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Abstract 
Real-time surveillance of infectious disease using whole genome sequencing data poses challenges 
in both result generation and communication. SnapperDB represents a set of tools to store bacterial 
variant data and facilitate reproducible and scalable analysis of bacterial populations.  We also intro-
duce the ‘SNP address’ nomenclature to describe the relationship between isolates in a population to 
the single nucleotide resolution. 
Summary:  We announce the release of SnapperDB v1.0 a program for scalable routine SNP analy-
sis and storage of microbial populations. 
Availability:  SnapperDB is implemented as a python application under the open source BSD li-
cense.  All code and user guides are available at https://github.com/phe-bioinformatics/snapperdb. 
Contact: tim.dallman@phe.gov.uk 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
The As routine whole genome sequencing (WGS) of bacterial isolates 
for infectious disease surveillance becomes a reality 1–3 scalable data 
storage solutions are required. Analysis of bacterial populations often 
requires re-computing the genomic variants across all relevant isolates 
which is not feasible in rapidly growing, large datasets. Public Health 

England has embarked on the implementation of high throughput, real-
time sequencing for the surveillance of several important human patho-
gens and aims to leverage the high discriminatory power of single nu-
cleotide polymorphisms (SNPs) to detect linked cases and outbreaks of 
infectious disease. In this application note we present SnapperDB, a set 
of tools to store bacterial variant data to facilitate reproducible and scal-
able analysis of bacterial populations.  We introduce the ‘SNP address’ 
nomenclature to describe the relationship between isolates in a popula-
tion to the nucleotide resolution. 

 

2 Features  
The Variant calling in bacterial genomics generally relies on mapping 
short reads to a single reference genome and this is the central tenet of 
SnapperDB. The input to SnapperDB is either (1) sequence data in 
FASTQ format and a reference genome or (2) a Variant Call Format 
(VCF) file generated for each strain with all positions emitted. If se-

quence data is provided, SnapperDB utilises PHEnix 
(https://github.com/phe-bioinformatics/PHEnix) to execute third party 
mapping (e.g. BWA4, Bowtie5) and variant calling (e.g. GATK6, 
MPileup7) software of the users choice.  This VCF is parsed with user 
specified thresholds of mapping quality, mapping depth and variant ratio 
to identify those positions that are of high quality. Polymorphisms that 
do not meet these criteria, positions that have no aligned reads, or invari-
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ant positions with depth or mapping quality less than the specified 
thresholds are termed “ignored positions”.  
 
For each strain, SnapperDB stores the variant positions and the ignored 
positions in a PostgreSQL database, with positions the same as the refer-

ence genome not stored.  If the reference genome is provided in Gen-
Bank format, for each variant detected a set of characteristics about that 
variant is also stored (e.g. coding/non-coding, gene location, synony-
mous/non-synonymous, pseudogene etc).   One utility of SnapperDB is 
the output of high quality variant positions for a user-defined selection of 
strains in FASTA format for phylogenetic inference.  Options to output 
whole genome alignments, or alignments that employ partial or complete 
deletion of missing positions are available.  SnapperDB is compatible 
with the GFF output from recombination detection software such as 

Gubbins8 to mask positions from alignments as required.  
  

Fig. 1.  A.  Illustration of SNP difference between a reference sequence (top row) 

and a set of isolate sequences (remaining row). B.  Single linkage clustering of SNP 

differences into 0, 5 and 10 SNP levels for a set of isolates. C.  Examples of SNP 

addresses based on the seven descending SNP thresholds; 250, 100, 50, 25, 10, 5, 0. 

 
As new strains are added to SnapperDB they are compared to the data-
base and a distance matrix is maintained of pairwise SNP distances.  
Furthermore, this matrix is available for clustering.  Single linkage clus-
tering of genetic distance is an effective method of describing phyloge-
netic groups as it is inclusive of clonal expansion events.  Using hierar-
chical single linkage clustering of pairwise SNP distances we can derive 

an isolate level nomenclature for each genome sequence allowing effi-
cient searching of the population studied as well as facilitating auto-
mated, real-time cluster detection.  Single linkage clustering is per-
formed at seven descending thresholds of SNP distance; 250, 100, 50, 
25, 10 and 0 SNPs.  This clustering results in a discrete seven-digit code 
where each number represents the cluster membership at each descend-
ing SNP distance threshold.  The resultant ‘SNP address’ provides an 
isolate level nomenclature where two isolates with the same SNP ad-
dresses have 0 SNP differences.  The SNP address has become the pri-

mary whole genome sequencing result for the surveillance of food-borne 
pathogens in the England and has been utilised as the case definition in 
international outbreak investigations. 

 
 

3 Conclusions  
Real-time surveillance of infectious disease using WGS data poses chal-
lenges in both result generation and communication.  In this article, we 
introduce SnapperDB an end-to-end solution for processing of FASTQ 
reads to high quality variants that can be stored in a queryable database.  
This application has enabled Public Health England to embark on whole 
genome sequencing pathogen surveillance at a national level for Salmo-

nella, E. coli, Shigella and Listeria sequencing over 20,000 genomes 

over since 2014.  It has enabled us to track persistence sources of Salmo-

nellosis9,10 and facilitated several investigations into outbreaks of Shiga 
Toxin producing E. coli (STEC)11–13.  
 
The SNP address is the first strain level nomenclature, to our knowledge, 
developed for WGS pathogen surveillance and provides a framework for 
cluster identification, definition and investigation.  
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