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ABSTRACT:  
Background: Variations in the human oral microbiome are potentially implicated in health inequalities, but existing 
studies of the oral microbiome have minimal sociodemographic diversity.  This study describes sociodemographic varia-
tion of the oral microbiome in a diverse sample of New York City residents. 
Methods: Data come from 296 participants, a subsample of the 2013-14 population-based New York City Health and Nu-
trition Examination Study (NYC-HANES).  Mouthwash samples were processed using using 16S v4 rRNA amplicon se-
quencing. We examined differential abundance of 216 operational taxonomic units (OTUs), in addition to alpha and beta 
diversity amongst sociodemographic variables including age, gender, income, education, nativity, and race/ethnicity.   
Results: A total of 75 OTUs were differentially abundant by any sociodemographic variable (false discovery rate < 0.01), 
including 27 by race/ethnicity, 23 by family income, 20 by education, and five by gender. Genera differing for more than 
one sociodemographic characteristic included Lactobacillus, Prevotella, Porphyromonas, and Fusobacterium. Education 
(p=0.03) and age (p=0.02) were associated with weighted UniFrac distances. 
Discussion: In a diverse sample, we identified variations in the oral microbiome consistent with health inequalities. Fur-
ther investigation is warranted into possible mediating effects of the oral microbiome in social disparities in diabetes, in-
flammation, oral health, and preterm birth. 

Variations in the human oral microbiome are implicated in 
a wide range of health outcomes, but large gaps remain in 
understanding the factors that shape population level vari-
ation. Oral diseases such as caries, gingivitis, and perio-
dontitis are favored by states of dysbiosis in the oral cavity 
(1, 2), involving complex interactions between microbial 

communities and host immunity (3). In addition, a grow-
ing body of evidence links differences in oral microbiota 
structure and function to systemic illness, including birth 
outcomes (4, 5), orodigestive and other cancers (6-9), dia-
betes (10, 11), rheumatoid arthritis (12, 13), atherosclerosis 
(14), coronary heart disease (CHD) (15), and stroke(16). 
While causal evidence is limited, hypothesized pathways 
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for such associations include both direct virulence and 
modulation of systemic immune response (6). 

Health disparities by race/ethnicity, socioeconomic status 
(SES), gender, and other sociodemographic variables have 
long been observed but their mechanisms remain poorly 
understood. In particular, racial/ethnic and socioeconomic 
disparities have been consistently observed in oral health 
outcomes (17), cardiovascular disease (CVD) (18, 19), diabe-
tes (20), preterm birth and low birth weight (21, 22), and 
rheumatoid arthritis (23). 

A number of mechanisms potentially link social inequality 
to the microbiome. The social environment is associated 
with a variety of microbial exposures (24, 25). Changes in 
immune function related to psychosocial stress (26), nutri-
tion (27), smoking (28), or other environmental exposures 
can alter host interactions with microbes. Differences in 
microbiome characteristics may also persist via mother-to-
child transmission (29, 30) and shared built environments 
(31).   These findings have led researchers to call for inves-
tigation into the role of the microbiome in health dispari-
ties (32) but limited research has examined sociodemo-
graphic associations with the oral microbiome.   

The Human Microbiome Project (HMP) collected microbi-
ome samples at nine distinct oral sites on a volunteer sam-
ple in the U.S. with minimal race/ethnic variability (ap-
prox. 80% white) (33, 34). Nonetheless, the HMP found 
differentially abundant taxa comparing non-Hispanic 
white, non-Hispanic black, Asian, Mexican, and Puerto 
Rican ethnicities (35). In another U.S. volunteer sample, 
distinct subgingival microbiomes were identified by 
race/ethnicity, with non-Hispanic blacks having lower mi-
crobiome diversity than other groups (36). In a comparison 
of salivary microbiomes of Cheyenne and Arahapo vs. non-
Native individuals in the U.S., strong bacterial species 
composition clustering, differences in species richness, and 
numerous differentially abundant taxa were found by eth-
nicity (37). Several low-throughput studies examining spe-
cific periodontal pathogens found significant differences in 
abundance and/or presence by race/ethnicity (38-40). To 
our knowledge, only one study has tested associations be-
tween SES and the oral microbiome, finding substantial 
differences (20% of variation) in the bacterial profiles of 
the oral microbiome by municipal-level SES in the Danish 
Health Examination Survey (41). 

In order to explore the relationship between the oral mi-
crobiome and health disparities, population-level socio-
demographic associations must be assessed. Our aim was 
to assess sociodemographic variation in the human salivary 
microbiome.  Specifically, we examined whether bacterial 
taxa were differentially abundant, and whether variation 
existed in alpha and beta diversity by sociodemographic 
characteristics, using high-throughput sequencing data 
from a population-based sample. 

Samples came from the 2013-14 New York City Health and 
Nutrition Examination Survey (NYC HANES-II) previously 
described (42). Briefly, NYC HANES-II was the second 

population-representative, cross-sectional survey of adult 
NYC residents, using a three-stage cluster sampling design. 
Overall response rate was 36% (n=1524). Eligible partici-
pants completed a two-part interview, physical examina-
tion, and blood, urine, and oral mouthwash biospecimen 
collection. Nearly all participants (95%) provided an oral 
mouthwash specimen. NYC HANES-II was approved by the 
City University of New York institutional review board, and 
all subject gave informed consent, including consent to use 
oral mouthwash specimens for future studies. 

The current study uses a 296 NYC HANES-II participants 
selected to examine oral microbiome associations with 
tobacco use. Eligible participants were sampled based on 
self-reported and/or serum cotinine-confirmed smoking 
status as follows: All current hookah, cigar/cigarillo and/or 
e-cigarette users, regardless of cotinine or cigarette smok-
ing (n=79), self-reported cigarette smokers with the high-
est cotinine levels (n=90), and a random subsample of:
former smokers with no secondhand smoke exposure (co-
tinine <0.05 ng/mL, n=45), former/never smokers with
secondhand smoke exposure (cotinine 1-14 ng/mL, n=38),
and never smokers with no secondhand smoke exposure
(cotinine <0.05 ng/mL, n=45).

Oral rinse samples were collected by trained field inter-
viewers, and consisted of a 20-second oral rinse using 15 
mL of Scope© mouthwash. Samples were transported on 
dry ice and stored at -80˚C at a New York City Department 
of Health and Mental Hygiene laboratory, and processed at 
Albert Einstein College of Medicine.  

All laboratory procedures were performed under a hood 
(AirClean Systems) to minimize environmental contamina-
tion and negative controls were used throughout. From 
each oral rinse sample, a 1.5 mL aliquot was centrifuged at 
750 x g for 5 min and all but 150 µl of supernatant was re-
moved. The pellet was re-suspended in the remaining su-
pernatant and incubated in an enzyme mixture consisting 
of lysozyme (0.84 mg/ml, Sigma Aldrich), mutanolysin 
(0.25 U/ml, Sigma Aldrich) and lysostaphin (21.10 U/ml, 
Sigma Aldrich), at 37˚C for 30 minutes. This was followed 
by incubation at 56˚C for 10 minutes in 15 μl proteinase K 
and 150 μl Buffer AL. Samples were then transferred to 
screw top tubes with 100 g of 0.1-mm-diameter Zirco-
nia/Silica Beads (BioSpec) and bead beaten using a 
FastPrep-24 homogenizer (MP Biomedicals) at speed 6.0 
for 40 seconds. Tubes were centrifuged at 750 x g for 30 sec 
and 150 µl of supernatant was added to a new 1.7 ml tube 
with 150 µl of 100% ethanol and mixed by vortexing for 15 
seconds. Supernatant was then added to the spin column 
from the QIAamp DNA mini kit (QIAGEN) and centri-
fuged at 6000 x g for 1 minute. Column purification was 
performed according to the QIAamp DNA mini kit direc-
tions starting at the AWI wash step. Final elution was per-
formed in 100 µl of Buffer AE.  
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DNA was amplified for the V4 variable region of the 16S 
rRNA gene using the primers 16SV4_515F 
(GTGYCAGCMGCCGCGGTA) and 16SV4_806R 
(GGACTACHVGGGTWTCTAAT) (43, 44). Each primer had 
an 8-bp unique Hamming barcode with forward primers 
containing a 3-bp (TCG) and 4-bp (ACTG) pad on either 
side, with reverse primers including a 3-bp (GTA) and 4-bp 
(TC) pad on each side of the barcode (45). PCR reactions 
were performed with 17.75 µl of nuclease-free PCR-grade 
water, 2.5 µl of 10X Buffer w/ MgCl2 (Affymetrix, Santa 
Clara, CA), 1µl of MgCl2 (25 mM, Affymetrix, Santa Clara, 
California, USA), 0.5 µl of dNTPs (10 mM, Roche, Basel, 
Switzerland), 0.25 µl of AmpliTaq Gold DNA Polymerase (5 
U/µl, Applied Biostystems, Foster City, California), 0.5 µl of 
HotStart-IT FideliTaq (2.5 U/µl, Affymetrix, Santa Clara, 
CA), 1µl of each primer (5 µM), and 0.5 µl of DNA extrac-
tion template. Thermal cycling conditions consisted of 
initial denaturation of 95ºC for 5 min, followed by 15 cycles 
of 95ºC for 1 min, 55ºC for 1 min, and 68ºC for 1 min, fol-
lowed by 15 cycles of 95ºC for 1 min, 60ºC for 1 min, and 
68ºC for 1 min, a final extension for 10 min at 68ºC on a 
GeneAmp PCR System 9700 (Applied Biosystems, Foster 
City, CA).  

PCR products were combined before running 100 µl of the 
pooled products on a 4% agarose gel at 80V for 2 hours. 
The ~450 bp bands were excised from the gel and purified 
using a QIAquick Gel Extraction Kit (Qiagen, Hilden, Ger-
many) and eluted in 30 µl of elution buffer. Purified PCR 
products were quantified using a Qubit 2.0 Fluorometic 
High Sensitivity dsDNA Assay (Life Technologies, Carls-
bad, CA). 

Library preparation of the purified PCR products was per-
formed using a KAPA LTP Library Preparation Kit (Kapa 
Biosystems, Wilmington, MA). The size integrity of the 
amplicon was validated with a 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA). High-throughput amplicon 
sequencing was conducted on a MiSeq (Illumina, San Die-
go, CA) using 2x300 paired-end fragments. The fastq se-
quences from the Illumina MiSeq were demultiplexed us-
ing Novobarcode (Novocrat Technologies, Selangor, Ma-
laysia) and the 5’-pads and primers were trimmed from 
each read.  

Bacterial taxa were determined by clustering the 16S rRNA 
sequences into operational taxonomical units (OTUs) us-
ing 97% similarity, taxonomy was assigned at the genus 
level using the SILVA 123 (46) database as reference, ex-
cluding samples with less than 1000 reads. To assess with-
in-genera differences, we determined oligotypes using 62 
positions for Prevotella, 80 for Streptococcus, and 29 for 
Neisseria, and removed oligotypes present in less than 10 
samples (46, 47). 

We compared differences in oral microbiome characteris-
tics by seven sociodemographic factors (race/ethnicity, age 
group, gender, highest level of education completed, in-

come tertile, marital status, nativity) and by four behavior-
al/health measures (self-reported gum disease, mouthwash 
use, smoking status and sugar-sweetened beverage con-
sumption). 

We examined relative abundance, or the proportion of 
total OTU counts accounted for by each taxa, at the phy-
lum and genus levels. To assess differential abundance by 
sociodemographic variables, we used edgeR (48). This 
technique estimates log-linear generalized linear models 
(GLMs) with each OTU as the response, and estimates dis-
persion parameters by sharing information across OTUs by 
empirical Bayes.  Before edgeR, we filtered out OTUs that 
did not have three or more samples with a count of at least 
eight, leaving 216 OTUs for analysis, a filter representing an 
approximate inflection point on the curve of remaining 
OTUs against the minimum count.   We fit edgeR models, 
both crude and adjusted separately for mouthwash use, 
sugar sweetened beverage use, smoking status, age and 
gender.  OTUs were considered differentially abundant at 
false discovery rate (FDR) < 0.01.   

We measured alpha diversity using Chao1 richness (49), 
which we compared by each sociodemographic variable 
using Kruskal-Wallis tests. Beta diversity was assessed us-
ing principal coordinates analysis on weighted UniFrac 
distances (50). Principal coordinates plots were colored by 
each sociodemographic variable and permutation multi-
variate analysis of variance (51) was used to assess group 
differences.  

We performed clustering of samples with respect to OTUs 
using partitioning around medoids on Bray Curtis, Jenson-
Shannon, root-Jenson Shannon, weighted and unweighted 
UniFrac distances (52). Prediction strength (PS) was calcu-
lated for k=2:10 clusters on each distance measure, using 
PS≥0.9 to signify strong support for k clusters (52)  

Statistical analyses were conducted in R version 3.4 (53) for 
Linux, using ‘edgeR’ for differential abundance (48), ‘phy-
loseq’ for ecological diversity measures (54), ‘vegan’ for 
permutation multivariate analysis of variance, (55) and ‘fpc’ 
for clustering (56). 

Table 1 shows sociodemographic variation with respect to 
age (median [range]: 42 [20 to 94]), gender (52.4% female), 
race/ethnicity (34.5% non-Hispanic White, 26.4% non-
Hispanic Black, 25.7% Hispanic), annual family income 
(43% less than $30K, 33.3% $60k or more), and educational 
achievement (23.3% less than high school diploma, 30.4% 
college degree or greater). Figure 1 displays absolute values 
of Cramer’s V, a correlation coefficient for categorical vari-
ables, on all pairwise combinations of sociodemographic 
variables, indicating minor collinearity (all V<.35).  

Relative Abundance and Alpha Diversity 

Oral microbiomes were characterized at the phylum level 
by a gradient between Firmicutes and Bacteroides abun-
dance, with overall dominance by Firmicutes 
(mean=52±10%).  Streptococcus was the most abundant 
genus (36±10%) followed by Prevotella (17±8%). (Figure 2). 

3   Sociodemographic variation in the oral microbiome
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Table 1. Sample demographics and oral health behavioral characteristics of participants in the NYC HANES smoking and oral microbiome 
substudy. 

Oral Microbiome Subsample Full NYC HANES Sample 

Total 296 1527 

Age in years – median [range] 42 [20 to 94] 42 [20 to 97] 

Age group (%) 

20-29 73 (24.7) 360 ( 23.6) 

30-39 64 (21.6) 337 ( 22.1) 

40-49 53 (17.9) 252 ( 16.5) 

50-59 52 (17.6) 264 ( 17.3) 

60 and over 54 (18.2) 314 ( 20.6) 

Gender = Female (%) 155 (52.4) 885 ( 58.0) 

Educational achievement (%) 

 College graduate or more 90 (30.4) 628 ( 41.1) 

 Less than High school diploma 69 (23.3) 316 ( 20.7) 

 High school graduate/GED 65 (22.0) 244 ( 16.0) 

 Some College or associate’s degree 72 (24.3) 337 ( 22.1) 

 Missing 0 ( 0.0) 2 ( 0.1) 

Annual family income (%) 

 $60,000 or more 86 (29.1) 429 ( 28.1) 

 Less Than $30,000 111 (37.5) 537 ( 35.2) 

 $30,000 - $60,000 61 (20.6) 348 ( 22.8) 

 Missing 38 (12.8) 213 ( 13.9) 

Marital Status (%) 

  Married 100 (33.8) 590 ( 38.6) 

  Widowed 16 ( 5.4) 76 ( 5.0) 

  Divorced 24 ( 8.1) 156 ( 10.2) 

  Separated 12 ( 4.1) 51 ( 3.3) 

  Never married 106 (35.8) 511 ( 33.5) 

  Living with partner 38 (12.8) 143 ( 9.4) 

Race/ethnicity (%) 

 Non-Hispanic White 102 (34.5) 513 ( 33.6) 

 Non-Hispanic Black 78 (26.4) 340 ( 22.3) 

 Hispanic 76 (25.7) 390 ( 25.5) 

 Asian 23 ( 7.8) 204 ( 13.4) 

 Other 17 ( 5.7) 80 ( 5.2) 

Place of birth (%) 

 US, PR and Territories 95 (32.1) 668 ( 43.7) 

 Other 199 (67.2) 851 ( 55.7) 

 Missing 2 ( 0.7) 8 ( 0.5) 

Gum disease (self-reported) (%) 

 Yes 27 ( 9.1) 175 ( 11.5) 

 No 268 (90.5) 1322 ( 86.6) 

 Missing 1 ( 0.3) 30 ( 2.0) 

Mouthwash use (times per week) (%) 

 None 119 (40.2) 591 ( 38.7) 

 1 to 5 72 (24.3) 370 ( 24.2) 

 6 to 7 105 (35.5) 565 ( 37.0) 

 Missing 0 ( 0.0) 1 ( 0.1) 

Sugar-sweetened beverages (per week) (%) 

 0-<1 159 (53.7) 217 ( 14.2) 

1-5 70 (23.6) 313 ( 20.5) 

6 or more 66 (22.3) 227 ( 14.9) 

Missing 1 ( 0.3) 770 ( 50.4) 

Smoking status (%) 

 Never smoker 109 (36.8) 928 ( 60.8) 

 Current smoker 119 (40.2) 280 ( 18.3) 

 Former smoker 68 (23.0) 316 ( 20.7) 
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The overall mean chao1 was 462±118, with no differences by 
age group (p=0.823), gender (p=0.102), educational 
achievement (p=0.942), annual family income (p=0.589), 
marital status (p=0.575), race/ethnicity (p=0.189), or nativi-
ty (p=0.655, Figure 3).  

Numerous taxa were differentially abundant by 
race/ethnicity, nativity, marital status, gender, family in-
come tertiles, education, and age groups. Figure 4a dis-
plays log fold change (logFC), or coefficient from edgeR log 
linear models, for each comparison group and all signifi-
cant OTUs. 

A total of 75 OTUs were differentially abundant by any 
sociodemographic variable, including 52 by age group, 27 
by race/ethnicity, 23 by family income, 20 by education, 17 
by marital status, 12 by nativity, and five by gender. We 
also found 11 by mouthwash use, five by self-reported gum 
disease, 53 by smoking status, and 26 by sugar-sweetened 
beverage consumption. The most frequently differentially 
abundant were Lactobacillus (all variables), and Prevotella 
(age, education, family income, marital status, 
race/ethnicity, nativity, Figure 4a) Differential abundance 
findings for selected taxa are presented in Table 2. 

As numerous associations were present at FDR<0.01, we 
focus here on findings where the logFC was 2 or greater. 
Compared to individuals aged 20-34, individuals aged 65 
and over displayed greater abundance of Lactobacillus 
(logFC=2.8, FDR <0.0001), Lactococcus (logFC=2.4, 
FDR=0.0007), Bifidobacterium (logFC=2, FDR=0.0001), and 
Scardovia (logFC=2, FDR=0.0006). Compared to individu-
als with a high school degree or less, those with some col-
lege or an associate’s degree showed greater abundance of 
Lactobacillus (logFC=2, FDR <0.0001). Individuals with 
annual family incomes between $30,000 and $60,000 had 
greater abundance of Lactococcus (logFC=2.6, 
FDR=0.0001), compared to those making less than $30,000. 
Compared to being married, those living with a partner 
showed greater abundance of Atopobium (logFC=2.2, 
FDR=0.003), and Prevotella (logFC=2.1, FDR=0.003), those 
separated showed greater abundance of Leptotrichia 
(logFC=3.1, FDR=0.001), and those who were widowed, 
greater abundance of Pseudomonas (logFC=4.1, FDR 
<0.0001). Compared to non-Hispanic whites, Asians had 
greater abundance of Treponema (logFC=2.3, FDR=0.009), 
and non-Hispanic Blacks had greater abundance of Lacto-
coccus (logFC =2.7, FDR <0.0001), Atopobium (logFC=2.2, 
FDR <0.0001), Anaeroglobus (logFC=2.1, FDR=0.0003), Lac-
tobacillus (logFC=2, FDR <0.0001), and Campylobacter 
(logFC=2, FDR <0.0001). 

Table 2. Differential abundance findings for OTUs selected based on clinical relevance. Greater or lower abundance indicates false dis-
covery rate (FDR) <0.01. 

Genus Greater abundance in: Lower abundance in: 

Prevotella Age group (3 cat) = 35-64 
Education (3 cat) = High School Diploma or Less 
Income (3 cat) = Less Than $30,000 
Income (3 cat) = $30,000 - $60,000 
Marital Status = Living with partner 
Marital Status = Widowed 
Race/ethnicity = Non-Hispanic Black 
Race/ethnicity = Hispanic 
Race/ethnicity = Other 
U.S. vs. foreign-born = Other 

Age group (3 cat) = 65 and over 
Age group (3 cat) = 35-64 
Race/ethnicity = Non-Hispanic Black 

Lactobacillus Age group (3 cat) = 65 and over 
Age group (3 cat) = 35-64 
Education (3 cat) = Some College or Associate’s Degree 
Income (3 cat) = $30,000 - $60,000 
Marital Status = Divorced 
Race/ethnicity = Non-Hispanic Black 

Gender = Female 
Marital Status = Never married 
U.S. vs. foreign-born = Other 

Streptococcus Age group (3 cat) = 65 and over 
Age group (3 cat) = 35-64 
Education (3 cat) = High School Diploma or Less 
Income (3 cat) = $30,000 - $60,000 
Income (3 cat) = Less Than $30,000 

Marital Status = Never married 
Marital Status = Living with partner 

Porphyromonas Age group (3 cat) = 35-64 
Education (3 cat) = High School Diploma or Less 
Income (3 cat) = Less Than $30,000 
Race/ethnicity = Hispanic 
Race/ethnicity = Non-Hispanic Black 

Gender = Female 
Age group (3 cat) = 35-64 
Age group (3 cat) = 65 and over 

Fusobacterium Education (3 cat) = High School Diploma or Less 
Income (3 cat) = Less Than $30,000 
Marital Status = Never married 

Age group (3 cat) = 35-64 
Age group (3 cat) = 65 and over 

Lactococcus Age group (3 cat) = 65 and over 
Education (3 cat) = Some College or Associate’s Degree 
Race/ethnicity = Non-Hispanic Black 

U.S. vs. foreign-born = Other 

5   Sociodemographic variation in the oral microbiome
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Figure 5 displays the distribution of logFCs for both 
crude and adjusted, including all OTUs with FDR 
<0.01 in crude models. Adjusting for smoking, 
mouthwash use, age and gender, had a minor effect 
on crude estimates; however, adjustment for smok-
ing exerts the largest effect on findings for age, in-
come and education. 
Analyzing oligotypes of Neisseria, Prevotella, and 
Streptococcus revealed associations not apparent in 
the OTU analysis, whereas some associations present 
in OTU analysis were not apparent in oligotypes 
(Figure 4). New associations were revealed between 
Prevotella and gender, Streptococcus and gender, 
race/ethnicity and nativity, and Neisseria and gen-
der, age, education, marital status, race/ethnicity and 
nativity. Associations present in OTUs but not in oli-
gotyping were age, education and income in 
Prevotella, and income in Neisseria. 
Oligotype associations within Neisseria for gender, 
race/ethnicity, and nativity are each for a mutually 
exclusive set of taxa, and associations with gender in 
Neisseria, Prevotella, and Streptococcus are all in 
separate taxa from the associations with other socio-
demographic variables. Age group and education had 
unidirectional associations in OTU analysis in Strep-
tococcus but bidirectional differential abundance in 
oligotypes. In Prevotella, race/ethnicity and marital 
status had unidirectional associations in OTU analy-
sis but bidirectional associations in oligotypes. 

Figure 1.  Examining collinearity among sociodemographic variables. Data are absolute value of pairwise Cramer’s V correlation coefficient 
between sociodemographic factor levels. Data are from the full sample (n=1,527) of the New York City Health and Nutrition Examination 
Survey, 2013-2014. Abbreviations: cat=categories; US=United States. 

Figure 2. Genus- and phylum-level relative abundances. Data are per-
cent of overall communities within samples, summarized as mean ± 
standard deviation of percent across samples. Data are from the oral mi-
crobiome subsample (n=296) of the New York City Health and Nutrition 
Examination Survey, 2013-2014.
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Figure 3. Alpha diversity by Sociodemographic Characteristics. Chao1 alpha diversity of 16S rRNA oral microbiome samples. Measures 
were compared using a null hypothesis of no difference between groups (Kruskal-Wallis test, p > 0.1 for all tests). Data are from the 
oral microbiome subsample (n=296) of the New York City Health and Nutrition Examination Survey, 2013-2014. Abbreviations: 
GED=General equivalency diploma; PR=Puerto Rico; US=United States. 

Figure 6 illustrates between-versus within-group 
weighted UniFrac distances by each sociodemographic 
variable. Education (p=0.025, R2=0.020) and age group 
(p=0.018, R2=0.028) were associated with beta diversity, 
with no other variables showing between-group variation. 
Plots of the first two principal coordinates based on 
weighted UniFrac distances showed little patterning by 
any variable (not shown).  Clustering scores were sensi-
tive to the distance metric used, with Bray-Curtis indicat-
ing moderate support for 2 clusters (PS=0.86), and all 
other measures providing little support for clustering. 

In a diverse population-based sample, we found that a 
large number of bacterial taxa were differentially abun-
dant by age group, race/ethnicity, family income, educa-
tion, nativity, and gender.  Notably, we found a greater 
number of associations with SES variables (23 by family 
income, 20 by education) than with gender, marital status 
or nativity. There were more associations with SES than 
mouthwash use (11) or gum disease (5), and a similar 
number of associations were found with sugar-sweetened 
beverage use (26). Sociodemographic associations were 
not appreciably diminished by adjustment for these fac-
tors. We also found that differential abundance by socio-
demographic characteristics differed in oligotyping vs. 
OTUs, especially for Neisseria.  Alpha diversity was simi-

lar across groups, and beta diversity explained only a 
small percent of variance by education (2.0%) and age 
(2.8%), and less by other variables.   We found poor sup-
port for clustering of samples by OTUs, and that, similar-
ly to Koren et al. (2013) (52), clustering findings were sen-
sitive to the distance metric employed.  

Our relative abundance findings are consistent with those 
found in oral microbiome samples in the HMP (Figure 1): 
the most abundant genus was Streptococcus and the most 
abundant phylum was Firmicutes. (35) Streptococcus ap-
pears to be the most frequent genus in oral microbiomes 
worldwide (57). 

Our finding of differentially abundant taxa by 
race/ethnicity is consistent with existing studies. The 
HMP Consortium found that, for all body sites, ethnicity 
was the host phenotypic variable with the most associa-
tions (35).  For the oral microbiome, a study examining 40 
periodontal disease-related taxa found differences among 
Asian, Hispanic, and Blacks (38). Two lower-throughput 
studies found differences by race/ethnicity, including 
greater Prevotella and Porphyromonas prevalence (40), 
and lower Fusobacterium abundance (39) in blacks vs. 
whites. 

We also identified a number of differentially abundant 
taxa by SES, measured by family income and education. 
This is consistent with findings from the Danish Health 
Examination Survey (DANHES, n=292), which found nine 
differentially abundant taxa and differential clustering in  
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the oral microbiome by municipal-level SES (41). Many 
differentially abundant taxa by SES in DANHES were also 
differentially abundant by SES in our study, including 
Streptococcus, Prevotella, Fusobacterium (by education 
and income), Leptotrichia and Neisseria (income), and 
Veillonella (education), although many of the associa-
tions were in the opposite direction.  The difference in 
direction could be explained by exclusion of participants 
with oral disease in DANHES, which may have artificially 
selected a low SES population with more protective oral 
microbial profiles.  

While existing oral microbiome studies are limited, the 
absence of differences in alpha and beta diversity by de-
mographic groups contrasts with previous findings. A 
study comparing oral profiles of non-Hispanic Black, non-
Hispanic white, Latinos, and Chinese individuals in the 
U.S. found lower alpha diversity in non-Hispanic blacks, 
along with ethnicity-based clustering (36). A comparison 

of oral microbiomes in Cheyenne and Arahapo vs. non-
native individuals of primarily Euro-American ancestry 
found higher alpha diversity in the latter along with eth-
nicity-based clustering (37).  

Many genera found differentially abundant by multiple 
variables represent taxa that have documented associa-
tions with health and disease. Streptococcus, Lactobacil-
lus (58) and Prevotella (59) are implicated in caries, while 
Fusobacterium and Streptococcus levels reflect different 
stages in gingivitis (60). Pathogens with potentially causal 
associations with periodontitis include Prevotella, Por-
phyromonas, and Fusobacterium spp (61, 62).  Further, 
each of these organisms likely play a role in wide ranging 
systemic conditions (6). Porphyromonas gingivalis is a 
key determinant of oral microbiome structure (63) reflec-
tive of its ability to disrupt homeostasis of the oral ecosys-
tem (64). 

Figure 4. Differential abundance by sociodemographic characteristics. OTUs (A) and oligotypes (B) meeting unadjusted FDR < 0.01 in 
negative binomial log-linear GLMs using edgeR. Filled tiles in (A) indicate the genus had at least one OTU differentially abundant by 
at least one coefficient contrast within the sociodemographic factor. Where more than one OTU was significant within one genus, the 
maximum logFC is displayed. Most commonly differential genera in (A) included Prevotella (n=8) and Lactobacillus (n=7). Data are 
from the oral microbiome subsample (n=296) of the New York City Health and Nutrition Examination Survey, 2013-2014. Abbrevia-
tions: cat=categories; GLM=generalized linear model; logFC=log fold change; OTU=operational taxonomic unit; US=United States. 
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P. gingivalis in the oral cavity is hypothesized to mediate
an array of systemic pathogenic processes (6), and has
associations with stroke (16), CHD (15), a number of can-
cers (65) including pancreatic (8) and orodigestive (9),
and likely plays a role in rheumatoid arthritis (13).  In our
sample, Porphyromonas is more abundant in Hispanics
and non-Hispanic blacks compared to non-Hispanic
whites, and less abundant in people earning $60k or more
per year, or with some college or more compared to those
with lower income or education.

Another differentially abundant organism, Fusobacterium 
nucleatum is increasingly linked to colorectal cancer (66, 
67), an association likely mediated by systemic inflamma-
tion (68, 69). F. nucleatum is implicated in adverse preg-
nancy outcomes, CVD and rheumatoid arthritis, via di-
rect virulence and systemic inflammation (69).  Fusobac-
terium has associations consistent with socioeconomic 
disparities in our sample—it is decreased in those earning 
$60k or more and those with a college degree or greater. 
A few studies also link Prevotella spp. and rheumatoid 
arthritis (13), Streptococcus anginosis with esophageal 
cancer (70), and Lactococcus lactis with inflammatory 
markers (71).  

Despite the strength of NYC-HANES as a diverse popula-
tion-based sample, the cross-sectional design limits in its 
ability to test the oral microbiome as a mediator in health 
disparities. Since changes in the oral microbiome may 
reflect existing disease rather than etiological factors, 

Figure 5.  Distribution of absolute values of log-fold change (logFC) in crude and adjusted negative binomial log-linear GLMs edgeR 
models for each sociodemographic variable. Data are from the oral microbiome subsample (n=296) of the New York City Health and 
Nutrition Examination Survey, 2013-2014. Abbreviations: GLM=generalized linear model; logFC=log fold change; US=United States. 

Figure 6. Within and between group beta diversity estimate distri-
butions. Data are from the oral microbiome subsample (n=296) of 
the New York City Health and Nutrition Examination Survey, 2013-
2014. Abbreviations: cat=category. 
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prospective studies are needed to test the oral microbi-
ome as a mediator. Additionally, our findings are limited 
by having primarily genus-level information. P. gingivalis, 
F. nucleatum, and P. intermedia are best characterized in
literature supporting a possible etiologic role in oral and
systemic health, but we are unable to confirm differences
in the species. There may also be variability in virulence
at the species level, as is the case with P. gingivalis (64).

Given the importance of many of the differentially abun-
dant genera in health and disease, our findings suggest 
that further investigation into mediation of health dispar-
ities by oral microbial factors is warranted.  Future inves-
tigations should consider use of whole genome shotgun 
(WGS) or other methods able to reliably classify at the 
species level, given our finding that oligotypes of 
Prevotella show differential abundance patterns that were 
not seen using 16S analysis.  
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audrey.renson@nyumc.org 

The individual author contributions are as follows: HEJ, LW, 
LT, RB, and JD conceptualized and designed the study; AR, 
FB, NS, and LW led data analysis and data visualization; RB, 
CPZ, MU, and TUM led specimen processing and 16S data 
generation; AR wrote first draft of manuscript; and all au-
thors contributed to editing/revisions on manuscript.  
We gratefully acknowledge the efforts of the New York City 
Department of Health and Mental Hygiene in co-leading the 
parent NYC HANES study. In particular, we wish to thank 
Sharon Perlman, Carolyn Greene, Claudia Chernov, Amado 
Punsalang, and the many other staff who helped support 
data collection. 

1. Curtis MA, Zenobia C, Darveau RP. The relationship of the
oral microbiotia to periodontal health and disease. Cell Host
Microbe 2011;10(4):302-6.

2. Darveau RP. Periodontitis: a polymicrobial disruption of host
homeostasis. Nat Rev Microbiol 2010;8(7):481-90.

3. Devine DA, Marsh PD, Meade J. Modulation of host responses
by oral commensal bacteria. J Oral Microbiol 2015;7:26941.

4. Buduneli N, Baylas H, Buduneli E, et al. Periodontal infections
and pre-term low birth weight: a case-control study. J Clin
Periodontol 2005;32(2):174-81.

5. Fardini Y, Chung P, Dumm R, et al. Transmission of diverse
oral bacteria to murine placenta: evidence for the oral
microbiome as a potential source of intrauterine infection.
Infect Immun 2010;78(4):1789-96.

6. Atanasova KR, Yilmaz Ö. Prelude to oral microbes and 
chronic diseases: past, present and future. Microbes Infect
2015;17(7):473-83.

7. Hooper SJ, Crean S-J, Fardy MJ, et al. A molecular analysis of
the bacteria present within oral squamous cell carcinoma. J 
Med Microbiol 2007;56(Pt 12):1651-9. 

8. Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome
and prospective risk for pancreatic cancer: a population-based
nested case-control study [electronic article]. Gut. Advance
Access: 2016/10/14. (DOI:10.1136/gutjnl-2016-312580).

9. Ahn J, Segers S, Hayes RB. Periodontal disease,
Porphyromonas gingivalis serum antibody levels and
orodigestive cancer mortality. Carcinogenesis 2012;33(5):1055-
8.

10. Gurav A, Jadhav V. Periodontitis and risk of diabetes mellitus. 
J Diabetes 2011;3(1):21-8.

11. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a
tale of two common interrelated diseases. Nat Rev Endocrinol
2011;7(12):738-48.

12. Bingham CO, 3rd, Moni M. Periodontal disease and
rheumatoid arthritis: the evidence accumulates for complex
pathobiologic interactions. Curr Opin Rheumatol
2013;25(3):345-53.

13. Ogrendik M. Rheumatoid arthritis is an autoimmune disease
caused by periodontal pathogens. Int J Gen Med 2013;6:383-6.

14. Lockhart PB, Bolger AF, Papapanou PN, et al. Periodontal
disease and atherosclerotic vascular disease: does the evidence
support an independent association?: a scientific statement
from the American Heart Association. Circulation
2012;125(20):2520-44. 

15. Pussinen PJ, Jousilahti P, Alfthan G, et al. Antibodies to
periodontal pathogens are associated with coronary heart
disease. Arterioscler Thromb Vasc Biol 2003;23(7):1250-4.

16. Pussinen PJ, Alfthan G, Jousilahti P, et al. Systemic exposure
to Porphyromonas gingivalis predicts incident stroke.
Atherosclerosis 2007;193(1):222-8.

17. Huang DL, Park M. Socioeconomic and racial/ethnic oral
health disparities among US older adults: oral health quality
of life and dentition. J Public Health Dent 2015;75(2):85-92.

18. Karlamangla AS, Merkin SS, Crimmins EM, et al.
Socioeconomic and ethnic disparities in cardiovascular risk in
the United States, 2001-2006. Ann Epidemiol 2010;20(8):617-
28.

19. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and 
stroke statistics—2017 update: A report from the American 
Heart Association. Circulation 2017;135(10):e146-e603.

20. Beckles GL, Chou C-F. Disparities in the prevalence of
diagnosed diabetes - United States, 1999-2002 and 2011-2014.
MMWR Morb Mortal Wkly Rep 2016;65(45):1265-9.

21. Crawford S, Joshi N, Boulet SL, et al. Maternal racial and
ethnic disparities in neonatal birth outcomes with and 
without assisted reproduction. Obstet Gynecol
2017;129(6):1022-30.

22. Martinson ML, Reichman NE. Socioeconomic inequalities in
low birth weight in the United States, the United Kingdom, 
Canada, and Australia. Am J Public Health 2016;106(4):748-54.

23. McBurney CA, Vina ER. Racial and ethnic disparities in
rheumatoid arthritis. Curr Rheumatol Rep 2012;14(5):463-71.

24. Cohen JM, Wilson ML, Aiello AE. Analysis of social
epidemiology research on infectious diseases: historical
patterns and future opportunities. J Epidemiol Community
Health 2007;61(12):1021-7.

25. Aiello AE, Dowd JB. Socio-economic Status and
Immunosenescence. Immunosenescence: Springer, New York, 
NY, 2013:145-57.

26. Bosch JA, Turkenburg M, Nazmi K, et al. Stress as a
determinant of saliva-mediated adherence and coadherence of
oral and nonoral microorganisms. Psychosom Med 
2003;65(4):604-12.

27. Kato I, Vasquez A, Moyerbrailean G, et al. Nutritional
correlates of human oral microbiome. J Am Coll Nutr 
2017;36(2):88-98.

28. Wu J, Peters BA, Dominianni C, et al. Cigarette smoking and
the oral microbiome in a large study of American adults. The
ISME journal 2016;10(10):2435-46.

29. Corby PM, Bretz WA, Hart TC, et al. Heritability of oral
microbial species in caries-active and caries-free twins. Twin
Res Hum Genet 2007;10(6):821-8.

Renson et al.   10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/189225doi: bioRxiv preprint 

https://doi.org/10.1101/189225
http://creativecommons.org/licenses/by-nc-nd/4.0/


30. Li Y, Ismail AI, Ge Y, et al. Similarity of bacterial populations
in saliva from African-American mother-child dyads. J Clin
Microbiol 2007;45(9):3082-5.

31. Lax S, Smith DP, Hampton-Marcell J, et al. Longitudinal
analysis of microbial interaction between humans and the
indoor environment. Science 2014;345(6200):1048-52.

32. Findley K, Williams DR, Grice EA, et al. Health disparities and
the microbiome. Trends Microbiol 2016;24(11):847-50.

33. Aagaard K, Petrosino J, Keitel W, et al. The Human
Microbiome Project strategy for comprehensive sampling of
the human microbiome and why it matters. FASEB J 
2013;27(3):1012-22.

34. Segata N, Haake SK, Mannon P, et al. Composition of the
adult digestive tract bacterial microbiome based on seven
mouth surfaces, tonsils, throat and stool samples. Genome
biology 2012;13(6):R42.

35. Human Microbiome Project C. Structure, function and
diversity of the healthy human microbiome. Nature 
2012;486(7402):207-14.

36. Mason MR, Nagaraja HN, Camerlengo T, et al. Deep
sequencing identifies ethnicity-specific bacterial signatures in
the oral microbiome. PloS one 2013;8(10):e77287.

37. Ozga AT, Sankaranarayanan K, Tito RY, et al. Oral
microbiome diversity among Cheyenne and Arapaho
individuals from Oklahoma. Am J Phys Anthropol
2016;161(2):321-7.

38. Craig RG, Boylan R, Yip J, et al. Prevalence and risk indicators
for destructive periodontal diseases in 3 urban American 
minority populations.pdf. J Clin Periodontal 2001(28):524-35.

39. Schenkein HA, Burmeister JA, Koertge TE, et al. The influence
of race and gender on periodontal microflora. J Periodontol
1993;64(4):292-6.

40. Beck JD, Koch GG, Zambon JJ, et al. Evaluation of oral bacteria
as risk indicators for periodontitis in older adults. J
Periodontol 1992;63(2):93-9.

41. Belstrøm D, Holmstrup P, Nielsen CH, et al. Bacterial profiles
of saliva in relation to diet, lifestyle factors, and
socioeconomic status. J Oral Microbiol 2014;6.

42. Thorpe LE, Greene C, Freeman A, et al. Rationale, design and
respondent characteristics of the 2013-2014 New York City
Health and Nutrition Examination Survey (NYC HANES 2013-
2014). Prev Med Rep 2015;2:580-5.

43. Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of
16S rRNA diversity at a depth of millions of sequences per
sample. Proceedings of the National Academy of Sciences of
the United States of America 2011;108 Suppl 1:4516-22.

44. Wang Y, Qian PY. Conservative fragments in bacterial 16S
rRNA genes and primer design for 16S ribosomal DNA
amplicons in metagenomic studies. PloS one 2009;4(10).

45. Hamady M, Walker JJ, Harris JK, et al. Error-correcting
barcoded primers allow hundreds of samples to be
pyrosequenced in multiplex. Nature methods 2008;5(3):235-7.

46. Glöckner FO, Yilmaz P, Quast C, et al. 25 years of serving the
community with ribosomal RNA gene reference databases and 
tools. J Biotechnol 2017;261.

47. Eren AM, Maignien L, Sul WJ, et al. Oligotyping: 
Differentiating between closely related microbial taxa using
16S rRNA gene data. Methods Ecol Evol 2013;4(12).

48. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a
Bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics 2010;26(1):139-40.

49. Chao A. Nonparametric estimation of the number of classes in 
a population. Scandinavian Journal of statistics 1984:265-70.

50. Lozupone C, Knight R. UniFrac: a new phylogenetic method
for comparing microbial communities. Applied and
environmental microbiology 2005;71(12):8228-35.

51. Anderson MJ. A new method for non-parametric multivariate
analysis of variance. Austral ecology 2001;26(1):32-46.

52. Koren O, Knights D, Gonzalez A, et al. A guide to enterotypes
across the human body: meta-analysis of microbial
community structures in human microbiome datasets. PLoS
Comput Biol 2013;9(1):e1002863.

53. Team RC. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria 2017.

54. McMurdie PJ, Holmes S. phyloseq: An R package for 
reproducible interactive analysis and graphics of microbiome
census data. PloS one 2013;8(4):e61217.

55. Oksanen J, Blanchet G, Friendly M, et al. vegan: Community
ecology package. 2017.

56. Hennig C. fpc: Flexible procedures for clustering.  2015.
57. Nasidze I, Li J, Quinque D, et al. Global diversity in the human

salivary microbiome. Genome Res 2009;19(4):636-43.
58. Takahashi N, Nyvad B. The role of bacteria in the caries

process: ecological perspectives. J Dent Res 2011;90(3):294-303.
59. Yang F, Zeng X, Ning K, et al. Saliva microbiomes distinguish

caries-active from healthy human populations. ISME J
2012;6(1):1-10.

60. Al-Ahmad A, Wunder A, Auschill TM, et al. The in vivo
dynamics of Streptococcus spp., Actinomyces naeslundii,
Fusobacterium nucleatum and Veillonella spp. in dental
plaque biofilm as analysed by five-colour multiplex
fluorescence in situ hybridization. J Med Microbiol 2007;56(Pt
5):681-7.

61. Zijnge V, van Leeuwen MBM, Degener JE, et al. Oral biofilm
architecture on natural teeth. PloS one 2010;5(2):e9321.

62. Gursoy UK, Könönen E, Uitto V-J, et al. Salivary interleukin-
1beta concentration and the presence of multiple pathogens in 
periodontitis. J Clin Periodontol 2009;36(11):922-7.

63. Hajishengallis G. Periodontitis: from microbial immune
subversion to systemic inflammation. Nat Rev Immunol
2015;15(1):30-44.

64. Tribble GD, Kerr JE, Wang B-Y. Genetic diversity in the oral
pathogen Porphyromonas gingivalis: molecular mechanisms
and biological consequences. Future Microbiol 2013;8(5):607-
20.

65. Atanasova KR, Yilmaz O. Looking in the Porphyromonas
gingivalis cabinet of curiosities: the microbium, the host and
cancer association. Mol Oral Microbiol 2014;29(2):55-66.

66. Flanagan L, Schmid J, Ebert M, et al. Fusobacterium
nucleatum associates with stages of colorectal neoplasia 
development, colorectal cancer and disease outcome. Eur J 
Clin Microbiol Infect Dis 2014;33(8):1381-90.

67. Mima K, Nishihara R, Qian ZR, et al. Fusobacterium
nucleatum in colorectal carcinoma tissue and patient
prognosis. Gut 2016;65(12):1973-80.

68. Warren RL, Freeman DJ, Pleasance S, et al. Co-occurrence of
anaerobic bacteria in colorectal carcinomas. Microbiome
2013;1(1):16.

69. Han YW. Fusobacterium nucleatum: a commensal-turned
pathogen. Curr Opin Microbiol 2015;23:141-7.

70. Morita E, Narikiyo M, Yano A, et al. Different frequencies of
Streptococcus anginosus infection in oral cancer and
esophageal cancer. Cancer Sci 2003;94(6):492-6.

71. Luerce TD, Gomes-Santos AC, Rocha CS, et al. Anti-
inflammatory effects of Lactococcus lactis NCDO 2118 during
the remission period of chemically induced colitis. Gut Pathog
2014;6:33.

11   Sociodemographic variation in the oral microbiome

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/189225doi: bioRxiv preprint 

https://doi.org/10.1101/189225
http://creativecommons.org/licenses/by-nc-nd/4.0/



