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1 1 Abstract 
2 1.1 Purpose

3 Variations in the oral microbiome are potentially implicated in social inequalities in oral disease, 
4 cancers, and metabolic disease. We describe sociodemographic variation of oral microbiomes 
5 in a diverse sample.

6 1.2 Methods

7 We performed 16S rRNA sequencing on mouthwash specimens in a subsample (n=282) of the 
8 2013-14 population-based New York City Health and Nutrition Examination Study (NYC-HANES). 
9 We examined differential abundance of 216 operational taxonomic units (OTUs), and alpha and 

10 beta diversity by age, sex, income, education, nativity, and race/ethnicity. For comparison, we 
11 also examined differential abundance by diet, smoking status, and oral health behaviors.

12 1.3 Results

13 69 OTUs were differentially abundant by any sociodemographic variable (false discovery rate < 
14 0.01), including 27 by race/ethnicity, 21 by family income, 19 by education, three by sex. We 
15 also found 49 differentially abundant by smoking status, 23 by diet, 12 by oral health behaviors. 
16 Genera differing for multiple sociodemographic characteristics included Lactobacillus, 
17 Prevotella, Porphyromonas, Fusobacterium. 

18 1.4 Conclusions

19 We identified oral microbiome variation consistent with health inequalities, with more taxa 
20 differing by race/ethnicity than diet, and more by SES variables than oral health behaviors. 
21 Investigation is warranted into possible mediating effects of the oral microbiome in social 
22 disparities in oral, metabolic and cancers. 

23 Keywords
24 oral microbiome; health disparities; demographics; social epidemiology

25 List of abbreviations
26 SES, socioeconomic status; CHD, coronary heart disease; CVD, cardiovascular disease; NYC HANES, New 
27 York City Health and Nutrition Examination Survey; OTU, operational taxonomic unit; FDR, false 
28 discovery rate; PS, prediction strength; logFC, log fold change; HMP, Human Microbiome Project
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3

1 Highlights
2  Most microbiome studies to date have had minimal sociodemographic variability, 
3 limiting what is known about associations of social factors and the microbiome. 

4  We examined the oral microbiome in a population-based sample of New Yorkers with 
5 wide sociodemographic variation.

6  Numerous taxa were differentially abundant by race/ethnicity, income, education, 
7 marital status, and nativity.

8  Frequently differentially abundant taxa include Porphyromonas, Fusobacterium, 
9 Streptococcus, and Prevotella, which are associated with oral and systemic disease.

10  Mediation of health disparities by microbial factors may represent an important 
11 intervention site to reduce health disparities, and should be explored in prospective 
12 studies.
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1 2 Introduction
2
3 Health disparities by race/ethnicity, socioeconomic status (SES), sex, and other 
4 sociodemographic factors have long been observed but their mechanisms have yet to be fully 
5 elucidated. In particular, racial/ethnic and socioeconomic disparities have been consistently 
6 observed in oral health outcomes (1), cardiovascular disease (CVD) (2, 3), diabetes (4), preterm 
7 birth and low birth weight (5, 6), and rheumatoid arthritis (7).
8
9 Variations in human oral microbiome structure and function have been associated with oral 

10 disease (8, 9), as well as a wide range of systemic illnesses including CVD (10-12), diabetes (13, 
11 14), cancers (15-18), birth outcomes (19, 20), and rheumatoid arthritis (21, 22). Hypothesized 
12 pathways for such associations include both direct virulence and modulation of systemic 
13 immune response (15), although causal evidence is limited. Also, regardless of their causal role, 
14 the microbiota represent potentially useful biomarkers for early disease detection and risk 
15 prediction.
16
17 This combination of findings has led researchers to call for investigation into the role of the 
18 microbiome in health disparities (23) but little empirical work has yet been done in this area. A 
19 number of mechanisms potentially link social inequality to the microbiome (24). Mechanisms 
20 linking the social environment to microbe exposure have been discussed in relation to common 
21 pathogens such as CMV and EBV; these may include household crowding, use of public 
22 transportation, and differences in susceptibility due to e.g. breastfeeding (antibodies) and poor 
23 sleep (25, 26), mechanisms which may apply to commensal microbes as well. Changes in 
24 immune function related to psychosocial stress (27), nutrition (28), smoking (29), or other 
25 environmental exposures can alter host interactions with microbes. Differences in microbiome 
26 characteristics may also persist via mother-to-child transmission, as infant microbiomes are 
27 seeded from the birth canal and/or breastfeeding (30, 31). Further, social network homophily 
28 and shared built environments may represent reservoirs of shared microbiota membership 
29 (32).  

30 So far, limited research has examined sociodemographic associations with the oral microbiome. 
31 The Human Microbiome Project (HMP) collected microbiome samples at nine distinct oral sites 
32 on a volunteer sample in the U.S. with minimal race/ethnic variability (approx. 80% white) (33, 
33 34). Nonetheless, the HMP found differentially abundant taxa comparing non-Hispanic white, 
34 non-Hispanic black, Asian, Mexican, and Puerto Rican ethnicities (35). In another U.S. volunteer 
35 sample, distinct subgingival microbiomes were identified by race/ethnicity, with non-Hispanic 
36 blacks having lower microbiome diversity than other groups (36). In a comparison of salivary 
37 microbiomes of Cheyenne and Arahapo vs. non-Native individuals in the U.S., strong bacterial 
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1 species composition clustering, differences in species richness, and numerous differentially 
2 abundant taxa were found by ethnicity (37). Several low-throughput studies examining specific 
3 periodontal pathogens found significant differences in abundance and/or presence by 
4 race/ethnicity (38-40). To our knowledge, only one study has tested associations between SES 
5 and the oral microbiome, finding substantial differences (20% of variation) by municipal-level 
6 SES in the Danish Health Examination Survey (41).

7 In order to explore the relationship between the oral microbiome and health disparities, 
8 population-level sociodemographic associations must be assessed. Our aim was to assess 
9 sociodemographic variation in the human salivary microbiome.  Specifically, we examined 

10 whether bacterial taxa were differentially abundant, and whether variation existed in alpha and 
11 beta diversity by sociodemographic characteristics using high-throughput sequencing data from 
12 a population-based sample.

13 3 Methods
14

15 3.1 Data Source

16 Samples came from the 2013-14 New York City Health and Nutrition Examination Survey (NYC 
17 HANES-II) previously described (42). Briefly, the 2013-14 NYC HANES was the second 
18 population-representative, cross-sectional survey of adult NYC residents, using a three-stage 
19 cluster sampling design. Overall response rate was 36% (n=1524). Eligible participants 
20 completed a two-part interview, physical examination, and blood, urine, and oral mouthwash 
21 biospecimen collection. Nearly all participants (95%) provided an oral mouthwash specimen. 
22 This study was approved by the institutional review boards of the City University of New York 
23 and the New York City Department of Health and Mental Hygiene, and all participants gave 
24 informed consent.  Participants providing mouthwash specimens in the current sub-study also 
25 consented to use these specimens in future studies.

26 3.2 Subsample Selection

27 The current study uses 297 NYC HANES participants selected to examine oral microbiome 
28 associations with tobacco use, as described elsewhere [CITATION PENDING – Beghini 2018 
29 Companion Paper]. Briefly, we selected the 90 self-reported current cigarette smokers with the 
30 highest serum cotinine, 45 randomly selected never smokers with serum cotinine <0.05 ng/mL, 
31 45 randomly selected former smokers with serum cotinine <0.05 ng/mL, all 38 former and 
32 never smokers with serum cotinine between 1 and 14 ng/mL, and 79 participants reporting 
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1 usage of hookah, cigar, cigarillo and/or e-cigarette in the last 5 days. Descriptive statistics in the 
2 subsample and overall NYC HANES sample are presented in Table 1. 

3 3.3 Oral rinse collection and microbiome sample processing

4 Participants were asked to fast for 9 hours prior to oral rinse collection. A 20-second oral rinse 
5 was divided into two 5-second swish and 5-second gargle sessions using 15 mLs of Scope® 
6 mouthwash. After each session, participants expectorated the rinse into a sterile cup. Timers 
7 built into the computer-assisted personal interview program signaled the timing of the swish, 
8 gargle and expectoration. Oral rinse specimens were stored cold before delivery to the New 
9 York Public Health Laboratory where they were transferred into 50 mL centrifuge tubes, frozen 

10 and stored at -80°C. The oral rinse samples were then transported on dry ice to Albert Einstein 
11 College of Medicine, where they were stored at -80˚C until processing.

12 Specimen processing and sequence analysis methods are described in detail in the appendix. 
13 Briefly, we extracted DNA using QIAamp DNA mini kit (QIAGEN), and amplified DNA in the V4 
14 region of the 16S rRNA using primers 16SV4_515F (GTGYCAGCMGCCGCGGTA) and 16SV4_806R 
15 (GGACTACHVGGGTWTCTAAT) (38,39), followed by amplicon sequencing using a MiSeq 
16 (Illumina, San Diego, CA) with 2x300 paired-end fragments. We analyzed 16S reads using QIIME 
17 version 1.9.1 (40) and Phyloseq (41). We merged raw Illumina paired-end reads using the QIIME 
18 command fastq-join (42), and discarded any resulting low quality reads (PHRED score < 30) 
19 when joining the split reads (qiime split_libraries_fastq.py). We performed open-reference 
20 Operational Taxonomic Unit (OTU) picking by clustering using UCLUST at 97% sequence 
21 similarity, and we assigned taxonomy using the SILVA 123 (43) database. We removed samples 
22 with less than 1000 reads (n=15) from the OTU table and collapsed genera present with a mean 
23 relative abundance of less than 2 ✕ 10-4 into a category labelled “Other.” (43-46) 

24 3.4 Statistical Analysis

25 We compared differences in oral microbiome characteristics by seven sociodemographic 
26 factors (race/ethnicity, age, group, sex, educational attainment, income tertiles, marital status, 
27 nativity) and by several behavioral/oral health measures: diet (sugar sweetened beverages, 
28 meat, poultry, fish, vegetables, and fruits, recorded as times consumed in the past week); oral 
29 health behaviors (mouthwash use, flossing, time since last dental visit) and smoking status 
30 (categories defined above). We assessed pairwise correlation between sociodemographic 
31 variables using Cramer’s V, a correlation coefficient for nominal variables. 

32 To assess differential abundance by sociodemographic variables, we used edgeR (47) to 
33 estimate a series of log-linear generalized linear models (GLMs) predicting each OTU 
34 abundance. OTUs were considered differentially abundant at false discovery rate (FDR) < 0.01.  
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1 Before edgeR, we filtered out OTUs that did not have three or more samples with a count of at 
2 least eight, leaving 216 OTUs for analysis, a filter representing an approximate inflection point 
3 on the curve of remaining OTUs against the minimum count.   To examine potential mediators, 
4 we fit crude models as well as models adjusted for oral health behaviors, diet, smoking status, 
5 and age and sex (when applicable). edgeR was conducted at the taxonomic level of highest 
6 specificity allowed, which was the genus in all cases where FDR was less than 1%; therefore 
7 differential abundance findings are presented at the genus level. 

8 We measured alpha diversity using Chao1 richness (48), which we compared by each 
9 sociodemographic variable using Kruskal-Wallis tests. Beta diversity was assessed using 

10 principal coordinates analysis and permutation multivariate analysis of variance (PERMANOVA) 
11 (49) on weighted UniFrac distances (50). To ensure results were not driven by selection on 
12 smoking status, we also compared alpha and beta diversity adjusting for smoking status. 

13 We performed clustering of samples with respect to OTUs using partitioning around medoids 
14 on Bray Curtis, Jenson-Shannon, root-Jenson Shannon, weighted and unweighted UniFrac 
15 distances (51). Prediction strength (PS) was calculated for k=2:10 clusters on each distance 
16 measure, using PS≥0.9 to signify strong support for k clusters (51).  

17 Statistical analyses were conducted in R version 3.4 (52) for Linux.

18 4 Results
19

20 4.1 Descriptive Statistics

21 The initial subsample included 297 participants; after removing samples with less than 1000 
22 reads, there were 282 participants remaining for analysis. Table 1 shows descriptive statistics 
23 for sociodemographic characteristics including age (median [range]: 42 [20 to 94]), sex (53.2% 
24 female), race/ethnicity (34.4% non-Hispanic White, 26.6% non-Hispanic Black, 25.2% Hispanic), 
25 annual family income (42.7% less than $30K, 33.3% $60k or more), and educational 
26 achievement (23.0% less than high school diploma, 30.9% college degree or greater). Cramer’s 
27 V on all pairwise combinations of sociodemographic variables showed only minor collinearity 
28 (all V<.35) (Figure A1), indicating associations with the microbiome for each sociodemographic 
29 variable do not merely reflect correlations between sociodemographic variables. 

30 4.2 Relative Abundance and Alpha Diversity

31 Oral microbiomes were characterized at the phylum level by a gradient between Firmicutes and 
32 Bacteroides abundance, with overall dominance by Firmicutes (mean=52±10%). Streptococcus 

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/189225doi: bioRxiv preprint 

https://doi.org/10.1101/189225
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

1 was the most abundant genus (36±10%) followed by Prevotella (17±8%). (Figure 1). The overall 
2 mean Chao1 was 462±118, with no differences by age group (p=0.79), sex (p=0.13), educational 
3 achievement (p=0.92), annual family income (p=0.62), marital status (p=0.54), race/ethnicity 
4 (p=0.13), or nativity (p=0.97) (Figure A2). These results were not changed by adjustment for 
5 smoking.

6 4.3 Differential Abundance

7 Numerous taxa were differentially abundant by race/ethnicity, nativity, marital status, gender, 
8 family income, education, and age. Figure 2 displays log-base-2 fold change (logFC), or 
9 coefficient from edgeR log linear models, for each comparison group and all significant OTUs. 

10 The logFC can be interpreted as the log-base-2 ratio of relative abundance compared to the 
11 reference group, so that e.g. Lactobacillus is found to be 22.5 = 5.7 times as abundant among 
12 participants with family incomes of $30-60,000 per year, compared to $60,000 or more.  A total 
13 of 69 OTUs were differentially abundant by any sociodemographic variable, including 56 by age 
14 group, 27 by race/ethnicity, 21 by family income, 19 by education, 19 by marital status, seven 
15 by nativity, and three by sex. We also found 12 unique OTUs differentially abundant by oral 
16 health behaviors, 49 by smoking status, and 23 by diet variables. The most frequently 
17 differentially abundant were Lactobacillus (all variables), and Prevotella (age, education, family 
18 income, marital status, race/ethnicity, nativity, Figure 2). Differential abundance findings for 
19 selected taxa are presented in Table 2 (see table A1 for all differential abundance findings).

20 Figure 3 displays the boxplots of absolute values of logFCs for both crude and adjusted models. 
21 The OTUs selected for display in all models are the OTUs meeting FDR <0.01 in crude models. 
22 Comparing adjusted vs. crude boxplots allows a visual assessment of the effect of adjustment 
23 on the entire set of OTUs: a shift towards zero reflects attenuation while a shift away from zero 
24 reflects amplification.  Over all sociodemographic variables, a minor attenuating effect was 
25 observed after adjusting for smoking (mean change in logFC, -3.9%), oral health behaviors (-
26 4.9%), diet (-6.3%), age and sex (-3.3%). Adjustment for oral health had the largest impact on 
27 logFCs for age group (-4%), sex (-27.4%), and nativity (-13.5%); diet had the strongest impact on 
28 logFCs for education (-13.1%) and marital status (-16.9%), smoking had the strongest impact on 
29 logFCs for family income (-11.9%), and age and sex had the strongest impact on logFCs for 
30 race/ethnicity (-4.2%). 

31 4.4 Beta Diversity and Clustering

32 Figure 4 illustrates between-versus within-group weighted UniFrac distances by each sociodemographic 
33 variable. We observed overall shifts in composition by age group (p=0.017, r2=0.026), with no other 
34 variables showing greater between- than within-group variation, a result which was not changed by 
35 adjusting for smoking. Plots of the first two principal coordinates based on weighted UniFrac distances 
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1 showed little patterning by any variable (not shown). Clustering scores were sensitive to the distance 
2 metric used, with Bray-Curtis indicating moderate support for 2 clusters (PS=0.86), and all other 
3 measures providing little support for clustering. 

4 5 Discussion
5 In a diverse population-based sample, we found that a large number of bacterial taxa in the oral 
6 microbiome were differentially abundant by age, race/ethnicity, family income, education, 
7 nativity, and sex. Notably, we found a greater number of associations with SES variables (21 by 
8 family income, 19 by education) than with sex, marital status or nativity. There were also more 
9 associations with SES than oral health behaviors (12). Sociodemographic associations were not 

10 appreciably diminished by adjustment for smoking, oral health behaviors, or dietary behaviors. 
11 Alpha diversity was similar across groups, and beta diversity explained only a small proportion 
12 of variance by age (2.7%), and less by other variables. 

13 Many genera found differentially abundant by multiple variables represent taxa that have 
14 documented associations with health and disease. Streptococcus, Lactobacillus (53),Prevotella 
15 (54) Fusobacterium (55), and Porphyromonas (56, 57) are understood to play a role in oral 
16 disease. Further, many of these organisms likely play a role in wide ranging systemic conditions 
17 (15). Specifically, Fusobacterium spp. have been linked to colorectal cancer (58, 59), adverse 
18 pregnancy outcomes, CVD and rheumatoid arthritis (60). Porphyromonas gingivalis is a key 
19 determinant of oral microbiome structure (61), and is hypothesized to mediate an array of 
20 systemic pathogenic processes (15), including associations with stroke (11), CHD (12), a number 
21 of cancers (17, 18, 62) and rheumatoid arthritis (22).

22 To our knowledge, our study is the first to examine differences in the oral microbiome by 
23 individual level sociodemographic factors in a population-based sample. Our finding of 
24 differentially abundant taxa by race/ethnicity is consistent with previous studies with small 
25 volunteer samples. The HMP Consortium found that, for all body sites, ethnicity was the host 
26 phenotypic variable with the most associations (35).  For the oral microbiome, a study 
27 examining 40 periodontal disease-related taxa found differences among Asian, Hispanic, and 
28 blacks (38). Two lower-throughput studies found greater Prevotella and Porphyromonas 
29 prevalence (40), and lower Fusobacterium abundance (39) in blacks vs. whites. Our finding of 
30 differential OTUs by SES variables is also consistent with findings from the Danish Health 
31 Examination Survey (DANHES, n=292), which found nine differentially abundant taxa by 
32 municipal-level SES (41). 

33 Adjustment for smoking, diet, and oral health behaviors each exerted a moderate attenuating 
34 effect on differential abundance findings across sociodemographic categories. This stands to 
35 reason in light of findings by our group [CITATION PENDING – Beghini 2018 Companion Paper] 
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1 and others (29) that smoking is associated with major shifts in the oral microbiome, along with 
2 similar findings for diet (63), and indicates that some portion of observed sociodemographic 
3 patterning reflects differences in health habits or access to dental care. However, the finding 
4 that differential abundance was not eliminated by adjustments suggests that additional 
5 mechanism underlie sociodemographic variation in the oral microbiome. These may include 
6 upstream social factors such as psychosocial stress (27) or features of the built environment 
7 (32).

8 While existing oral microbiome studies are limited, the absence of differences in alpha and beta 
9 diversity by race/ethnicity contrasts with two previous studies among non-population-based 

10 samples. These found differences in alpha diversity and ethnicity-based clustering in oral 
11 microbiomes in non-Hispanic Blacks vs. Whites (36), and in Cheyenne and Arahapo vs. non-
12 native individuals (37). Differences in alpha and beta diversity can indicate larger-scale shifts in 
13 composition; our finding that specific OTUs were differentially abundant but that overall shifts 
14 were less present may indicate that, at a population level, sociodemographic patterns in oral 
15 microbiome composition are more subtle.

16 5.1 Limitations

17 Despite the strength of NYC-HANES as a diverse population-based sample, the cross-sectional 
18 design limits its ability to test the oral microbiome as a mediator in health disparities, as 
19 changes in the oral microbiome may reflect existing disease rather than etiological factors. 
20 Additionally, our findings are limited by having primarily genus-level information, and in many 
21 cases salient differences exist at a greater degree of taxonomic specificity – for example, with P. 
22 gingivalis, F. nucleatum, and Prevotella intermedia. There may also be wide variability in 
23 virulence even at the species level, as is the case with P. gingivalis (64). Given the importance of 
24 many of the differentially abundant genera in health and disease, our findings suggest that 
25 further investigation into the role of the oral microbiome in health disparities is warranted.  
26 Future investigations should consider use of whole genome shotgun sequencing or other 
27 methods able to provide more specific taxonomic classification and describe functional, as well 
28 as taxonomic, composition.

29 5.2 Conclusion

30 Our results lend support to potential role of the social environment in shaping microbiome 
31 composition at the population level (24, 65). The finding of differentially abundant OTUs, many 
32 of which are health-relevant, for every sociodemographic variable, suggests that these 
33 associations may be important in determining population health patterns. In particular for race 
34 and SES, but also for nativity and marital status, the finding that multiple health-relevant 
35 microbes are differentially abundant supports a growing hypothesis that the microbiota may 
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1 partially mediate long-observed social disparities in major disease outcomes. At a minimum, 
2 these results highlight that social factors may be important potential confounders in studies of 
3 the human oral microbiome and health.

4 Mechanisms for the observed associations are currently unknown, and one important next step 
5 will be to examine the multiple levels of exposures underlying these associations, including 
6 macro-level social and health policy, exposure to psychosocial stressors, outdoor and built 
7 environment features, and social interactions (24). Importantly, if the microbiome is a partial 
8 mediator of health disparities, then identifying modifiable features of the social environment 
9 that are most strongly associated with the microbiome can inform effective interventions to 

10 improve population health and reduce health disparities. 
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1 6 Figure Captions
2

3

4 Figure 1. Genus- and phylum-level relative abundances. Data are percent of overall communities within 
5 samples, summarized as mean ± standard deviation of percent across samples. Data are from the oral 
6 microbiome subsample (n=282) of the New York City Health and Nutrition Examination Survey, 2013-
7 2014.

8 Figure 2. Differential abundance by sociodemographic characteristics. OTUs meeting unadjusted FDR < 
9 0.01 in negative binomial log-linear GLMs using edgeR. Data are from the oral microbiome subsample 

10 (n=282) of the New York City Health and Nutrition Examination Survey, 2013-2014. Filled tiles in (A) 
11 indicate the genus had at least one OTU differentially abundant by at least one coefficient contrast 
12 within the sociodemographic factor. Where more than one OTU was significant within one genus, the 
13 maximum logFC is displayed in (A). Reference groups for sociodemographic variables are as follows: Sex: 
14 Male, Age: 20-34, Education: College Graduate or More, Family income: $60,000 or more, Marital status: 
15 Married, Race/ethnicity: Non-Hispanic White, US- vs. foreign-born: US-Born, 50 States, DC, PR and 
16 Territories. Abbreviations: cat=categories; GLM=generalized linear model; logFC=log fold change; 
17 OTU=operational taxonomic unit; US=United States.

18 Figure 3. Distribution of absolute values of log-fold change (logFC) in crude and adjusted negative 
19 binomial log-linear GLMs edgeR models for each sociodemographic variable. Data are from the oral 
20 microbiome subsample (n=282) of the New York City Health and Nutrition Examination Survey, 2013-
21 2014. Abbreviations: GLM=generalized linear model; logFC=log fold change; US=United States.

22 Figure 4. Within and between group beta diversity estimate distributions. Data are from the oral 
23 microbiome subsample (n=282) of the New York City Health and Nutrition Examination Survey, 2013-
24 2014. Abbreviations: cat=category.

25 Figure A1. Examining collinearity among sociodemographic variables. Data are absolute value of 
26 pairwise Cramer’s V correlation coefficient between sociodemographic factor levels. Data are from the 
27 full sample (n=1,527) of the New York City Health and Nutrition Examination Survey, 2013-2014. 
28 Abbreviations: cat=categories; US=United States.

29 Figure A2. Alpha diversity by Sociodemographic Characteristics. Chao1 alpha diversity of 16S rRNA oral 
30 microbiome samples. Measures were compared using a null hypothesis of no difference between groups 
31 (Kruskal-Wallis test, p > 0.1 for all tests). Data are from the oral microbiome subsample (n=282) of the 
32 New York City Health and Nutrition Examination Survey, 2013-2014. Abbreviations: GED=General 
33 equivalency diploma; PR=Puerto Rico; US=United States.
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1 7 Tables
2 Table 1. Demographics

Oral Microbiome Subsample Full NYC HANES Sample

Total 282 1527

Age in years – median [range] 42 [20 to 94] 42 [20 to 97]

Age group (%)

       20-29 70 (24.8) 360 (23.6)

       30-39 60 (21.3) 337 (22.1)

       40-49 51 (18.1) 252 (16.5)

       50-59 51 (18.1) 264 (17.3)

       60 and over 50 (17.7) 314 (20.6)

Sex = Female (%) 150 (53.2) 885 (58.0)

Educational achievement (%)

       College graduate or more 87 (30.9) 628 (41.1)

       Less than High school diploma 65 (23.0) 316 (20.7)

       High school graduate/GED 63 (22.3) 244 (16.0)

       Some College or associate’s degree 67 (23.8) 337 (22.1)

       Missing 0 ( 0.0) 2 ( 0.1)

Annual family income (%)

       $60,000 or more 82 (29.1) 429 (28.1)

       Less Than $30,000 105 (37.2) 537 (35.2)

       $30,000 - $60,000 59 (20.9) 348 (22.8)

       Missing 36 (12.8) 213 (13.9)

Marital Status (%)

       Married 96 (34.0) 590 (38.6)

       Widowed 15 ( 5.3) 76 ( 5.0)

       Divorced 23 ( 8.2) 156 (10.2)

       Separated 12 ( 4.3) 51 ( 3.3)

       Never married 101 (35.8) 511 (33.5)

       Living with partner 35 (12.4) 143 ( 9.4)

Race/ethnicity (%)
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Oral Microbiome Subsample Full NYC HANES Sample

       Non-Hispanic White 97 (34.4) 513 (33.6)

       Non-Hispanic Black 75 (26.6) 340 (22.3)

       Hispanic 71 (25.2) 390 (25.5)

       Asian 22 ( 7.8) 204 (13.4)

       Other 17 ( 6.0) 80 ( 5.2)

Place of birth (%)

       US, PR and Territories 90 (31.9) 668 (43.7)

       Other 190 (67.4) 851 (55.7)

       Missing 2 ( 0.7) 8 ( 0.5)

Gum disease (self-reported) (%)

       Yes 27 ( 9.6) 175 (11.5)

       No 254 (90.1) 1322 (86.6)

       Missing 1 ( 0.4) 30 ( 2.0)

Mouthwash use (times per week) (%)

       None 115 (40.8) 591 (38.7)

       1 to 5 68 (24.1) 370 (24.2)

       6 to 7 99 (35.1) 565 (37.0)

       Missing 0 ( 0.0) 1 ( 0.1)

Sugar-sweetened beverages (per week) (%)

       0-<1 152 (53.9) 985 (64.5)

       1-5 67 (23.8) 313 (20.5)

       6 or more 62 (22.0) 227 (14.9)

       Missing 1 ( 0.4) 2 ( 0.1)

Smoking status (%)

       Cigarette 86 (30.5) 215 (14.1)

       Never smoker 43 (15.2) 843 (55.2)

       Former smoker 43 (15.2) 285 (18.7)

       Alternative smoker 72 (25.5) 142 ( 9.3)

       Secondhand 38 (13.5) 42 ( 2.8)
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Table 2. Differential abundance findings for OTUs selected based on clinical relevance, where FDR < 0.01. Data are from the oral microbiome subsample (n=282) of the New York City 
Health and Nutrition Examination Survey, 2013-2014.

Lactobacillus Prevotella Streptococcus Porphyromonas Fusobacterium Lactococcus
 logFC FDR  logFC FDR  logFC FDR  logFC FDR  logFC FDR  logFC FDR

Race/ethnicity
  Non-Hispanic White 0 Ref 0 Ref 0 Ref 0 Ref 0 Ref 0 Ref
  Non-Hispanic Black 2.1 <0.0001 1.9 <0.0001 - - 0.9 0.0018 - - 2.9 <0.0001
  Hispanic - - 1.8 <0.0001 - - 1.8 <0.0001 - - - -
Family income
  $60,000 or more 0 Ref 0 Ref 0 Ref 0 Ref 0 Ref 0 Ref
  $30,000 - $60,000 2.5 <0.0001 - - 0.9 0.003 - - - - - -
  Less Than $30,000 - - 1.6 0.0025 - - 1.6 <0.0001 1.5 0.003 - -
Education
  College Graduate or More 0 Ref 0 Ref 0 Ref 0 Ref 0 Ref 0 Ref
  Some College or Associate's Degree 2.7 <0.0001 - - - - - - - -  3.0 <0.0001
  High School Diploma or Less - -  1.4 0.0064  - -  1.2 0.0008  1.4 0.006  - -
Abbreviations: logFC, log fold change; FDR, false discovery rate; Ref, reference group. “-“ indicates genus was not significantly differentially abundant.
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DNA Extraction

All laboratory procedures were performed under a hood (AirClean Systems) to minimize 
environmental contamination and negative controls were used throughout. From each oral 
rinse sample, a 1.5 mL aliquot was centrifuged at 750 x g for 5 min and all but 150 µl of 
supernatant was removed. The pellet was re-suspended in the remaining supernatant and 
incubated in an enzyme mixture consisting of lysozyme (0.84 mg/ml, Sigma Aldrich), 
mutanolysin (0.25 U/ml, Sigma Aldrich) and lysostaphin (21.10 U/ml, Sigma Aldrich), at 37˚C for 
30 minutes. This was followed by incubation at 56˚C for 10 minutes in 15 μl proteinase K and 
150 μl Buffer AL. Samples were then transferred to screw top tubes with 100 g of 0.1-mm-
diameter Zirconia/Silica Beads (BioSpec) and bead beaten using a FastPrep-24 homogenizer 
(MP Biomedicals) at speed 6.0 for 40 seconds. Tubes were centrifuged at 750 x g for 30 sec and 
150 µl of supernatant was added to a new 1.7 ml tube with 150 µl of 100% ethanol and mixed 
by vortexing for 15 seconds. Supernatant was then added to the spin column from the QIAamp 
DNA mini kit (QIAGEN) and centrifuged at 6000 x g for 1 minute. Column purification was 
performed according to the QIAamp DNA mini kit directions starting at the AWI wash step. Final 
elution was performed in 100 µl of Buffer AE. 

16S rRNA Gene Amplification

DNA was amplified for the V4 variable region of the 16S rRNA gene using the primers 
16SV4_515F (GTGYCAGCMGCCGCGGTA) and 16SV4_806R (GGACTACHVGGGTWTCTAAT) (45, 
46). Each primer had an 8-bp unique Hamming barcode with forward primers containing a 3-bp 
(TCG) and 4-bp (ACTG) pad on either side, with reverse primers including a 3-bp (GTA) and 4-bp 
(TC) pad on each side of the barcode (47). PCR reactions were performed with 17.75 µl of 
nuclease-free PCR-grade water, 2.5 µl of 10X Buffer w/ MgCl2 (Affymetrix, Santa Clara, CA), 1µl 
of MgCl2 (25 mM, Affymetrix, Santa Clara, California, USA), 0.5 µl of dNTPs (10 mM, Roche, 
Basel, Switzerland), 0.25 µl of AmpliTaq Gold DNA Polymerase (5 U/µl, Applied Biostystems, 
Foster City, California), 0.5 µl of HotStart-IT FideliTaq (2.5 U/µl, Affymetrix, Santa Clara, CA), 1µl 
of each primer (5 µM), and 0.5 µl of DNA extraction template. Thermal cycling conditions 
consisted of initial denaturation of 95ºC for 5 min, followed by 15 cycles of 95ºC for 1 min, 55ºC 
for 1 min, and 68ºC for 1 min, followed by 15 cycles of 95ºC for 1 min, 60ºC for 1 min, and 68ºC 
for 1 min, a final extension for 10 min at 68ºC on a GeneAmp PCR System 9700 (Applied 
Biosystems, Foster City, CA). 

PCR products were combined before running 100 µl of the pooled products on a 4% agarose gel 
at 80V for 2 hours. The ~450 bp bands were excised from the gel and purified using a QIAquick 
Gel Extraction Kit (Qiagen, Hilden, Germany) and eluted in 30 µl of elution buffer. Purified PCR 
products were quantified using a Qubit 2.0 Fluorometic High Sensitivity dsDNA Assay (Life 
Technologies, Carlsbad, CA).
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Library Preparation and Sequencing

Library preparation of the purified PCR products was performed using a KAPA LTP Library 
Preparation Kit (Kapa Biosystems, Wilmington, MA). The size integrity of the amplicon was 
validated with a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). High-throughput 
amplicon sequencing was conducted on a MiSeq (Illumina, San Diego, CA) using 2x300 paired-
end fragments. The fastq sequences from the Illumina MiSeq were demultiplexed using 
Novobarcode (Novocrat Technologies, Selangor, Malaysia) and the 5’-pads and primers were 
trimmed from each read. 

Bacterial taxa were determined by clustering the 16S rRNA sequences into operational 
taxonomical units (OTUs) using 97% similarity, taxonomy was assigned at the genus level using 
the SILVA 123 (43) database as reference, excluding samples with less than 1000 reads.
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