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RNA-sequencing (RNA-seq) is currently the leading technology
for genome-wide transcript quantification. While the volume
of RNA-seq data is rapidly increasing, the currently publicly
available RNA-seq data is provided mostly in raw form, with
small portions processed non- uniformly. This is mainly because
the computational demand, particularly for the alignment step,
is a significant barrier for global and integrative retrospective
analyses. To address this challenge, we developed all RNA-seq
and ChIP-seq sample and signature search (ARCHS4), a web
resource that makes the majority of previously published
RNA-seq data from human and mouse freely available at
the gene count level. Such uniformly processed data enables
easy integration for downstream analyses. For developing the
ARCHS4 resource, all available FASTQ files from RNA-seq
experiments were retrieved from the Gene Expression Omnibus
(GEO) and aligned using a cloud-based infrastructure. In total
137,792 samples are accessible through ARCHS4 with 72,363
mouse and 65,429 human samples. Through efficient use of
cloud resources and dockerized deployment of the sequencing
pipeline, the alignment cost per sample is reduced to less than
one cent. ARCHS4 is updated automatically by adding newly
published samples to the database as they become available.
Additionally, the ARCHS4 web interface provides intuitive
exploration of the processed data through querying tools,
interactive visualization, and gene landing pages that provide
average expression across cell lines and tissues, top co-expressed
genes, and predicted biological functions and protein-protein
interactions for each gene based on prior knowledge combined
with co-expression. Benchmarking the quality of these predic-
tions, co-expression correlation data created from ARCHS4
outperforms co-expression data created from other major gene
expression data repositories such as GTEx and CCLE.

ARCHS4 is freely accessible at:
http://amp.pharm.mssm.edu/archs4

Gene Expression | RNA-seq | Cloud Computing | Data Visualization

Correspondence: avi.maayan@mssm.edu

Introduction

The completion of the human genome project (1) enabled
the quantification of mRNA expression at the genome-
wide scale, initially with cDNA microarray technology (2).
Genome-wide gene expression data from thousands of stud-
ies have been accumulating and made available for explo-
ration and reuse successfully through public repositories such

as the Gene Expression Omnibus (GEO) (3) and ArrayEx-
press (4). Since the late 1990’s software for the analysis
of cDNA microarray data has matured toward established
community accepted computational procedures. Now, with
the advent of next generation sequencing, RNA-sequencing
(RNA-seq) is becoming the leading technology for profiling
genome-wide mRNA expression (Fig. 1). RNA-seq is replac-
ing cDNA microarrays as the dominant technology due to
reduced cost, increased sensitivity, ability to quantify splice
variants and perform mutation analysis, improved quantifica-
tion at the transcript level, identification of novel transcripts,
and improved reproducibility (5).
The quality of RNA-seq data depends on the sequencing
depth whereby more reads per sample can reduce technical
noise. Modern sequencing platforms such as Illumina HiSeq
produce tens of millions of paired-end reads of up to 150
base pairs in length. The raw reads are aligned to a refer-
ence genome by mapping reads to known gene sequences.
The alignment step is a computationally demanding task. The
critical step of alignment of RNA-seq data is achieved by var-
ious competing alignment algorithms implemented in soft-
ware packages that are continually improving (6–12). Bowtie
(6) is one of the first alignment methods that gained wide-
spread popularity. More efficient solutions were later imple-
mented improving memory utilization with faster execution
time. One of the currently leading alignment method, Spliced
Transcripts Alignment to a Reference (STAR) (8), can map
more than 200 million reads per hour. As a trade- off for in-
creased computational speed, STAR requires heavy memory
consumption, particularly for large genomes such as human
or mouse. For mammalian genomes, STAR requires more
than 30GB of random access memory (RAM). This require-
ment limits its application to high performance computing
(HPC). This introduces a barrier for the typical experimental
biologist who generates the data. Additionally, knowledge
in programming, and a series of choices in regards to the
alignment software, and the proper choice of input param-
eters to these tools, is commonly required to covert raw reads
to quantified expression matrix of RNA-seq data.
Retrospective analysis of large collections of previously pub-
lished RNA-seq data has great promise for accelerating bi-
ological and drug discovery (13). However, many post-hoc
studies rely on large datasets that are easily integrate-able into
data analysis workflows whereby gene expression data is pro-
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Fig. 1. a) Publicly available RNA-seq samples currently available at GEO/SRA
for human and mouse compared to available samples collected with the popular
Affymetrix HG U133 Plus 2 platform. b) Total number of available RNA-seq samples
collected from human cells and tissues, and those collected with Affymetrix HG
U133 Plus 2 platform over time from year 2003 to 2017.

vided in processed form. For example, the Genotype-Tissue
Expression project (GTEx) (14), and The Cancer Genome
Atlas (TCGA) (15) RNA-seq datasets are frequently reused
mainly because the data from these projects are provided in
a useful processed format. GTEx currently contains 9,662
RNA-seq samples from 53 human tissues collected from
>250 individuals, whereas TCGA contains at least 11,077
RNA-seq samples created from a diverse collection of patient
tumors. Recent efforts such as recount2 (16) and RNAse-
qDB (17) attempt to simplify the access to gene expression
data collected via RNA-seq to create a more unified data re-
source from fragmented repositories. Currently, as of mid-
2017, there are more than 137,000 RNA-seq samples, col-
lected from mammalian cells and tissues, that are accessible
from the Gene Expression Omnibus (GEO) and the Sequence
Read Archive (SRA); making this resource the most compre-
hensive repository for RNA-seq data available to date. This
large collection of samples from diverse institutions, labo-
ratories, studies and projects is much more comprehensive,
but less homogeneous, compared to RNA-seq data collected
for large projects such as GTEx and TCGA. However, cur-
rently, the data within GEO is provided in raw form; while
the samples that have been processed, are mostly not uni-
formly aligned. This shortcoming makes it difficult to query
and integrate this data at a global scale. To bridge the gap that
currently exists between RNA-seq data generation, and RNA-
seq data processing, we developed the resource all RNA-
seq and ChIP- seq sample and signature search (ARCHS4).
ARCHS4 provides multiple channels of processed RNA-seq
data from GEO/SRA to support retrospective data analyses
and reuse. ARCHS4 caters to users with different levels of
computational expertise and can be employed for many post-
hoc analyses and projects. The goal is to provide users with
direct access to the data through a web- based user interface,
while implementing a scalable and cost-effective solution for
the raw data processing task. The usefulness of the resource
is exemplified through case studies that show how the data
assembled for ARCHS4 can be used to predict gene function
and protein-protein interactions.

Methods

A. RNA-seq Data Processing Pipeline. The RNA-seq
processing pipeline employed to create the ARCHS4 re-
source runs in parallel on the Amazon web services (AWS)
cloud. The core component of the pipeline is the alignment of
raw reads to the reference genome. This process is encapsu-
lated in deployable Docker containers (18) that currently sup-
port alignment with two leading fast aligners: STAR (8) and
Kallisto (9). The memory requirement for a Kallisto Docker
image is 4GB, and for STAR 30GB. All available SRA files
are identified by downloading the GEO series (GSE) and
GEO samples (GSM and SRA information) using the GEO-
query Bioconductor package (19). Unprocessed SRA files
are entered as jobs into the scheduler database of ARCHS4.
The job scheduler is a dockerized web application with APIs
to communicate job instructions to worker instances, and for
saving the final gene count files. To allow efficient scaling
of computational resources, AWS auto-scaling groups is uti-
lized in combination with the cluster management console
(ECS). For Kallisto instances, a task definition is specified
running a Docker image hosted publicly at Docker Hub with
1 vCPU and a 3.9GB memory limit. The number of desired
tasks specifies how many Docker images are to run in paral-
lel. For ARCHS4, we ran 400 Docker instances of Kallisto
in parallel due to AWS cap of 200 EC2 instances. The auto-
scaling group is set to launch 200 m4.large general compute
instances with 2 vCPUs and 8GB of memory and 200GB
of SSD disk storage. Each instance is capable of running 2
Kallisto Docker instances in parallel. The alignment Docker
container, once launched, continuously requests alignment
jobs from the job scheduler. The job description contains
the SRA file URL and the reference genome. The SRA file
is downloaded from the SRA database, while Fastq-dump
from SRA tools is used to detect single or paired reads file.
Then, the SRA file is converted into FASTQ format. In case
of a paired read file, the data is split into two FASTQ files.
Kallisto or STAR alignment tools are then used to align the
reads against the reference genome. The resulting output is
reduced to gene counts and uploaded through the job sched-
uler API to the gene count database. The complete workflow
is visualized as a flow chart (Fig. 2). For a subset of 1,708
FASTQ files, reads were aligned using STAR. The Docker
(18) container maayan- lab/awsstar was deployed on a lo-
cal Mesosphere platform (20) running on Mac Pros with 3.7
GHz Quad-Core Intel Xeon E5 and 32GB of RAM. The sup-
ported genomes are Ensemble Homo Sapiens GRCh38 with
GRCh38.87 and Mus Musculus GRCm38 with GRCm38.88.

B. Post-Processing to Make the RNA-seq Data Acces-
sible. To integrate new samples into the ARCHS4 resource,
gene count files are extracted from the database and saved
into a HDF5 file (21). The HDF5 files for human and mouse
contain metadata describing each sample retrieved from GEO
with GEOquery. The files are then deployed to Amazon
S3 to be accessible for download. The 3D visualization of
all samples on the ARCHS4 web-site is calculating with t-
distributed stochastic neighborhood embedding (t-SNE) (22)
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Fig. 2. Schematic illustration of the ARCHS4 cloud-based alignment pipeline work-flow. A job scheduler instructs dockerized alignment instances that are processing FASTQ
files from the SRA database in parallel. The pipeline supports the STAR and Kallisto aligners. The final results are sent to a database for post processing. Dimensionality
reduction for data visualization is calculated with t-SNE and all counts are additionally stored in a H5 data matrix.

after quantile normalization and log2 transformation of hu-
man and mouse samples separately. The t-SNE procedure
uses a perplexity of 50 for the sample centric embedding,
and a perplexity of 30 for the gene centric embedding us-
ing the Rtsne package in R (23). The integration of the
processed data into GEO series landing pages is achieved
through the ARCHS4 Chrome extension. The ARCHS4
Chrome extension, freely available at the Chrome web store,
first detects whether a GEO GSE landing page is currently
open in the browser. It then requests the matching GSE se-
ries matrices from ARCHS4 containing the gene expression
counts and metadata information for the GSE. Additionally,
the ARCHS4 Chrome extension requests JSON objects with
pre-computed clustered gene expression for visualizing the
samples with Clustergrammer (24). Summary statistics of
sample counts and tissue specific samples are saved in a ded-
icated database table to be accessed by the ARCHS4 website
landing page for display.

C. Sample Search with Reduced Dimensionality. To
enable reliable similarity search of signatures within the
ARCHS4 data matrix, the matrix is compressed into a lower
dimensional representation. A projection that maintains pair-
wise distances and correlations between samples is computed
with the Johnson-Lindenstrauss (JL) method (25). The JL-
transform reduces the original gene expression matrix E ∈
N ×M where N is the number of genes and M is the num-
ber samples, into a matrix Ê ∈ S ×M , with S < N . A
subspace of 1,000 dimensions captures the original corre-
lation structure with a correlation coefficient of 0.99 Fig 3
a). For implementing the ARCHS4 signature search, a pro-
jection matrix DJL ∈ 1000×N is used to calculate Ê =
DJL×E. The human and mouse matrices are handled sep-

arately. For user queries, input signatures ~s = [s1,s2, . . . ,sn]
are projected onto a lower dimension ~̂s = DJL×~s. Since
cov(~̂s, Ê) ≈ cov(~s,E), this method enables responsive real
time signature similarity search with low error.

D. The ARCHS4 Interactive Web-Site. The front-end of
ARCHS4 is hosted on a web server derived from the tu-
tum/lamp Docker image which is pulled from Docker Hub.
It is a web service stack running on a UNIX-based operating
system with an Apache HTTP server, and a MySQL database.
ARCHS4 is an AJAX application implemented with PHP and
JavaScript. All visual data representations are implemented
in JavaScript. The sample statistics overview of the land-
ing page is implemented using D3.JS (26). On the data view
page, the sample and gene three dimensional embedding is
visualized using Three.js and WebGL (27) which enable the
responsive visualization of thousands of data points in 3D.
Data driven queries such as signature similarity searches are
performed in an R environment hosted on a dedicated dock-
erized Rook web server. On startup, the Rook server auto-
matically retrieves all necessary data files, including the JT
transformed gene expression table, as well as the transforma-
tion matrix, and loads them into memory for fast access from
an S3 cloud repository. All Docker containers can be load
balanced and run on a Mesosphere computer cluster with re-
dundant hardware. The load balancing and port mapping is
controlled through a HAProxy service. The MySQL database
is hosted as a RDS amazon web service.

E. Prediction of Biological Functions and Protein-Pro-
tein Interactions. Gene-gene co-expression correlations
across all human genes can be utilized to predict gene func-
tion and protein-protein interactions by exploiting the fact
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Fig. 3. a) Average correlation between samples before and after applying the Johnson-Lindenstrauss dimensionality reduction. The original gene expression matrix is reduced
from 34198 genes/dimensions to smaller sets of JL dimensions. For each number of JL dimensions, the procedure was repeated 10 times to obtain variances. b) Mean
AUC for predicting GO biological processes using the ARCHS4 mouse co-expression data created from different size sets of randomly selected samples. c) Processing time
per million reads for single read and paired end read RNA-seq for the Kallisto processing container. d) Elapsed time per million (MM) spots/nucleotides for completing the
processing of paired read FASTQ files with the dockerized Kallisto processing container. e) Distribution of the number of detected genes for pipelines that utilize the Kallisto
vs. STAR aligners across 1,708 randomly selected and processed human RNA-seq samples. f) Distribution of AUCs for predicting gene set membership for GO biological
processes from co-expression matrices derived from the same set of 1,708 human RNA-seq samples processed by STAR or Kallisto aligners.

that genes that co-express have the tendency to also share
their function and to physically interact. First, expression ma-
trices from ARCHS4 mouse, ARCHS4 human, GTEx (14),
and the cancer cell line encyclopedia (CCLE) (28) were or-
ganized into genes as the rows and samples as the columns.
For the ARCHS4 data matrices 10,000 samples were ran-
domly selected to construct gene expression correlation ma-
trices for mouse and human separately. For GTEx and CCLE,
all available samples (9,662 and 1,037 respectively) were
used to build the co-expression correlation matrix for all hu-
man genes. For ARCHS4 data, functional prediction accu-
racy, with random subsets from the total collection, increases
with the number of samples (Fig. 3b), while gains become
marginal with more than 10,000 samples. Interestingly, even
with a subset of 100 randomly selected samples, functional
prediction accuracy is high. The quantile normalization func-
tion from the Bioconductor package preprocessCore (29) was
used to normalize gene counts across samples. From the
extracted expression matrices, all pairwise gene correlations
were calculated. For each gene set gsj ∈ GS and each gene
gi the mean correlation of the genes in the gene set to gi was
calculated. Self- correlations when gi ∈ gsj were excluded.
Hence, the resulting gene set membership prediction matrix
GM ∈M ×N for M genes and N gene sets is generated by
the following procedure:

GMij = mean(cor(gi,gsj)) (1)

GMi is then sorted from high to low based on the cor-
relation levels. For each row i within GM , a vector
~si = [si,GS1 ,si,GS2 , . . . ,si,GSn ] is then constructed where
si,GSj

∈ {0,1} and si,GSj
is 1 if gene gi is already known to

be in the gene set GS. This vector is sorted and used to com-
pute the area under the curve (AUC) from the cumulative sum
of ~si using trapezoidal integration. To predict protein-protein
interactions (PPI), the three PPI networks: hu.MAP (30), Bi-
oGRID (31) and BioPLEX (32) are first converted to a gene
set libraries as described in (33). Then, to predict PPIs, the
same procedure for functional predictions was applied.

Results

F. The ARCHS4 Web-Site. The ARCHS4 website supports
multiple complementary ways of accessing the processed
RNA- seq gene expression data. For programmatic access,
the download section provides users with the ability to down-
load all the gene expression data for human and mouse in
H5 format. The H5 files contain extensive metadata infor-
mation retrieved from GEO. This metadata can be queried to
extract samples of interest by a key term. Additionally, pro-
grammatic access to ARCHS4 supports exploration of gene
expression matrices of interest through multiple search func-
tions. The ARCHS4 website visualizes all the processed
samples, and alternatively all human or mouse genes, as inter-
active 3D t-SNE plots. In the sample centric view, all samples
can be searched based on metadata terms. ARCHS4 performs
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a string text search of the GEO metadata to retrieve samples
by matching the string terms. For example, searching Pan-
creatic Islet in the human context will return 1,829 samples
from 10 independent GEO series. After the search is com-
plete, the samples are highlighted in the 3D visualization, and
an auto-generated R script is provided for download. Execut-
ing the R script builds a local expression matrix in TSV for-
mat with the samples as columns and the genes as the rows.
The signature search in ARCHS4 enables searching samples
by data, matching high and low expressed genes from in-
put sets to high and low expressed genes across all ARCHS4
processed samples. Signature similarity is approximated via
the Johnson-Lindenstrauss (JL) (25) transformed gene ex-
pression space. Under the enrichment search tab, samples
can be selected by precomputed enrichment for annotated
gene-sets. Gene set libraries from which annotated gene sets
are currently derived from are: ChEA (34), ENCODE (35),
(36), Gene Ontology (GO) (37), KEGG pathways (38), and
MGI mammalian phenotype (39). The ARCHS4 three di-
mensional viewer also supports manual selection of samples
through a snipping tool, whereas the colors used to highlight
samples can be changed by the user. The gene-centric view of
ARCHS4 provides the same manual selection feature as with
the sample view. Selected gene lists can be downloaded di-
rectly from the ARCHS4 website or sent to Enrichr (40, 41),
a gene set enrichment analysis tool, for further functional ex-
ploration. Gene sets can be highlighted in the 3D view. Addi-
tionally, individual genes can be queried to locate ARCHS4
gene landing pages. These single gene landing pages con-
tain predicted biological functions based on correlations with
genes assigned to GO categories; predicted upstream tran-
scription factors based on correlation with identified puta-
tive targets from ChEA and ENCODE; predicted knockout
mouse phenotypes based on annotated MGI mammalian phe-
notypes; predicted human phenotypes based on co- expres-
sion correlation with genes that have assigned human pheno-
types in the human phenotype ontology (42); predicted up-
stream protein kinases based known kinase-substrates from
KEA, and membership in pathways based on co-expression
with pathway members from KEGG. The single gene land-
ing pages also list the top 100 most co-expressed correlated
genes for each individual gene. Additionally, for 53 distinct
tissues, tissue expression levels are visualized for each gene.
The tissue expression display is visualized as a hierarchical
tree with tissues grouped by system and organ. Similarly,
cell line gene expression profile for 67 widely used cell lines
across tissue types can be accessed through the gene land-
ing pages of ARCHS4. ARCHS4 processed data can be ac-
cessed via the ARCHS4 Chrome extension, which is freely
available from the Chrome web store. The Chrome extension
detects GEO series landing pages and inserts a Series Matrix
File (SMF) for download for each series that have been pro-
cessed by the ARCHS4 pipeline. Each SMF contains read
counts for all available samples in the series. The sample
expression is also visualized as a heatmap using the Clus-
tergrammer plugin (24). Clustergrammer loads JSON files
containing the z-score normalized gene expression of the top

500 most variable genes across the series, and embeds the in-
teractive heatmap directly into the GEO series landing page.

G. RNA-seq Alignment Pipeline Speed and Cost. The
pipeline speed is measured by the elapsed time from job sub-
mission until completion for 31,825 samples processed from
the GEO/SRA database. This includes: the SRA file down-
load, FASTQ file extraction from the SRA data format, align-
ment to the reference genome, mapping the transcript counts
to the gene level, and writing the final result to the database.
Processing time of a single FASTQ file is on average 11 min-
utes. For samples by number of spots and single and paired
end samples, the benchmark is applied using Amazon EC2
on-demand m4.large instances with 8GB of memory and 2
vCPUs. Instances running with 200GB of hard-drive stor-
age. Each instance can run 2 dockerized alignment pipeline
containers in parallel. At the time of the benchmark, the cost
of the on demand m4.large instances was $0.1/h. This results
in an average compute cost for one processed SRA file to be
$0.00917. The alignment time correlates with the number
of reads (Spearman correlation coefficient r=0.881) and the
processing time increases linearly with the number of spots
aligned with some variance (r = 0.901, paired reads) due to
performance differences between cloud computing instances
(Fig. 3cd). Paired end read RNA-seq experiments require
more time during the alignment process due to the increased
number of spots that have to be processed. The ARCHS4
pipeline is to our knowledge, the most cost effective cloud
based RNA-seq alignment infrastructure published to date.

H. STAR vs. Kallisto Comparison. To achieve its fast
and cost effective solution, ARCHS4 utilizes the Kallisto
aligner (9) to process all samples. However, it is not clear
whether the improved speed and cost provided by Kallisto
comes with the cost of drop in output quality. To bench-
mark Kallisto, a random subset of 1,708 human samples pro-
cessed by ARCHS4 were also aligned with STAR (8). While
Kallisto and STAR return similar gene expression profiles,
there are profound differences between the output produced
by the two algorithms. In general, Kallisto detects more
genes than STAR (Fig. 3ef). The average Pearson correla-
tion of the z-score transformed samples between the Kallisto
and STAR output is 0.77. However, the number of detected
genes does not directly translate to qualitative advantage of
Kallisto over STAR. To test the quality of the generated gene
expression matrices and their gene correlation structure, the
ability to predict GO biological processes for single genes, as
described in detail in the methods section, was utilized as a
benchmark. The co-expression matrices used for predicting
GO biological processes were created from the data aligned
by Kallisto or STAR. The quality of the predictions is almost
identical with an average area under the curve (AUC) of 0.69
for predictions made by processed data from both sources
(Fig. 3f).

I. Read Quality across Institutions. The percentage of
aligned reads over total reads for each FASTQ file varies sig-
nificantly across labs, projects, and sequencing cores due to
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Fig. 4. Distribution of the percentage of aligned reads from human RNA-seq samples that are successfully aligned with Kallisto by institution as it is reported at the GEO
submission pages. The selected institutions that are shown have more than 100 samples from more than 10 different gene expression series.

various reasons. Since each sample from GEO/SRA is anno-
tated with the producers of the data, the percent of aligned
reads by institution can be plotted (Fig. 4). The 18 insti-
tutions that so far produced more than 100 unique samples
from more than 10 gene expression series of human RNA-
seq samples available on the GEO/SRA database show that
the highest percentage of successful aligned reads is by the
University of Utah with a median of 84%. The 341 samples
that originated from the University of Utah come from 14 dis-
tinct gene expression series. It should be noted that observed
differences in the fraction of aligned reads is not necessar-
ily an indicator of the performance of the sequencing core
within an institution, but can be attributed to the quality of
the samples. For example, samples from formalin fixated tis-
sues will suffer from RNA degradation which will result in
lower percent of aligned reads. On average, 63% of reads
were aligned across all 65,429 the processed human RNA-
seq samples, whereas 59% of all mouse RNA-seq reads from
72,363 samples were aligned to matching genes.

J. Prediction of Gene Function and Protein-Protein In-
teractions with ARCHS4 Data. Gene function and protein-
protein interactions can be potentially predicted using co-
expression data, whereas the data that is processed for
ARCHS4 provides a rich resource for generating gene co-
expression networks. Evaluating the quality of co-expression
networks to predict protein interactions and biological func-
tions can also provide an unbiased benchmark to compare
the ARCHS4 resource to other major RNA-seq and microar-
ray repositories. The hypothesis that gene function and pro-
tein interactions can be predicted using co-expression data
implies that co- expressed genes tend to share their function

and physically interact. In this process, genes are assigned
predicted biological functions only when they are highly cor-
related to genes within a set of genes already annotated to
have the same biological function. Similarly, a gene prod-
uct is predicted to interact with another protein if the known
direct protein interactors for that other protein are highly co-
express with the gene product protein. We evaluate the hu-
man and mouse ARCHS4 datasets by comparing them to co-
expression matrices created in the same way from the CCLE
and GTEx resources. All gene expression datasets produce,
on average, significant ability to predict both biological func-
tions and protein interactions. This suggests that gene expres-
sion correlations derived from large scale expression datasets
are predictive of biological function and protein interactions.
In almost all the tested categories, the ARCHS4 mouse and
human datasets outperformed the predictions made with co-
expression data created from the CCLE and GTEx datasets
significantly (Table 1). The most accurate predictions for
GO biological processes, GO molecular functions, KEGG
pathways, Human Phenotype Ontology terms, predicted up-
stream kinases, and MGI Mammalian Phenotype terms are
achieved with the ARCHS4 mouse gene co- expression data
followed by the ARCHS4 human data. The co-expression
data from GTEx outperforms the co-expression data created
from the CCLE for GO biological processes and the pheno-
type libraries, whereas the predictability GTEx data is lower
than CCLE for the upstream regulatory transcription factor
predictions. P-values are calculated for the mean between
methods. For the ARCHS4 mouse co-expression data the
area under the curve (AUC) distributions for predicting gene
function are significant across all categories, but most suc-
cessful in predicting GO biological processes with median
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Fig. 5. a) The distribution of AUC for gene set membership prediction of gene annotations from eight gene set libraries with co-expression data created from ARCHS4 mouse,
ARCHS4 human, GTEx and CCLE. The gene set libraries used to train and evaluate the predictions are ChEA, ENCODE, GO Biological Process, GO Molecular Function,
KEA, KEGG Pathways, Human Phenotype Ontology, and MGI Mammalian Phenotype Level 4. These libraries were obtained from the Enrichr collection of libraries. b) Venn
diagram showing the intersection of edges between three PPI databases hu.MAP, BioGRID and BioPLEX. c) Distribution of AUC for protein-protein interaction prediction
from gene co-expression data created in the same way from ARCHS4 mouse, ARCHS4 human, CCLE and GTEx. d) Bar plot of the pairwise correlation between genes
with reported protein-protein interactions for the three PPI networks hu.MAP, BioGRID and BioPLEX in ARCHS4 mouse expression. The right tail of the gene pair correlation
distribution of is shown by the 75% quantile.

AUC of 0.745, and membership in KEGG pathways with a
median AUC of 0.797 (Fig. 5a). While predicting protein
function with co-expression data has been attempted suc-
cessfully by many before, it is less established whether co-
expression data can be used to also predict protein- protein
interactions (PPI). A similar strategy was employed to pre-
dict PPI using prior knowledge about PPI from three unique
PPI resources: hu.MAP (30), BioGRID (31) and BioPLEX
(32). These three PPI resources are unique in the following
way: the PPI from BioGRID are the composition of inter-
actions from thousands of publications that report only few
interactions; the PPI from BioPLEX are bait-prey interac-
tions from a massive mass-spectrometry experiment; whereas
hu.MAP is made of data from three mass-spectrometry exper-
iments integrated with sophisticated computational methods
that also consider prey-prey interactions to boost interaction
confidence. Importantly, none of these three resources utilize
knowledge from mRNA co- expression data to confirm PPI.
The overlap of shared interactions between the three PPI net-
works is relatively low with hu.MAP and BioPLEX sharing
more than 10% of their interaction (Fig. 5b). This is likely

because a part of BioPLEX is contained within hu.MAP. Pre-
dicting PPI using knowledge from these three PPI resources,
the ARCHS4 mouse co-expression data is the most predic-
tive with a median AUC of 0.85, 0.66 and 0.64 for hu.MAP,
BioGRID and BioPLEX respectively (Fig. 5c).

The fact that PPI from hu.MAP can be predicted at a much
higher accuracy compared to the other two networks suggests
that protein-protein interactions from hu.MAP tend to have
higher pairwise mRNA co-expression correlations. The 75%-
quantile of interaction correlation in hu.MAP is 0.174 com-
pared to BioGRID (0.0915) and BioPLEX (0.0478); whereas
the intersections between the PPI networks (I, II, III, IV) tend
to have a higher 75%-quantile of correlations with 0.198,
0.217, 0.131 and 0.132 suggesting that aggregating evidence
from experiments that detect PPI, is most likely boosting con-
fidence of real interactions (Fig. 5d). This also further sup-
ports that mRNA co-expression data can be used to predict
PPI. The predicted PPI and predicted biological functions
provide a plethora of computational hypotheses that could be
further validated experimentally.
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Gene Set Library ARCHS4 mouse ARCHS4 human GTEx CCLE
Go Biological Process 2017 median 0.745 0.726 0.709 0.667

∆ median 0 -0.0186 -0.0356 -0.0773
p-value 1 7.70E-08 1.47E-27 8.50E-124

GO Molecular Function median 0.724 0.710 0.649 0.649
∆ median 0 -0.0134 -0.0752 -0.0752
p-value 1 0.0174 1.08E-78 7.93E-64

ENCODE TF ChIP-seq 2015 median 0.596 0.608 0.5349 0.596
∆ median 0 0.0124 -0.0610 0.000271
p-value 1 5.54E-13 0 0.000476

ChEA 2016 median 0.606 0.617 0.570 0.608
∆ median 0 0.0104 -0.0363 0.00139
p-value 1 1.95E-17 5.44E-266 0.758

KEGG 2015 median 0.797 0.786 0.713 0.688
∆ median 0 -0.0109 -0.0838 -0.109
p-value 1 0.210 5.76E-20 2.56E-35

Human Phenotype Ontology median 0.698 0.683 0.669 0.623
∆ median 0 -0.0144 -0.0284 -0.0745
p-value 1 0.00251 2.38E-10 6.05E-48

KEA 2015 median 0.591 0.583 0.587 0.572
∆ median 0 -0.00880 -0.00439 -0.0190
p-value 1 0.431 0.0459 0.00365

MGI Mammalian Phenotype median 0.687 0.6639 0.686 0.612
∆ median 0 -0.0227 -0.000726 -0.0749
p-value 1 3.83E-08 0.537 9.97E-83

Table 1. Comparison of functional prediction for ARCHS4 mouse and human gene expression compared to GTEx and CCLE. ∆ median is the difference in median AUC
between ARCHS4 mouse and the other data sets. The significance of difference of the mean is calculated by t-test for observed AUC distributions. The highest median per
gene set library are highlighted in bold.

Discussion and Conclusion

The ARCHS4 resource of processed RNA-seq data is created
by systematically processing publicly available raw FASTQ
samples from GEO/SRA. This resource can facilitate rapid
progress of retrospective post-hoc focal and global analy-
ses. The ARCHS4 data processing pipeline employs a mod-
ular dockerized software infrastructure that can align RNA-
seq samples at an average cost of less than one cent (US
$0.01). To our knowledge, this is an improvement of more
than an order of magnitude over previously published solu-
tions. The automation of the pipeline enables constant up-
dating of the data repository by regular inclusion of newly
published gene expression samples. The pipeline is open
source and available on GitHub so it can be continually en-
hanced and adopted by the community for other projects. The
pipeline uses Kallisto as the main alignment algorithm which
was demonstrated through an unbiased benchmark to per-
form as well as, or even better than, another leading aligner,
STAR. We compared the ARCHS4 co-expression data with
co-expression data we created from other existing gene ex-
pression resources, namely GTEx and CCLE, and demon-
strated how co-expression data from ARCHS4 is more ef-
fective in predicting biological functions and protein interac-
tions. This could be because the data from ARCHS4 is more
diverse. The fact that the data within ARCHS4 is from many
sources has its disadvantages. These include batch effects
and quality control inconsistencies. Standard batch effect re-
moval methods are not applicable to the entire ARCHS4 data,
but may useful for improving the analysis of segments of

ARCHS4 data. The ARCHS4 web application and Chrome
extension enable users to access and query the ARCHS4 data
through metadata searches and other means. For data driven
queries, the unique JL dimensionality reduction method is
implemented to maintain pairwise distances and correlations
between samples even after reducing the number of dimen-
sions by two orders of magnitude. Reducing the data to
a lower dimension facilitates data driven searches that re-
turn results instantly. The gene expression data provided by
ARCHS4 is freely accessible for download in the compact
HDF5 file format allowing programmatic access. The HDF5
files contain all available metadata information about all sam-
ples, but such metadata can be improved but having it follow
naming standards and linking it to biological ontologies. The
ARCHS4 three dimensional data viewer lets users gain intu-
ition about the global space of gene expression data from hu-
man and mouse at the sample and gene levels. The interface
supports interactive data exploration through manual sample
selection and highlighting of samples from tissues and cell
lines. With the available data, we constructed comprehensive
gene landing pages containing information about predicted
gene function and PPI, co-expression with other genes, and
average expression across cell lines and tissues. For a va-
riety of tissues and cell lines, gene expression distributions
are calculated for each gene. Such data can complement tis-
sue and cell line expression resources such as BioGPS (43)
and GTEx (14) as well as resources that provide accumulated
knowledge about genes and proteins such as GeneCards, the
Harmonizome and the NCBI gene database (44–46). Over-
all, the ARCHS4 resource contain comprehensive processed
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mRNA expression data that can further enable biological dis-
covery toward better understanding of the inner-workings of
mammalian cells.
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