are necessary to determine the extent to 

which these processes play a role in complex disease risk. A wealth of data on 

intermediate omic traits are expected to be generated in large sample sizes 

across multiple tissue types in the forthcoming years. Mendelian randomization 

can be used to interrogate causal relationships amongst these intermediate traits 

and help develop our understanding of the causal pathway from genetic 

variation to disease. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/189076doi: bioRxiv preprint 

https://doi.org/10.1101/189076
http://creativecommons.org/licenses/by/4.0/


 

14 
 

Online methods 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

ALSPAC is a population-based cohort study investigating genetic and 

environmental factors that affect the health and development of children. The 

study methods are described in detail elsewhere (Boyd et al., 2013, Fraser et al., 

2013) (http://www.bristol.ac.uk/alspac). Briefly, 14,541 pregnant women 

residents in the former region of Avon, UK, with an expected delivery date 

between 1st April 1991 and 31st December 1992, were eligible to take part in 

ALSPAC. Detailed information and biosamples have been collected on these 

women and their offspring at regular intervals, which are available through a 

searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). 

Written informed consent was obtained for all study participants. Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee 

and the Local Research Ethics Committees. 

 

Accessible Resource for Integrated Epigenomic Studies project (ARIES)  

Samples 

Blood samples were obtained for 1,018 mother-offspring pairs (mothers at two 

timepoints and their offspring at three timepoints) as part of the Accessible 

Resource for Integrated Epigenomic Studies project (ARIES)(Relton et al., 2015). 

The Illumina HumanMethylation450 (450K) BeadChip array was used to 

measure DNA methylation at over 480,000 sites across the epigenome.  

Methylation assays 

DNA samples were bisulfite treated using the Zymo EZ DNA MethylationTM kit 

(Zymo, Irvine, CA). The Illumina HumanMethylation450 BeadChip (HM450k) 

was used to measure methylation across the genome and the following arrays 

were scanned using Illumina iScan, along with an initial quality review using 

GenomeStudio. A purpose-built laboratory information management system 

(LIMS) was responsible for generating batch variables during data generation. 

LIMS also reported quality control (QC) metrics for the standard probes on the 
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HM450k for all samples and excluded those which failed QC. Data points with a 

read count of 0 or with low signal:noise ratio (based on a p-value > 0.01) were 

also excluded based on the QC report from Illumina to maintain the integrity of 

probe measurements. Methylation measurements were then compared across 

timepoints for the same individual and with SNP-chip data (HM450k probes 

clustered using k-means) to identify and remove sample mismatches. All 

remaining data from probes was normalised with the Touleimat and 

Tost(Touleimat and Tost, 2012) algorithms using R with the 15atermelon 

package(Pidsley et al., 2013). This was followed by rank-normalising the data to 

remove outliers. Potential batch effect were removed by regressing data points 

on all covariates. These included the bisulfite-converted DNA (BCD) plate batch 

and white blood cell count which was adjusted for using the estimateCellCounts 

function in the minfi Bioconductor package(Jaffe and Irizarry, 2014). 

Genotyping assays 

Genotype data were available for all ALSPAC individuals enrolled in the ARIES 

project, which had previously undergone quality control, cleaning and 

imputation at the cohort level. ALSPAC offspring selected for this project had 

previously been genotyped using the Illumina HumanHap550 quad genome-

wide SNP genotyping platform (Illumina Inc, San Diego, USA) by the Wellcome 

Trust Sanger Institute (WTSI, Cambridge, UK) and the Laboratory Corporation of 

America (LCA, Burlington, NC, USA). Samples were excluded based on incorrect 

sex assignment; abnormal heterozygosity (<0.320 or >0.345 for WTSI data; 

<0.310 or >0.330 for LCA data); high missingness (>3%); cryptic relatedness 

(>10% identity by descent) and non-European ancestry (detected by 

multidimensional scaling analysis). After QC, 500,527 SNP loci were available for 

the directly genotyped dataset. Following QC the final directly genotyped dataset 

contained 526,688 SNP loci. 

Imputation 

Genotypes with MAF > 0.01 and Hardy-Weinberg equilibrium P > 5×10-7 were 

phased together using ShapeIt (version 2, revision 727)(Delaneau et al., 2013) 

and imputed using the 1000 Genomes reference panel (phase 1, version 3, 

phased using ShapeIt version 2, December 2013, using all populations) using 
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Impute (v2.2.2)(Howie et al., 2009). After imputation dosages were converted to 

bestguess genotypes and filtered to only keep variants with an imputation 

quality score ≥ 0.8. The final imputed dataset used for the analyses presented 

here contained 8,074,398 loci. 

The mQTL database 

Observed effects for genetic variants strongly associated with DNA methylation 

(referred to hereafter as mQTL) were obtained from the mQTL database 

(http://www.mqtldb.org/) (Gaunt et al., 2016). In this study we have only used 

mQTL acting in cis (i.e. variants located within 1MB of their associated CpG site) 

to reduce the risk of pleiotropy influencing our results, as variants which are 

associated with methylation levels at multiple loci across the genome may be 

more likely to impact independent biological pathways simultaneously. 

LD clumping was undertaken to identify independent mQTL for each CpG site 

which could be used as instrumental variables for Mendelian randomization 

(MR) analyses. In total, there were 30,328 CpG sites eligible for analysis (26,975 

CpG sites with 1 mQTL, 5,984 CpG sites with 2 mQTLs, 969 CpG sites with 3 

mQTLs, 140 CpG sites with 4 mQTLs and 3 CpG sites with 5 mQTLs). If an mQTL 

and associated CpG site were observed at more than one of the 5 possible time 

points measured in the same individuals within ARIES, we used effect estimates 

from the time point with the largest effect based on p-values. 

GWAS summary data for 139 complex traits and diseases  

We identified observed effects for genetic variants on complex traits using large-

scale studies which were available within the MR-Base platform 

(http://www.mrbase.org) (Hemani et al., 2016). We used the following inclusion 

criteria to select complex traits to be analysed: 

• Effects reported genome-wide for over 95,000 genetic variants 

• Study samples must be larger than 1000 

• Either European or mixed populations 

• Reported beta, standard error and effect alleles for variants 
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The UK Biobank 

Genotype data was available for approximately 490,000 individuals enrolled in 

the UK Biobank study. Phasing and imputation of this data is explained 

elsewhere (Bycroft et al., 2017). Individuals with withdrawn consent, evidence of 

genetic relatedness or who were not of ‘white European ancestry’ based on a K-

means clustering (K=4) were excluded from analysis. 

Phenotype data were collected for the following traits (with their UK Biobank 

variable ID in brackets) which were identified as suitable for replication due to 

their samples sizes after merging with genotype data (n > 1000); Age at 

menarche (2714), Age at menopause (3581), Asthma (22127), Birth weight 

(20022), Body mass index (21001), Cigarettes smoked per day (3456), Extreme 

Height (derived from 50), Height (50), Hip circumference (49), Myocardial 

infarction (41202, ICD10 code = I21 or I22), Obesity class 1 (derived from 

21001), Type 2 Diabetes (derived from 2443, although this variable does not 

distinguish between diabetes type), Waist circumference (48), Weight (21002) 

and Years of schooling (derived from 6138 to calculate EduYears as described by 

Okbay et al (Okbay et al., 2016)). After exclusions there were up to 334,398 

individuals with both genotype and phenotype data who were eligible for 

analysis. 

 

Statistical Analysis 

Identifying candidate loci for mediation by DNA methylation 

2SMR was undertaken systematically to evaluate evidence of a causal 

relationship between DNA methylation at all eligible CpG sites and complex 

traits. In this initial analysis DNA methylation was treated as our exposure and 

complex traits as our outcome, using mQTL as our instrumental variables. We 

used the PhenoSpD method (Zheng et al., 2017, Nyholt, 2004, Cichonska et al., 

2016) to calculate the appropriate number of independent traits to adjust our 

analysis for due to strong correlation amongst certain traits (i.e. BMI and 

obesity). The multiple testing threshold was calculated as 0.05 divided by the 

derived number of independent tests. CpG sites for effects which survived this 

threshold were annotated based on evaluations of the 450K array (Naeem et al., 
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2014, Zhou et al., 2017). When only one valid genetic instrument was available 

MR effect estimates are based on the Wald ratio test. Where two or more valid 

genetic instruments were available for analysis we used the inverse variance 

weighted (IVW) method to obtain MR effect estimates(Lawlor et al., 2008). 

Results were plotted as Manhattan plots using code derived from the qqman 

package in R (Turner, 2014).  

Distinguishing causal effects from genetic confounding due to linkage 

disequilibrium 

Results which survived the multiple testing threshold in the previous analyses 

were evaluated using the joint likelihood method (JLIM) (Chun et al., 2017). The 

JLIM method evaluates whether the same underlying genetic variation is 

responsible for observed effects on two traits (i.e. DNA methylation at a CpG site 

and a complex trait in this study). This is achieved using individual-level data for 

one trait, which was DNA methylation levels obtained from the ARIES project in 

this study, to generate a permutation-based null distribution. The number of 

permutations required by the JLIM method was determined by number of tests 

undertaken (i.e. the number of effects which survived the p-value threshold in 

the previous analysis). A lack of evidence (i.e. P < 0.05/number of effects 

evaluated) in this analysis would suggest that the causal variant for methylation 

variation was simply in linkage disequilibrium with the putative causal variant 

for the trait (thus introducing genetic confounding into the association between 

DNA methylation and complex trait). 

The JLIM approach was selected over alternative co-localization methods (such 

as the HEIDI (heterogeneity in dependent instruments)(Zhu et al., 2016) and 

‘coloc’ methods(Giambartolomei et al., 2014)) as in this study we always had 

individual-level data for one of the traits being assessed (epigenome-wide DNA 

methylation levels from the ARIES project) and therefore did not have to rely on 

availability of summary statistics for both traits. The authors of the JLIM method 

also demonstrate strong overall performance compared to alternative 

approaches, although they do specify two limitations to ensure accurate 

detection of shared genetic effects between two traits. These limitations are that 

their resolution becomes limited when 1) at high LD levels (i.e. r2 ≥ 0.8) between 
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multiple causal instruments and 2) when the QTL effect (i.e. mQTL in this study) 

is very weak (i.e. P > 0.01). These were addressed in our study as we only used 

multiple instruments within the MR analysis that were independent (r2 < 0.01) 

and strongly associated with DNA methylation (P < 1.0 x 10-7). 

Reverse Mendelian randomization 

For CpG-trait effects identified in the previous analysis, we also used 2SMR to 

evaluate evidence of genetic liability by modelling complex traits as our 

exposure and DNA methylation as our outcome. Instruments for complex traits 

were selected based on a threshold of 5.0 x 10-08 from large-scale GWAS after LD 

clumping to identify independent variants. The IVW method was applied to 

estimate the causal effects of traits on CpG sites where more than one instrument 

was available, otherwise the Wald ratio was used.  

Replication of observed effects in UK Biobank 

For CpG-trait effects where DNA methylation and complex trait were driven by 

the same causal variant, as inferred by the JLIM method, we repeated our initial 

analysis using data from the UK Biobank project(Sudlow et al., 2015). Therefore, 

our estimates of genetic variants on complex trait variation have been obtained 

in a separate population in these analyses, whereas estimates on DNA 

methylation remain the same as in the discovery analysis as there is currently no 

appropriate replication sample. 

This validation analysis was undertaken for effects across 14 traits from the full 

release of the UK Biobank project for which large sample sizes (n ≥ 10,000) were 

available after merging with available genetic data (Table S4) (Sudlow et al., 

2015). Linear or logistic regression was used (depending on whether the trait 

was continuous or binary respectively) to determine effect estimates of genetic 

variants on complex traits adjusted for age, sex, the first 10 principal 

components and a binary indicator which reflects which genotype chip 

individuals were measured on. This was because a subset of UK Biobank 

individuals had their genotype measured on the Affymetrix UK BiLEVE Axiom 

array (~50,000 participants), whereas the remainder were measured using the 

Affymetrix UK Biobank Axiom array.  
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Causal relationship between DNA methylation and gene expression 

We undertook 2SMR to evaluate the relationship between DNA methylation and 

gene expression for effects where the causal variant, as indicated by the JLIM 

method described above, was both an mQTL and eQTL. Effect estimates for 

variants on gene expression were obtained from the GTEx consortium 

(www.gtexportal.org/)(Consortium, 2013). When effect estimates for the 

putative causal variant were not available from GTEx we identified a surrogate 

variant instead (r2 � 0.8). Where no surrogate was available within GTEx we 

consulted the blood eQTL browser (http://genenetwork.nl/bloodeqtl

browser/)(Westra et al., 2013).  

 

Functional informatics 

Variant annotation and gene prioritisation 

Genetic variants for effects potentially mediated by changes in DNA methylation 

were analysed using the variant effect predictor (VEP)(McLaren et al., 2016) to 

calculate their predicted consequence. Regulatory data were obtained from 

Ensembl (www.ensembl.org/)(Yates et al., 2016) to evaluate whether these 

variants reside within regulatory regions of the genome.   

Prior to enrichment analyses and gene prioritization, as effects were grouped 

together as opposed to evaluated individually, we removed observed effects 

involving CpG sites flagged for exclusion based on evaluations by Naeem et al 

(Naeem et al., 2014). This was based on their criteria of overlapping SNPs at CpG 

probes, probes which map to multiple locations and repeats on the 450K array. 

The DEPICT method (Pers et al., 2015) was used to prioritise genes for all 

remaining variants. Variants which were not allocated a likely impacted gene by 

DEPICT were annotated with their nearest gene using bedtools (Quinlan, 2014).  

Pathway and gene ontology enrichment 

Genes implicated in the previous evaluations were tested for enrichment of 

functional pathways and gene ontology terms using ConsensusPathDB 

(Kamburov et al., 2013). When multiple genes were implicated at the same 
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association signal we used annotations according to DEPICT over the nearest 

gene.  All results which had a false discovery rate < 5% were reported. 

Identifying known and candidate genes for therapeutic intervention 

We consulted the ChEMBL database (Bento et al., 2014) (version 23 accessed on 

13th June 2017) to ascertain whether any of the implicated genes encode 

proteins for known targets of approved drugs or compounds in development. 

Tissue specific enrichment for CpG sites 

The hypergeometric test was used to test for enrichment of implicated CpG sites 

for histone mark peaks  and regions of DNAse I in up to 113 different tissue and 

cell types from the Encyclopedia of DNA Elements (ENCODE) and Roadmap 

Epigenomics projects. To calibrate background expectations, we randomly 

selected CpG sites across the epigenome which resided in similar genomic 

regions based on Illumina annotations (i.e. CpG island, gene body etc.).  We used 

permutations to control for multiple testing by randomly selecting the same 

number of implicated CpG sites matched on location and then repeating the 

enrichment computation for 10,000 iterations. This analysis was repeated using 

regulatory annotations from the Illumina 450K file (enhancer regions) and 

Ensembl (promoters, open chromatin regions, transcriptional repressor CTCF 

sites and transcription factor binding sites).  
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Figure Legends 
 

Figure 1: Explanations evaluated which may potentially explain observed 

associations between methylation quantitative trait loci and trait outcomes 

1) The genetic variant has a causal effect on the complex trait which is mediated 

by changes in DNA methylation. 2) The genetic variant has a causal effect on the 

complex trait which subsequently influences DNA methylation at this locus. 3) 

The genetic variant that influences DNA methylation is in linkage disequilibrium 

(LD) with another variant that influences complex trait variation. 4) The genetic 

variant influences DNA methylation and the complex trait via two independent 

biological pathways (also known as horizontal pleiotropy).  

 

Figure 2: Analysis pipeline to evaluate explanations for observed 

associations between methylation quantitative trait loci and trait outcomes 

This flowchart provides an overview of the analysis plan in this study to evaluate 

4 different explanations which may explain trait-associated methylation 

quantitative trait loci. Explanations 1 to 4 are as described in Figure 1. 

 

Figure 3: Manhattan plots illustrating results of two-sample Mendelian 

randomization analysis between epigenome-wide DNA methylation and a) 

educational attainment (top) b) high density lipoprotein cholesterol 

(bottom). 

Points represent –log10 p-values (y-axis) for CpG sites (genomic location on the 

x-axis) as evaluated using two-sample Mendelian randomization analysis 

between DNA methylation (as our exposure) and complex traits (as our 

outcome) using mQTL as genetic instruments. Effects that survive the multiple 

testing threshold in our analysis (P<1.397 x 10-08 – represented by the red 

horizontal line) are annotated using mapped genes according to Illumina (or 

nearest gene when no gene has been reported by Illumina). Effects where joint 

likelihood mapping suggested the causal variant for DNA methylation and 

complex trait variation were the same are highlighted in red. 
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