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Abstract 9	

Motivation: Simulating protein evolution with realistic constraints from population genetics is 10	

essential in addressing problems in molecular evolution, from understanding the forces shaping 11	

the evolutionary landscape to the clinical challenges of antibiotic resistance, viral evolution and 12	

cancer.  13	

Results: To address this need, we present SodaPop, a new forward-time simulator of large 14	

asexual populations aimed at studying their structure, dynamics and the distribution of fitness 15	

effects with flexible assumptions on the fitness landscape. SodaPop integrates biochemical and 16	

biophysical properties in a cell-based, object-oriented framework and provides an efficient, 17	

open-source toolkit for performing large-scale simulations of protein evolution. 18	

Availability and implementation: Source code and binaries are freely available at 19	

https://github.com/louisgt/SodaPop under the GNU GPLv3 license. The software is implemented 20	

in C++ and supported on Linux, Mac OS/X and Windows.  21	

Contact: adrian.serohijos@umontreal.ca 22	

Supplementary information: Supplementary information is available on the Github project 23	

page. 24	

 25	

 26	
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Introduction 28	

Evolution predominantly depends on two causalities - population dynamics and the distribution 29	

of fitness effects (DFE) (Eyre-Walker and Keightley, 2007). Despite the efforts to combine these 30	

two causalities (DePristo et al., 2005; Silander et al., 2007; Goldstein, 2011; Liberles et al., 31	

2012; Goldstein 2013; Serohijos and Shakhnovich, 2016; Echave and Wilke, 2017) there remains 32	

a broad divide between population genetics and protein biophysics, both conceptually and 33	

methodically. Bridging this gap is an essential step towards our understanding of molecular 34	

evolution as a multi-scale process.  35	

An important tool to study molecular evolution and compare outcomes of different 36	

evolutionary scenarios is simulation. Methods to perform forward simulations vary in scope and 37	

flexibility and are generally designed to investigate variety of problems in evolutionary biology 38	

and population genetics such as polymorphism and population structure (Peng and Kimmel, 39	

2005; Padhukasahasram et al., 2008; Hernandez, 2008; Carvajal-Rodriguez, 2008; O’Fallon, 40	

2010; Thornton, 2014). These programs commonly implement features such as linkage and 41	

recombination, specific migration, growth or mating schemes and selection regimes. Notably, 42	

softwares such as OncoSimulR (Diaz-Uriarte, 2017) model the evolution of large asexual 43	

populations, yet enforce strictly biallelic loci on limited sites. Likewise, there are several tools 44	

intended to model protein evolution (Pang et al., 2005; Blackburne and Hirst, 2005; Koestler et 45	

al., 2012; Grahnen and Liberles, 2012; Arenas et al., 2013). However, these programs are 46	

typically aimed at phylogenetic reconstruction and alignment methods testing (Ziheng and 47	

Rannala, 2012). 48	

Regardless of the practicality of current simulation packages in addressing problems in 49	

human and population genetics, very few programs explicitly account for the DFE of proteins or 50	
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integrate multiple scales in their evolutionary framework. Mutation and selection are indeed 51	

separated by increasingly complex levels of biological organization. Studying molecular 52	

evolution also requires accounting for higher-order scales such as systems and population. 53	

Moreover, most molecular evolution simulators enforce a monoclonal regime, which does not 54	

require the continuous tracking of an explicit population, but rather a single lineage. Despite the 55	

higher computational tractability of this approach, evolution in large populations such as 56	

bacterial colonies and malignant tumors is polyclonal, where the dynamics of segregating alleles 57	

is of critical importance (Greaves and Maley, 2012; Lenski, 2017).  58	

Here we introduce SodaPop, an efficient forward-time, object-oriented (OOP) simulator 59	

aimed at studying the evolutionary dynamics of large-scale asexual populations with explicit 60	

genomic sequences. In this framework, the population structure and the DFE of fixed mutations 61	

can be explored simultaneously. Rather than being treated as a distribution (Haller and Messer, 62	

2017; Kim et al., 2017), the DFE of arising mutations can be inputed from protein engineering 63	

methods (Kumar et al., 2006; Yin et al., 2007; Laimer et al., 2015; Jia et al., 2015) or from 64	

exhaustive mutagenesis experiments such as deep mutational scanning (Firnberg et al., 2014; 65	

Fowler and Fields, 2014; Bloom, 2014). Also, SodaPop allows full flexibility in defining fitness 66	

functions from biochemical/biophysical models that describe evolution of proteins. Additionally, 67	

the OOP framework provides a scaffold where further developments can be easily integrated. 68	

To our knowledge, SodaPop is the first publicly available and open source tool to this 69	

end. The main program is implemented in C++ as a command-line tool. We also provide 70	

complementary tools to analyze and visualize simulation results. Source code, binaries and 71	

documentation can be downloaded freely from https://github.com/louisgt/SodaPop under the 72	
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GNU GPLv3 license. Moreover, this software is portable on any POSIX-compliant operating 73	

system, including Linux and Mac OS/X, or on Windows using the Cygwin environment.  74	

 75	

 76	

Methods 77	

SodaPop uses an adapted Wright-Fisher model with selection (Fisher, 1922; Wright, 1931).  78	

Populations are characterized by a top-down organization: cells are dynamic objects comprising 79	

a vector of genes, which are in turn defined by independent properties such as concentration or 80	

abundance, functional essentiality and thermodynamic stability. Genetic sequences evolve 81	

explicitly from one generation to the next, and can be traced back to the ancestral sequence 82	

through an identifier. This hierarchical, object-oriented cell model marks a first step towards a 83	

systems biology framework for the study of evolutionary dynamics. Generations are discrete 84	

time steps in which each cell object gives birth to a number of children drawn from a binomial 85	

distribution with mean equal to the fitness of the parent cell relative to the fitness summed over 86	

all cells (Figure 1). These children form the basis for the next generation of cells. Following the 87	

reproductive phase, the new population is scaled up or down to match the initial population size. 88	

This process is akin to a serial passaging bottleneck experiments (Ebert, 1998; Gullberg et al., 89	

2011). 90	

The program can track all arising mutations during a simulation run to provide the full 91	

history of genetic changes in the population. The program also tracks the associated selection 92	

coefficients, which enables the temporal analysis of the DFE of substitutions. In addition, 93	

SodaPop saves comprehensive snapshots of the population at a user-specified interval. This can 94	

be tuned to an arbitrary granularity to yield an explicit genealogy of sequences and analyze the 95	
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clonal dynamics. The population snapshots can also be used as input for subsequent simulations. 96	

This feature facilitates the recovery of the latest state in a simulation in case of an unexpected 97	

system crash. SodaPop is built upon streamlined data structures and a fast algorithm to achieve 98	

high computational efficiency and to minimize the general trade-off between flexibility and 99	

runtime (Carvajal-Rodriguez, 2008). The program is designed to support large population sizes 100	

and rich substructures to reflect the natural magnitude of bacterial colonies and their intrinsic 101	

dynamics. As such, SodaPop can readily handle simulations in the order of 106 unique cells with 102	

runtimes clocking under a few hours. We can reasonably tune the strength of selection or 103	

mutation rate to achieve higher dynamical scales without incurring a significant computational 104	

penalty.  105	

SodaPop allows users to provide the nature and distribution of fitness effects as well as 106	

the genotype-to-phenotype relationship to use in their simulation. The DFE of arising mutations 107	

can be probabilistic, that is, defined by a distribution chosen by the user (Figure 2A). It can also 108	

be inputted from experiment (Figure 2B) or from computational estimates of biophysical 109	

properties (Figure 2C). The ability to apply a specific fitness function based on input type 110	

(Figure 2D) provides an additional layer of parameterization to the simulation. Altogether, these 111	

capabilities establish a robust framework for the investigation of theoretical and applied 112	

problems alike. 113	

 114	

Results 115	

In this section, we provide some examples of simulations performed by SodaPop. We present 116	

simulations of protein evolution with different population genetics parameters as well as 117	

different fitness functions.   118	
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 119	

Test case I: Population dynamics and fitness trajectories 120	

 An evolutionary simulation with 10 genes in the folate biosynthesis pathway of 121	

Escherichia coli is illustrated in Figure 3. Users may also implement their own fitness function 122	

and incorporate additional protein properties such as catalytic efficiency or relative solvent 123	

accessibility (see Supporting Information for details). One of the major aims of SodaPop is to 124	

model rampant phenomena such as clonal interference and selective sweeps, which contribute 125	

significantly to population dynamics (Elena and Lenski, 2003). The ability to investigate 126	

polyclonal structure and relative fitness is of particular interest for co-culture competition assays 127	

in microbiology (Lenski et al., 1998; Conrad et al., 2011; Melnyk and Kassen, 2011; Dragosits 128	

and Mattanovich, 2013).     129	

 130	

Test case II: Multiple sequence alignment and conservation score 131	

To assess the performance of SodaPop in recapitulating the extent of amino acid conservation for 132	

a protein that is under selection for stability, we compared simulated protein sequences to real 133	

sequence data. It is known from in silico simulations that selection for protein folding stability 134	

using physical force field estimations can reproduce the pattern of sequence conservation in real 135	

biological sequences (Dokholyan and Shakhnovich, 2001; Ding and Dokholyan, 2006). To 136	

construct ensemble of simulated “orthologs”, we first primed a population by evolving it until it 137	

reached a state of dynamic mutation-selection balance (Goyal et al., 2012). We then used the 138	

output to perform 160 independent evolutionary simulations under selection for folding stability. 139	

We ran each simulation for 700,000 generations, ensuring that the distribution of pairwise 140	

sequence identities for simulated proteins matches that of the orthologs. For both sets, the 141	
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distribution is a Gaussian centered around 36% pairwise identity. Because each run produces as 142	

many sequences as there are cells in the population, we narrowed down our set by randomly 143	

sampling 5 sequences from each run for a total of 800 simulated DHFR sequences. For real 144	

orthologous sequences, we retrieved the top 250 hits of a protein BLAST for the 192 amino acid 145	

Candia albicans dihydrofolate reductase (DHFR), from which we excluded sequences longer 146	

than 220 bp. We used the 163 remaining sequences to construct a multiple sequence alignment 147	

using Clustal Omega (Sievers et al., 2011). To compare sequence conservation, we used the 148	

Kullback-Leibler conservation score, which is a measure of relative entropy (Kullback and 149	

Leibler 1951) for each residue z: 150	

𝐾𝐿# = 𝑃& ln
)*
+*

,
&-.       (Equation 1) 151	

where 𝑃& is the observed frequency of amino acid i in that specific residue and 𝑄& is the 152	

background natural frequency of that specific amino acid shared amongst residues in orthologs. 153	

A higher KL score implies a higher conservation of that residue’s identity throughout evolution. 154	

Conversely, when KL is closer to zero, that residue’s identity is frequently substituted. Because 155	

thermodynamic stability is the major evolutionary pressure on DHFR, our computational model 156	

should be able to recapitulate the pattern of native sequence conservation. Indeed, as shown in 157	

Figure 4, the sequence conservation of simulated DHFR sequences is significantly correlated 158	

with real DHFR orthologs.  159	

 160	

Performance and runtime 161	

SodaPop is the first publicly available tool which can effectively simulate multi-scale molecular 162	

evolution and polyclonal population dynamics in an all-encompassing framework. We 163	

benchmarked SodaPop for multiple population sizes and number of generations. All simulations 164	
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were run on a standard iMac desktop with a 3.2GHz Intel Core i5 processor and 16GB memory. 165	

Figure 5 shows that runtime is quasi-monomial with respect to population size. We limited our 166	

desktop benchmarking to N=106 cells, as higher orders of magnitude induce a shift in 167	

performance due to a RAM bottleneck. Explicit simulation of populations with higher orders of 168	

magnitude requires a larger amount of memory than the current standard in commercial desktop 169	

computers. Larger population sizes can be simulated on high-performance computing clusters 170	

where memory allocation is not limiting. However, simulating up to a million cells for long time 171	

periods is entirely tractable using standard desktop computers.  172	

 173	

Conclusion 174	

There are several features that can reduce the required memory for the performance of SodaPop. 175	

First, using a binary encoding of the genetic code should reduce the memory required to store a 176	

single cell by a significant factor without incurring any information loss. Second, collapsing 177	

lineages within a single consensus sequence could also reduce the memory load, at a cost of 178	

information loss. These are currently under development for future versions. Considering the 179	

need to address questions at the interface of molecular evolution and population genetics, and 180	

with most of the current computational methods unable to account for explicit clonal dynamics, 181	

we believe SodaPop provides a comprehensive and extensible framework that can encompass a 182	

wide array of evolutionary scenarios. 183	

 184	
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	311	
Figure 1. Illustration of SodaPop’s core algorithm. The Wright-Fisher process iterates through every cell and 312	
draws the number of children to add to the next generation. These children are mutated with probability Lµ, where L 313	
is the genomic length and µ is the mutation rate. Once the whole parent population has been swapped with daughter 314	
cells, this new generation is rescaled to N cells. 315	

 316	
 317	

 318	

	319	
Figure 2. SodaPop accepts various inputs and fitness functions. (A) Fitness effects can be drawn from a gamma 320	
or normal distribution specified by the user. (B) Fitness effects may take the form of deep mutational scanning 321	
(DMS) substitution matrices for each protein, or (C) biophysical substitution matrices derived from computational 322	
tools. (D) The genotype-to-phenotype mapping is chosen by the user based on input.	323	

A B

D
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	324	
Figure 3. Test case 1: evolution under selection against misfolding toxicity. (A) SodaPop tracks the evolution of 325	
clones concurrently. Each color represents a single lineage identified by a barcode. The information in the left panel 326	
can also be represented as (B) the density of each lineage through time relative to the total population. Both these 327	
representations show pervasive clonal interference and competition.     328	
 329	
 330	
 331	

	332	
Figure 4. Test case 2: evolution under selection for thermodynamic stability.  SodaPop captures a significant 333	
fraction of sequence conservation in DHFR.  334	
 335	
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	337	

	338	
Figure 5. Benchmarking of SodaPop for different population sizes. Runtime of SodaPop with varying population 339	
sizes and simulation length. The time step for each test case was set to 0.01 N. 340	
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