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ABSTRACT 

Background: Several genetic risk loci associated with emphysema apico-basal distribution 

(EABD) have been identified through genome-wide association studies (GWAS), but the 

biological functions of these variants are unknown. To characterize gene regulatory functions 

of EABD-associated variants, we integrated EABD GWAS results with 1) a multi-tissue 

panel of expression quantitative trait loci (eQTL) from subjects with COPD and the GTEx 

project and 2) epigenomic marks from 127 cell types in the Roadmap Epigenomics project. 

Functional validation was performed for a variant near ACVR1B. 

Results: SNPs from 168 loci with P-values<5x10-5 in the largest GWAS meta-analysis of 

EABD (Boueiz A. et al, AJRCCM 2017) were analyzed. 54 loci overlapped eQTL regions 

from our multi-tissue panel, and 7 of these loci showed a high probability of harboring a 

single, shared GWAS and eQTL causal variant (colocalization posterior probability≥0.9). 17 

cell types exhibited greater than expected overlap between EABD loci and DNase-I 

hypersensitive peaks, DNaseI hotspots, enhancer marks, or digital DNaseI footprints 

(permutation P-value < 0.05), with the strongest enrichment observed in CD4+, CD8+, and 

regulatory T cells. A region near ACVR1B demonstrated significant colocalization with a 

lung eQTL and overlapped DNase-I hypersensitive regions in multiple cell types, and 

reporter assays in human bronchial epithelial cells confirmed allele-specific regulatory 

activity for the lead variant, rs7962469.  

Conclusions: Integrative analysis highlights candidate causal genes, regulatory variants, and 

cell types that may contribute to the pathogenesis of emphysema distribution. These findings 

will enable more accurate functional validation studies and better understanding of 

emphysema distribution biology. 

Keywords: Integrative genomics; Emphysema; Emphysema distribution; Chronic obstructive 

pulmonary disease. 
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BACKGROUND 

Chronic obstructive pulmonary disease (COPD) is a clinical syndrome with multiple, 

distinct clinical manifestations including the pathologic loss of lung tissue, i.e. emphysema. 

The phenotypic variability of COPD has prognostic and therapeutic implications [1-3]. 

Among patients with emphysema, patterns of lung destruction are often asymmetric [4], and 

this regional heterogeneity is an important factor in the severity of airflow limitation, disease 

progression, and the response to lung volume reduction procedures [5-9]. A recent genome-

wide association study (GWAS) has identified five genomic loci associated with emphysema 

apico-basal distribution (EABD) in smokers without alpha-1 antitrypsin deficiency (4q13 

near SOWAHB, 4q31 near HHIP, 8q24 near TRAPPC9, 10p12 near KIAA1462, and 15q25 

near CHRNA5) [10]. These loci explain a small proportion of the estimated heritability of 

EABD, indicating that many more true associations have not yet been identified. In addition, 

the functional mechanisms of EABD causal variants have not yet been described.  

GWAS variants tend to be located in regions of strong linkage disequilibrium (LD), 

making it difficult to identify the causal variant (or variants) in these regions from genetic 

association alone. In addition, GWAS-identified regions are frequently located in non-coding 

DNA and predominantly affect gene expression rather than directly affecting protein 

structure. This is supported by the observation that GWAS variants are enriched in regulatory 

domains, including enhancers and regions of open chromatin [11, 12]. We hypothesized that 

a number of EABD loci regulate gene expression and are located within genomic regions 

characterized by DNase-I hypersensitivity, enhancer activity, and transcription-factor 

binding. To test this hypothesis, we performed comprehensive fine-mapping of EABD-

associated loci by integrating GWAS results with a large compendium of multi-tissue eQTL 

and cell-based epigenetic marks. This analysis identifies 7 high-confidence EABD-
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associated, gene regulatory loci in 42 tissues, and it implicates 17 cell types as likely to 

participate in EABD pathogenesis, with the strongest enrichment observed for T-cell subsets. 

 

RESULTS 

 

Characteristics of study participants included in the analysis  

A previously published GWAS was performed using data from 6,215 non-Hispanic 

white and 2,955 African-American subjects from COPDGene, 1,538 subjects from ECLIPSE, 

and 824 subjects from GenKOLS with complete phenotype and genotype data (Boueiz A. et 

al, AJRCCM 2017). The characteristics of these 11,532 subjects are shown in Table 1S, and 

the characteristics of the 385 COPDGene NHW subjects with available RNA-seq eQTL data 

are shown in Table 2S.  

 

Emphysema distribution GWAS signals colocalize with eQTLs  

From the whole blood eQTL of the 385 COPDGene subjects, significant associations 

at 10% FDR were identified for 745,067 unique cis-eQTL SNP genotypes associated with the 

expression level of 17,187 unique transcripts (including protein coding genes, long non-

coding RNA, and antisense transcripts) (Table 3S). These eQTLs were analyzed along with 

the multi-tissue GTEx eQTL data for a total number of unique cis-eQTL SNPs per tissue 

ranging between 129,647 (uterus) and 1,351,125 (thyroid) and unique eQTL transcripts per 

tissue ranging between 6,452 (uterus) and 27,618 (testis). The workflow of the GWAS-eQTL 

integration analysis and results are summarized in Figure 1. 

Fifty-four genomic loci were associated with both local gene expression and 

emphysema distribution at FDR 10%, representing 32.1% (54/168) of the total number of 

candidate EABD-associated loci (GWAS P-value < 5x10-5). Given that overlap of GWAS 
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and eQTL signals may occur by chance, a Bayesian test for colocalization was performed to 

distinguish overlap due to shared causal variants versus chance overlap. 13.1% (22/168) of 

candidate EABD loci had a reasonable likelihood (>50%) of harboring a shared causal 

variant for emphysema distribution and eQTL, and 4.2% of loci had a high likelihood (>90%) 

of harboring a shared causal variant (Table 1), including two regions that harbored genetic 

variants affecting the expression of ACVR1B and MEI in lung tissue (Figure 2). The complete 

set of colocalization results can be viewed interactively at 

https://cdnm.shinyapps.io/eabd_eqtlcolocalization/. 

 

Emphysema distribution-associated GWAS loci are enriched in T-cell subsets  

To quantify the overlap between EABD-associated loci and epigenomic marks in cell 

types, we investigated whether candidate EABD-associated loci are enriched in gene 

regulatory regions identified by large scale functional studies performed by the ENCODE 

and Roadmap Epigenomics consortia [13, 14]. The four types of epigenomic marks that we 

studied span 39 to 127 diverse cell types and cover on average 0.44% to 2.87% of the 

genome per cell type (Table 4S). Figure 3 illustrates the workflow for the integrative analysis 

of GWAS and epigenomic marks.  

Forty-five percent of EABD loci (76/168) overlapped at least one of the four studied 

epigenomic annotations in at least one cell type. Among those, 48 loci overlapped DHS 

peaks, 54 overlapped DHS hotspots, 60 overlapped enhancer marks, and 26 overlapped 

DNaseI footprints (28.6%, 32.1%, 35.7%, and 15.5% of EABD loci, respectively).  

As with eQTL, some proportion of overlap between EABD loci and regulatory 

annotations may be due to chance rather than a causal link between the regulatory activity of 

a locus and its association to emphysema distribution. To better distinguish chance versus 

causal overlaps, we applied a previously published permutation approach that provides an 
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estimate of the overall enrichment of GWAS loci in regulatory regions within a given cell 

type as well as a locus-specific score [15]. As illustrated in Figure 4, a total of 17 different 

cell types exhibited evidence of enrichment of EABD loci (Permutation p-value <0.05) in at 

least one set of epigenomic marks, with the most significant enrichment observed for CD4+, 

CD8+, and regulatory T cells. Prioritizing loci by cell type enrichment P-values < 0.05 and 

overlap locus scores in the lowest 20% of the overall locus score distribution for each 

epigenomic mark identified, 21 loci (12.5% of the EABD GWAS loci) in 17 different cell 

types overlapped at least one of the annotations (Table 2). The complete set of results can be 

viewed at https://cdnm.shinyapps.io/eabd_gwas_roadmap_goshifter/. 

  

Overlaps between EABD GWAS loci, eQTL, and epigenomic marks 

Forty-four percent of EABD GWAS-eQTL loci (24/54) also overlapped at least one 

of the epigenomic marks in at least one cell type (Table 3). Two of these loci (rs12914385 on 

chromosome 15 (CHRNA5) and rs17471079 on chromosome 13 (STK24)) had a GWAS-

eQTL colocalization P-value ≥ 0.5, cell type epigenomic enrichment P-values < 0.05, and 

high priority locus scores.  

 

Functional validation of the rs7962469 variant near ACVR1B  

Assuming that GWAS regions that colocalize with lung eQTLs may be more likely to 

play a causal role in emphysema distribution, we focused on the regions near the ACVR1B 

and the MEI genes for further functional prioritization. The pattern of association near MEI 

was nearly linear over a broad genomic region of high LD, making the identification of a 

single causal variant challenging. This, in combination with evidence of colocalization of 

rs7962469 with DNaseI hypersensitive regions in multiple cell types, led us to prioritize the 

region near ACVR1B for functional characterization. We used the PICS method to identify 
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the 95% credible set of SNPs responsible for the GWAS association near ACVR1B, and the 

causal probability for rs7962469 was estimated to be 96%. Based on these results, we tested 

for an allelic expression effect of rs7962469 in human bronchial epithelial (16HBE) cells, 

and we observed that the G variant of rs7962469 has a significantly decreased expression 

relative to the A variant (Figure 5). The rs7962469 G variant has previously been shown to be 

associated with COPD susceptibility (OR: 1.13, SE: 1.03; GWAS P-value: 0.002) [16] and 

with upper lobe emphysema predominance (effect size: 0.06, SE: 0.01, GWAS P-value: 

1.7x10-5) [10].  

 

DISCUSSION 

 
Using a multi-cohort GWAS of EABD, multi-tissue eQTL from 45 tissues, and 

epigenomic marks from 127 cell types, we performed an integrated genetic-epigenomic study 

to further our functional understanding of common variants associated with this specific 

manifestation of COPD. eQTL colocalization analysis identified strong evidence of a shared 

causal variant responsible for observed GWAS and eQTL associations in 7 distinct loci in 

multiple tissues. GWAS-epigenomic mark enrichment was observed for 17 cell types, with 

the strongest enrichment in CD4+, CD8+, and regulatory T cells. A region near the promoter 

of the ACVR1B gene demonstrated strong colocalization in lung eQTL data and lies within a 

DNase-I hypersensitive region that is active in multiple cell types. Reporter assays confirmed 

allele-specific regulatory activity for the EABD-associated variant, rs7962469, near ACVR1B 

with the G allele associated with decreased reporter gene expression, increased COPD 

susceptibility, and upper lobe emphysema predominance.  

Efforts to understand how genetic variation contributes to common diseases 

increasingly focus on the regulation of gene expression [17-19]. The enrichment of cis-eQTL 
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SNPs has been demonstrated for GWAS-identified loci in COPD [20], and EABD GWAS-

eQTL overlap has been previously reported for EABD [21]. With the use of RNA-seq in 

multiple tissues in GTEx and in blood from subjects with COPD from the COPDGene study, 

the current study confirmed the previously reported EABD GWAS-eQTL overlap at the 

15q25 locus with formal colocalization testing and added evidence for genetic control of gene 

expression at 12 other emphysema distribution-associated loci. 

GWAS-identified loci for some phenotypes are enriched for regulatory marks in 

tissues that are relevant to the phenotype [21-25]. In the case of emphysema distribution, we 

observed GWAS-regulatory region overlap in multiple tissue and cell types, highlighting the 

biological complexity of emphysema and the fact that a significant amount of the regulatory 

genome is active across multiple tissues and cell types. While some disease loci lie within 

cell type-specific regulatory regions [26], our results are consistent with Boyle et al.’s work 

that provided evidence that many complex traits are driven by regulatory variants that tend to 

be active across many cell types and tissues [27].  

Because most GWAS loci discovered to date lie outside of coding regions, it is likely 

that these loci affect gene regulation. 32.1% of the EABD-associated GWAS loci overlap 

with eQTL and 45.2% overlap with epigenomic annotations. However, our analysis indicates 

that a significant proportion of these overlaps may be due to chance, because only 13.1% of 

candidate EABD regions overlapped an eQTL with a colocalization probability ≥ 0.5, and 

only 12.5% overlapped an epigenomic mark with a high priority locus score. Furthermore, 

only 1.2% (2 loci) had a GWAS-eQTL colocalization P-value ≥ 0.5, cell type epigenomic 

enrichment P-values < 0.05, and high priority locus scores. Our observation that a notable 

proportion of observed GWAS overlaps with regulatory signals may be due to chance is 

consistent with previous observations in multiple sclerosis [28]. It is likely that this 
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observation reflects the high prevalence of regulatory activity in the genome. However, the 

enrichment methods that we used suffer from important limitations. The Bayesian 

colocalization method assumes the presence of only one causal variant in a given locus for 

both GWAS and eQTL signals; this assumption reduces the accuracy of results when the 

locus contains multiple causal variants [17, 29]. The GoShifter method penalizes regions that 

are dense in epigenomic annotations and may therefore decrease the power of causal variant 

identification [15].  

It is also interesting to consider the proportion of GWAS signals for which no 

regulatory overlaps were identified. These instances of non-overlap could be due to false 

positive GWAS associations at the reduced stringency levels used for this analysis, limited 

power of the included eQTL analyses [17], limited assessment of the dynamic nature of 

epigenomic marks in included cell type data, and lack of representation of relevant tissues 

and cell types for emphysema in GTEx and the Roadmap Epigenomics project, respectively. 

It is also possible that EABD causal variants affect aspects of gene regulation not observed in 

our data, such as splicing or post-transcriptional regulation [17].  

It has been recognized for many years that emphysema often has a predilection for the 

upper lobes and subpleural areas in non-alpha-1 antitrypsin deficient smokers [10, 30]. The 

cause for these regional differences in emphysema distribution is not well understood but has 

been attributed to regional differences in perfusion, transit time of leukocytes, clearance of 

deposited dust, mechanical stress and pleural pressure [30-33]. This study provides 

compelling evidence to support a causal role for the adaptive immune response in EABD, 

with the strongest enrichment of EABD loci in regulatory activity observed in CD4+, CD8+, 

and regulatory T cells. Furthermore, based on the results of the genomics integrative analysis 

and the confirmatory reporter assay, our study prioritized the rs7962469 variant, near the 

ACVR1B gene, as a candidate causal variant in emphysema distribution.  
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ACVR1B, also known as ALK-4, acts as a transducer of activin-like ligands that are 

growth and differentiation factors belonging to the transforming growth factor-β (TGF-β) 

superfamily of signaling proteins. Although ACVR1B has not previously been associated with 

emphysema distribution, prior genetic studies have demonstrated an association of gene 

polymorphisms of the TGF-β superfamily with COPD [34, 35]. A genome-wide association 

meta-analysis of 3,497 subjects with severe COPD identified a genome-wide significant 

association with a locus previously reported to affect the gene expression of TGFB2 [16]. In 

addition, TGFB2 expression levels were reduced in a set of Lung Tissue Research 

Consortium COPD lung tissue samples compared with controls [16]. A network analysis 

incorporating COPD GWAS and protein-protein interaction (PPI) data included ACVR1B 

gene in a 10 gene consensus network module associated with COPD case-control status [36]. 

In addition, differential expression of ACVR1B has been found in the epithelial cells of a 

subset of smokers with lung cancer and in bone marrow micro-metastases from lung cancer 

patients [37, 38]. More work is warranted to elucidate the role of ACVR1B in COPD and 

emphysema. 

The strengths of this study are 1) the use of comprehensive compendia of eQTL and 

epigenetic marks in multiple tissues and cell types for a novel COPD-related phenotype, 2) 

application of Bayesian and permutation-based methods to assess the significance of 

observed overlaps accounting for the genomic abundance of candidate eQTLs and 

epigenomic annotations, and 3) functional validation and demonstration of allele-specific 

enhancer activity for a candidate causal variant near ACVR1B prioritized by this integrative 

method.  

This study also has important limitations. First, we limited our analysis to cis-eQTLs, 

excluding other classes of gene regulatory variants including trans-eQTLs, isoform ratio 
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QTLs, and variants implicated by allele-specific expression analyses. Future studies will be 

strengthened by the inclusion of these emerging features of eQTL studies [39, 40]. Second, 

the colocalization and enrichment methods that we used have limitations. The colocalization 

method does not account for multiple independent signals, and the GoShifter approach is 

biased against regions that are dense in epigenomic annotations and may therefore decrease 

the power of causal variant identification [15, 17, 29].  

CONCLUSION 

This study provides proof of concept for the effectiveness of an approach to leverage 

multi-tissue compendia of eQTLs and multi-cell compendia of epigenetic marks to refine and 

characterize functional regulatory GWAS loci.  Enrichment analyses implicated a wide range 

of cells and tissues, emphasizing the importance of having comprehensive compendia of 

regulatory annotation with respect to tissues, cell types, diseases, and environmental 

exposures. Based on these integrative analyses, we prioritized and functionally validated a 

COPD and emphysema-associated variant involved in TGF-β signaling.  

MATERIALS AND METHODS 

 

Study populations 

We analyzed 11,532 non-alpha-1 antitrypsin deficient current and former smokers 

with complete genotype and CT densitometry data from four cohorts: The Genetic 

Epidemiology of COPD study non-Hispanic whites (COPDGene NHW), COPDGene 

African-Americans (COPDGene AA), the Genetics of Chronic Obstructive Lung Disease 

(GenKOLS) and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate 

Endpoints study (ECLIPSE). Detailed descriptions including study populations, genotyping 

quality control and genotyping imputation have been previously published [10, 41]. 
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CT measurements 

Quantitative assessment of emphysema was performed using 3D SLICER density 

mask analysis (www.chestimagingplatform.org) to determine the percentage of lung voxels 

with attenuation lower than -950 Hounsfield units (%LAA-950) at maximal inspiration [42]. 

From these measurements, two correlated but complementary measures of emphysema 

distribution were constructed: 1) the difference between upper third and lower third 

emphysema (diff950) and 2) the ratio of upper third to lower third emphysema (ratio950) 

[10]. A rank-based inverse normal transformation was applied to both phenotypes to reduce 

the impact of outliers and deviations from normality [10]. In this current study, given that 

ratio950 had a higher heritability and was associated with more genome-wide significant 

signals compared to diff950 [10], we performed fine mapping of ratio950-associated variants.  

Peripheral blood gene expression 

385 NHW subjects from the COPDGene study with completed peripheral blood RNA 

sequencing (RNA-seq) data were analyzed. All samples had RNA integrity number > 7 and 

RNA concentration ≥ 25 µg/µl (COPDGene Phase I dataset, January 6, 2017). 

RNA isolation and quality control: Total RNA was extracted from PAXgene Blood 

RNA tubes using the Qiagen PreAnalytiX PAXgene Blood miRNA Kit. The extraction 

protocol was performed either manually or with the Qiagen QIAcube extraction robot. 

cDNA library preparation and sequencing: Globin reduction and cDNA library 

preparation for total RNA was performed with the Illumina TruSeq Stranded Total RNA with 

Ribo-Zero Globin kit. Libraries were pooled and 75bp paired end reads were generated on the 

Illumina HiSeq2000 platform. Samples were sequenced to an average depth of 20 million 

reads. 
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Read alignment, expression quantification, and sequencing quality control: Reads 

were trimmed of the Truseq adapters using Skewer [43] with default parameters. Trimmed 

reads were aligned to GRCH38 genome using STAR [44]. Gene level counts were generated 

using RSubreads with the Ensemble GTF (version 81). Quality control was performed using 

the Fastqc [45] and RNA-SeQC [46] programs. Samples were included for subsequent 

analysis if they had >10 million reads, >80% of reads mapped, XIST and Y chromosome 

expression consistent with reported gender, <10% of R1 reads in the sense orientation, 

Pearson correlation ≥ 0.9 with other samples in the same library prep batch, and concordant 

genotype calls between RNA reads and DNA genotyping.  

cis-eQTL analysis: Transcript-level expression count data were normalized for library 

size using the trimmed mean of M values method and then inverse normal transformed [47]. 

eQTL associations were tested for bi-allelic, autosomal SNPs with minor allele frequency 

(MAF) > 0.05 and mapping to a dbSNP 142 Reference SNP number. cis-eQTL analysis was 

performed for all SNPs within one megabase of the target gene using Matrix eQTL with a 

linear model adjusting for age, gender, library prep batch, 3 principal components of genetic 

ancestry, and 35 PEER factors of gene expression [48]. A total of 5,815,008 SNPs were 

tested for association with 27,277 transcripts. The threshold for significance was a false 

discovery rate (FDR) 10%, using the FDR procedure implemented in Matrix eQTL [49].  

 

eQTL-emphysema distribution GWAS colocalization analysis 

We integrated emphysema distribution GWAS loci with multi-tissue eQTL data from 

the Genotype-Tissue Expression (GTEx) project (version 6) [10] (Download site: 

http://www.gtexportal.org/home/datasets; Date of download: November 18, 2015) and whole 

blood eQTL from 385 COPDGene NHW subjects. GWAS eQTL integration was performed 

as previously described [21]. Briefly, for each set of eQTL results, GWAS results were 
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filtered to include only SNPs with a significant eQTL association at FDR 10%. In this 

reduced set of GWAS results, q-values were calculated using the procedure of Storey et al. 

for the GWAS P-values [50], and SNPs significant in both the eQTL and GWAS analyses at 

FDR 10% were retained. For each independent association, Bayesian colocalization tests 

were performed for all SNPs within a 250kb window of the lead GWAS variant at that locus 

to quantify the probability that the GWAS and eQTL associations were due to a single, 

shared causal variant [29]. This probability corresponds to the PP4 number described in the 

original publication. The workflow of this GWAS-eQTL integration analysis is summarized 

in Table 2.  

 

Enrichment in tissue-/cell type-specific chromatin states  

Genetic variants associated with complex diseases have been shown to overlap 

regulatory enhancer elements [11, 12]. Based on this finding, we quantified the overlap 

between emphysema distribution GWAS SNPs (P-value < 5x10-5) and regulatory elements 

identified in the Roadmap Epigenomics project (Release 9) [51]. For the 127 Roadmap cell 

types, we downloaded ChromImpute imputed annotations that provide the most 

comprehensive human regulatory region annotation to date for large-scale experimental 

mapping of epigenomic information [52]. We analyzed ChromImpute DNase-I hypersensitive 

peaks and ChromImpute enhancer marks (defined as chromatin states 13 through 18) for all 

127 cell types with available data. We also examined DNase-I hypersensitive hotspots that 

were available for 39 Roadmap cell types. Hotspots are broader regions of DNaseI 

hypersensitivity encompassing DNase peaks. The hotspot identification algorithm has been 

previously described [53]. We also analyzed digital DNaseI footprints (DGF) data from 42 

uniformly processed cell types in Roadmap. DNaseI footprints are coverage troughs in deeply 

sequenced DNaseI hypersensitivity data that represent narrow genomic regions shielded from 
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DNaseI digestion because of transcription factors, and thus represent likely transcription 

factor binding sites (TFBS).  

DHS ChromImpute peaks were downloaded from 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidatedImputed/narrowPeak/ on 

July 13, 2016. DHS hotspots were downloaded from 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/DNase/  on 

February 20, 2015. Enhancer marks were downloaded from 

http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/im

puted12marks/jointModel/final/ on Dec 23, 2015. DGF were downloaded from 

http://egg2.wustl.edu/roadmap/data/byDataType/dgfootprints/ on July 13, 2016.  

To determine the extent of GWAS-epigenomic annotation overlap, we identified 

independent emphysema distribution GWAS signals at P-value < 5x10-5 within 1MB 

windows. We then used Genomic Annotation Shifter (GoShifter) to calculate the enrichment 

for these variants in Roadmap annotations (DHS, enhancer marks, DGF) [15]. This method 

uses a local permutation strategy to account for the local density of a given epigenomic mark 

and generates a score for each locus that can be used to prioritize loci where the overlap 

between a SNP and an annotation is particularly informative. 1,000 permutations were 

performed using LD information from the 1,000 Genomes EUR population with an r2 

threshold of 0.8. Overlaps in the lowest 20% of locus score distributions and with a cell type 

enrichment P-value < 0.05 were considered for further analysis (Table 3).  

 

Shiny applications 

Searchable tables of the formal metrics, results, and locuszoom plots for each 

genomic region was compiled and displayed using the R web framework shiny 

(http://shiny.rstudio.com/) and are available to the public as companion sites for this paper 
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(https://cdnm.shinyapps.io/eabd_eqtlcolocalization/ (GWAS-eQTL) and 

https://cdnm.shinyapps.io/eabd_gwas_roadmap_goshifter/ (GWAS-epigenomic annotations)).  

 

Probabilistic Identification of Causal SNPs - rs7962469 

The online Probabilistic Identification of Causal SNPs (PICS) algorithm is a fine 

mapping algorithm that calculates the probability that an individual SNP is a causal variant 

given the haplotype structure and observed pattern of association at the locus 

(https://pubs.broadinstitute.org/pubs/finemapping/pics.php) [54]. We used this algorithm to 

generate the 95% credible SNP set for the GWAS association identified in the region near the 

ACVR1B gene. 

 

Luciferase reporter assay - rs7962469 

Two ~500 base-pair long genomic segments including rs7962469 were obtained from 

Human Bronchial Epithelial (16HBE) cells heterozygous at rs7962469 and cloned into the 

sites of XhoI and BglII of a pGL4.23[luc2/minP] vector. Each luciferase construct was co-

transfected with TK-Renilla, a luciferase control reporter, in 16HBE cells at ~60-70% 

confluency by using Lipofectamine 3000 Reagent (Invitrogen), following the manufacturer’s 

protocol.  Each luciferase construct was transfected in triplicate at a concentration of 300 ng 

per well and the TK-Renilla at 15 ng per well. Empty Luciferase vector, 

pGL4.23[luc2/minP], was also transfected in triplicates as a control. Promoter activity was 

quantified forty-eight hours post-transfection using the Dual-Luciferase Reporter Assay 

System (Promega) according to the manufacturer's protocol. Luminescence signals were 

captured in a Wallac VICTOR3 1420 plate reader (Perkin Elmer) and normalized by the 

Renilla luciferase readings for each well. The normalized values for each triplicate were then 

averaged. All plasmids used were confirmed by sequencing. Independent transfection and 
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reporter assays were performed three times. Luciferase activity levels were assessed using 

Wilcoxon’s rank sum test; values were compared with a reference group within an 

experimental repeat, and results from multiple experiments were included. P-values less than 

0.05 were considered significant. 
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Table 1. Significant colocalizations of emphysema distribution-associated GWAS variants with eQTL from GTEx and the COPDGene study 

(colocalization probability ≥ 0.9) ordered by the lead SNP GWAS P-values.  

 

Lead SNP Position 
HUGO 

gene 
annotation 

GWAS 
P-value 

eQTL tissue 
eQTL 

Q-value 
Colocalization 

probability 

rs12914385 15:78898723 CHRNA5 1.70x10-17 Testis 0.001 0.91 

rs2645694 4:77833947 SOWAHB 2.40x10-8 
Skin: Sun-exposed (Lower leg) 0.007 0.94 

Esophagus: Mucosa 0.003 0.94 

rs35500465 19:1158884 SBNO2 1.80x10-6 Esophagus: Mucosa 0.001 0.94 

rs5758407 22:42076956 MEI1 5.90x10-6 

Cells: Transformed fibroblasts 4.47x10-18 0.93 

Lung 1.59x10-11 0.91 

Adipose: Subcutaneous 1.53x10-9 0.90 

rs17471079 13:99168721 STK24 1.10x10-5 Artery: Tibial 1.47x10-6 0.96 

rs7962469 12:52348259 ACVR1B 1.70x10-5 Lung 0.0005 0.91 

rs4468504 14:107122186 IGHV3-66 2.70x10-5 Colon: Transverse 6.45x10-13 0.91 
Listed are all instances where the Bayesian colocalization results indicate that there is high posterior probability (PP4 ≥ 0.9) that the same causal variant is associated with 
emphysema distribution GWAS and eQTL signals.  GWAS: Genome-wide association study; eQTL: Expression quantitative trait loci; Lead SNP: SNP with the lowest P-value for 
association in a 250-kb window; Colocalization probability: Posterior probability that the same causal variant is associated with emphysema distribution GWAS and eQTL signals.  
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Table 2. Significant overlaps between emphysema distribution-associated variants and epigenomic annotations (in the lowest 20% of locus score 

distributions and with a cell type enrichment P-value < 0.05).  

A. ChromImpute DNase-I hypersensitive sites 

Locus SNP Position Nearest Gene Locus SNP GWAS 
P-value Overlap SNP Overlap SNP 

GWAS P-value Cell type  Cell type   
P-value 

rs12914385 15:78862103 CHRNA3 1.72x10-17 rs8040868 1.92x10-12 

Primary T helper 17 cells PMA-I 
stimulated;  

0.003 

Primary T killer memory cells from 
peripheral blood 

0.01 

Primary T helper memory cells from 
peripheral blood 1 

0.02 

Primary T helper cells PMA-I stimulated 0.02 
Primary T helper naive cells from 
peripheral blood 

0.02 

rs141092330 7:17181839 ANKMY2 2.44x10-5 rs141092330 2.44x10-5 

Primary T helper 17 cells PMA-I 
stimulated 

0.003 

Primary T killer memory cells from 
peripheral blood 0.01 

Primary T helper memory cells from 
peripheral blood 1 

0.02 

Primary T helper cells PMA-I stimulated 0.02 
Primary T helper naive cells from 
peripheral blood 

0.02 

rs142142561 15:100753780 ADAMTS17 1.60x10-5 rs142142561 1.60x10-5 

Primary T helper 17 cells PMA-I 
stimulated 

0.003 

Primary T killer memory cells from 
peripheral blood 

0.01 

Primary T helper memory cells from 
peripheral blood 1 

0.02 

Primary T helper cells PMA-I stimulated 0.02 
Primary T helper naive cells from 
peripheral blood 

0.02 

rs2466200 8:22810931 PIWIL2 4.62x10-6 rs2466200 4.62x10-6 
Primary T helper 17 cells PMA-I 
stimulated 

0.003 
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Primary T killer memory cells from 
peripheral blood 

0.01 

Primary T helper memory cells from 
peripheral blood 1 

0.02 

Primary T helper cells PMA-I stimulated 0.02 
Primary T helper naive cells from 
peripheral blood 

0.02 

rs75992165 11:13631045 FAR1 2.27x10-6 rs75992165 2.27x10-6 

Primary T helper 17 cells PMA-I 
stimulated 

0.003 

Primary T killer memory cells from 
peripheral blood 

0.01 

Primary T helper memory cells from 
peripheral blood 1 

0.02 

Primary T helper cells PMA-I stimulated 0.02 
Primary T helper naive cells from 
peripheral blood 

0.02 

Locus score is probability that an observed instance of overlap between a given genetic variant and set of genomic annotations is due to chance. Cell type enrichment P-value represents the P-value of the degree of 
overlap with each annotation within each cell type. GoShifter local permutations form the basis of both the locus scores and the cell type enrichment P-values. Annotation of variants to nearest genes was performed 
using UCSC Genome Browser. 

 
B. DNase hotspots 

Locus SNP Position Nearest Gene Locus SNP 
GWAS P-value Overlap SNP Overlap SNP GWAS 

P-value Cell type  Cell type    
P-value 

rs12914385 15:78862097 CHRNA3 1.72x10-17 rs8040868 1.92x10-12 
Primary T cells from peripheral blood 0.02 
Primary Natural Killer cells from peripheral 
blood 

0.04 

rs141092330 7:17181846 ANKMY2 2.44x10-5 rs141092330 2.44x10-5 

Primary T cells from peripheral blood 0.02 
Small Intestine 0.04 
Primary Natural Killer cells from peripheral 
blood 

0.04 

rs142142561 15:100753808 ADAMTS17 1.60x10-5 rs142142561 1.60x10-5 
Primary T cells from peripheral blood 0.02 
Primary Natural Killer cells from peripheral 
blood 

0.04 

rs142822120 3:43769809 ABHD5 3.28x10-5 rs142822120 3.28x10-5 Small Intestine 0.04 
rs182017195 6:17573162 NUP153 4.02x10-5 rs77103244 4.72x10-5 Small Intestine 0.04 
rs2046399 8:9988262 MSRA 3.29x10-5 rs2046399 3.29x10-5 Small Intestine 0.04 
rs75992165 11:13631020 FAR1 2.27x10-6 rs75992165 2.27x10-6 Primary T cells from peripheral blood 0.02 
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Primary Natural Killer cells from peripheral 
blood 

0.04 

rs77808082 6:138875121 NHSL1 3.32x10-5 rs77808082 3.32x10-5 Small Intestine 0.04 
Locus score is probability that an observed instance of overlap between a given genetic variant and set of genomic annotations is due to chance. Cell type enrichment P-value represents the P-value of the degree of 
overlap with each annotation within each cell type. GoShifter local permutations form the basis of both the locus scores and the cell type enrichment P-values. Annotation of variants to nearest genes was performed 
using UCSC Genome Browser. 

 
C. ChromImpute enhancer regions (ChromImpute chromatin states 13 through 18) 

Locus SNP Position Gene annotation Locus SNP 
GWAS P-value Overlap SNP Overlap SNP 

GWAS P-value Cell type Cell type    
P-value 

rs13141641 4:145435924 HHIP 6.34x10-18 rs1813903 1.65x10-14 Thymus 0.03 
rs141092330 7:17181789 ANKMY2 2.44x10-5 rs141092330 2.44x10-5 Thymus 0.03 
rs142822120 3:43769780 KRBOX1 3.28x10-5 rs142822120 3.28x10-5 Fetal Heart 0.01 
rs12408334 1:201908397 LMOD1 3.83x10-5 rs12408334 3.83x10-5 ES-WA7 Cell Line 0.047 
rs1452915 7:134486525 CALD1 2.12x10-5 rs28485360 2.33x10-5 ES-WA7 Cell Line 0.047 

rs17471079 13:99116428 STK24 1.07x10-5 rs17574654 3.16x10-5 
Thymus  0.03 

Fetal Heart 0.01 
rs2046399 8:9988261 MSRA 3.29x10-5 rs1484644 3.41x10-5 ES-WA7 Cell Line 0.047 

rs2466200 8:22810906 CPNE3 4.62x10-6 rs2466200 4.62x10-6 
Fetal Heart 0.01 

ES-WA7 Cell Line 0.047 

rs56073943 14:94230766 PRIMA1 3.11x10-5 rs56073943 3.11x10-5 ES-WA7 Cell Line 0.047 

rs5995407 22:37640841 RAC2 1.31x10-5 rs5995407 1.31x10-5 ES-WA7 Cell Line 0.047 
rs6501394 17:68424096 KCNJ16 5.34x10-6 rs6501394 5.34x10-6 ES-WA7 Cell Line 0.047 
rs6744412 2:106214065 FHL2 2.16x10-5 rs6744412 2.16x10-5 Thymus 0.03 
rs72690469 8:87474571 CPNE3 7.77x10-6 rs72690446 3.79x10-5 Fetal Heart 0.01 
rs73226109 21:42661694 FAM3B 1.82x10-5 rs73226109 1.82x10-5 Thymus 0.03 
rs966081 13:74864605 KLF12 8.45x10-6 rs966081 8.45x10-6 Fetal Heart 0.01 

Locus score is probability that an observed instance of overlap between a given genetic variant and set of genomic annotations is due to chance. Cell type enrichment P-value represents the P-value 
of the degree of overlap with each annotation within each cell type. GoShifter local permutations form the basis of both the locus scores and the cell type enrichment P-values. Annotation of 
variants to nearest genes was performed using UCSC Genome Browser. 
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D. DNaseI footprints 

Locus SNP Position Gene annotation Locus SNP GWAS 
P-value Overlap SNP Overlap SNP 

GWAS P-value Cell type  Cell type   
P-value 

rs12914385 15:78862436 CHRNA3 1.72x10-17 rs8040868 1.92x10-12 
Fetal skin fibroblast 0.03 

Fetal placenta 0.04 
rs141092330 7:17182180 ANKMY2 2.44x10-5 rs141092330 2.44x10-5 Fetal placenta 0.04 
rs1452915 7:134486916 CALD1 2.12x10-5 rs28485360 2.33x10-5 iPS 19.11 0.03 
rs79958058 3:133597788 RAB6B 3.12x10-5 rs79958058 3.12x10-5 Fetal placenta 0.04 

Locus score is probability that an observed instance of overlap between a given genetic variant and set of genomic annotations is due to chance. Cell type enrichment P-value represents the P-value 
of the degree of overlap with each annotation within each cell type. GoShifter local permutations form the basis of both the locus scores and the cell type enrichment P-values. Annotation of 
variants to nearest genes was performed using UCSC Genome Browser. 

 
 

Table 3. Number of overlap loci between emphysema apico-basal distribution GWAS, eQTL, and epigenomic marks.  

 
 

GoShifter 

Loci 
overlapping any 

annotation 
(76 loci) 

Loci overlapping 
any annotation 

with cell type P-
value < 0.05 

(40 loci) 

Loci overlapping any annotation 
with cell type P-value < 0.05 and 
in the lowest 20% of locus score 

distributions 
(21 loci) 

eQTL 

All GWAS-eQTL overlap loci (54 loci) 24 15 6 
GWAS-eQTL overlap loci with colocalization 
probability  ≥ 0.5 (22 loci) 11 7 2 

GWAS-eQTL overlap loci with colocalization 
probability ≥ 0.9 (7 loci) 

5 4 2 
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FIGURE LEGENDS 

 

Figure 1. Workflow and summary of the results of the colocalization analysis of emphysema 

distribution-associated genetic variants with multi-tissue expression quantitative trait loci 

(eQTL) data from the Genotype-Tissue Expression (GTEx) project and whole blood eQTL 

from the COPDGene study.  

Figure 2. Genome-wide association study (GWAS) and lung expression quantitative trait loci 

(eQTL) locus plots for rs5758407 variant near the MEI1 gene (Panel A) and rs7962469 

variant near the ACVR1B gene (Panel B).  

Figure 3. Workflow and summary of the integrative analysis of emphysema distribution-

associated genetic variants with DNase-I hypersensitive peaks, DNaseI hotspots, enhancer 

marks, and digital DNaseI footprints.  

Figure 4. Plot of the cell type enrichment –log10P-value from the Genomic Annotation 

Shifter (GoShifter) analyses of the overlaps between emphysema distribution-associated 

genetic variants with DNase-I hypersensitive peaks, DNaseI hotspots, enhancer marks, and 

digital DNaseI footprints. The cell types with enrichment P-values less than 0.05 are 

highlighted in red in Figure 4A and are shown in more detail in Figure 4B.  

Figure 5. Reporter assays of the rs7962469 variant near the ACVR1B gene in Human 

Bronchial Epithelial (16HBE) cells showing significantly increased expression of the A 

variant relative to the G variant (P-value: 0.008) and the empty Luciferase vector (pGL4.23) 

(P-value: 0.00002). The P-value comparing the G variant to pGL4.23 is 0.02. **: P-value 

<0.05. 
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• 54 loci were associated with both local gene expression 
and emphysema distribution at FDR 10%.

• 22 loci had colocalization probability ≥ 0.5 
• 7 loci had colocalization probability ≥ 0.9
• Two regions near the ACVR1B and the MEI genes 

colocalized with the GTEx lung eQTLs (colocalization 
probability ≥ 0.9) 
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Emphysema distribution associated loci: 

 168 independent loci associated with 
emphysema distribution at GWAS P-value < 
5x10-5 (Boueiz et al, AJRCCM 2017) 

 Identify all variants in LD with each 
emphysema distribution index SNP (r2 > 0.8 in 
the 1,000 Genomes Project European samples) 
 Total of 2,033 SNPs 

Epigenetic annotations: 

 ChromImpute DNase-I hypersensitive sites 
(DHS peaks and hotspots)  

 Enhancer marks (ChromImpute chromatin 
states 13 -18) 

 Digital DNaseI footprints 

 

Find overlap: 

 For each annotation, identify instances of overlap with emphysema distribution-associated SNPs. 
o 48 loci overlapped with DHS peaks 
o 54 loci overlapped with DHS hotspots 
o 60 loci overlapped with enhancer marks 
o 26 loci overlapped with DNaseI footprints 
o 76 loci overlapped with at least one annotation 

 

Test significance of overlap: 

 For each annotation, assess significance of overlap via local permutations using GoShifter.  
o 17 cell types had significant enrichment of GWAS loci in at least one annotation (cell-type 

enrichment P-value < 0.05) 

Prioritizing informative loci: 

 For each annotation, overlaps in the lowest 20% of locus score distributions and with a cell type 
enrichment P-value < 0.05 were considered for further analysis.  

o 5 loci overlapped with DHS peaks in 9 cell types 
o 8 loci overlapped with DHS hotspots in 3 cell types 
o 15 loci overlapped with enhancer marks in 3 cell types 
o 4 loci overlapped with DNaseI footprints in 3 cell types 
o 21 loci overlapped with at least one annotation in 17 cell types 
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