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Summary 1	

Variability in neuronal responses to identical stimuli is frequently correlated across a population. 2	

Attention is thought to reduce these correlations by suppressing noisy inputs shared by the 3	

population. However, even with precise control of the visual stimulus, the subject’s attentional 4	

state varies across trials. While these state fluctuations are bound to induce some degree of 5	

correlated variability, it is currently unknown how strong their effect is, as previous studies 6	

generally do not dissociate changes in attentional strength from changes in attentional state 7	

variability. We designed a novel paradigm that does so and find both a pronounced effect of 8	

attentional fluctuations on correlated variability at long timescales and attention-dependent 9	

reductions in correlations at short timescales. These effects predominate in layers 2/3, as expected 10	

from a feedback signal such as attention. Thus, significant portions of correlated variability can 11	

be attributed to fluctuations in internally generated signals, like attention, rather than noise.  12	
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Introduction 32	

Neuronal responses to repeated presentations of identical stimuli are highly variable. 1 This trial-33	

to-trial variability can be correlated across populations of neurons 2–4 and is often referred to as 34	

“noise correlation.” 5 Many studies have investigated the implications of these correlations for 35	

population coding. 4,6–10 However, the origin of these correlations is still not clear. Here we focus 36	

on this latter question: what causes noise correlations?  37	

One factor modulating correlations is attention. Studies of population activity in V4 found 38	

that attending to a stimulus inside the receptive fields of the recorded neurons reduced 39	

correlations in the trial-to-trial variability of the responses of those neurons to identical stimuli, 40	

compared to conditions in which attention was directed away from the receptive field. 11,12 These 41	

studies concluded that increasing the strength of attention reduces correlated variability by 42	

suppressing the shared, noisy input sources thought to give rise to correlated variability in a 43	

population. 3,4,13 This perspective on the relationship between correlated variability and attention 44	

is illustrated in Figure 1A. 45	

However, because the subject’s state 46	

of attention can be controlled only on 47	

average but not precisely across trials, 48	

the strength and focus of attention may 49	

vary from trial to trial even within a 50	

given attention condition. 14,15 Here, we 51	

refer to such variability as fluctuations 52	

in the attentional state. Therefore, 53	

shared neuronal variability could also 54	

be driven by variability in the state of 55	

attention and changes in the level of that 56	

variability over time. 8 Indeed, the 57	

patterns of shared variability induced 58	

by fluctuations in gain-modulating 59	

	
	
	 Figure 1. Attention and correlated variability. A) Hypothesis 

1: Attentional gain is increased, but relatively stable under 
both conditions (top left). Correlated variability is driven by 
a common noise source (top right), which is suppressed by 
attention.11,12 B) Hypothesis 2: Attentional gain is increased, 
but fluctuates from trial to trial.8,14,15 Correlated variability is 
driven by fluctuations of attentional state. The reduction in 
correlations under attention would imply that the 
attentional gain is less variable when attending.	
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signals such as attention are consistent with experimental data 8,16 if attentional state variability 60	

decreases as the strength of attention increases (Fig. 1B). 61	

In other words, correlated variability during attention tasks can be interpreted as evidence 62	

for both a suppression of common noise by attention 11,12,17 as well as trial-to-trial fluctuations of 63	

attentional state. 8,14,15 Thus, it is unknown to what extent fluctuations in the state of attention 64	

indeed contribute to correlated variability in population responses, because the paradigms 65	

employed in these studies did not manipulate the level of attentional state variability 66	

behaviorally.  67	

Therefore, we developed a novel, cued change-detection task that can dissociate changes in 68	

the strength of attention from changes in the variability of the attentional state by manipulating 69	

the behavioral relevance of two simultaneously displayed stimuli across task conditions. When 70	

only one stimulus is behaviorally relevant, subjects can maximize reward by focusing their 71	

attention on a single spatial location over time. However, when two stimuli are relevant, subjects 72	

need to attend to both stimuli to some degree. We expect attentional fluctuations to be highest in 73	

this latter scenario, if subjects shift the focus of attention between the two stimulus locations, as 74	

supported by recent work. 18,19 75	

Thus, if the dominant factor governing levels of correlated variability is attentional 76	

suppression of common noise, we expect correlations to decrease as attentional strength 77	

increases, resulting in intermediate levels of correlations when both stimuli need to be attended 78	

(Fig. 2A). Alternatively, if fluctuations in attention are the dominant factor modulating 79	

correlations, we predict correlations to be highest when both stimuli need to be attended and 80	

attentional fluctuations are most pronounced (Fig. 2B). 8 81	

 We recorded neuronal responses from primary visual cortex of macaque monkeys while they 82	

performed this task and find that attention modulates firing rates of V1 neurons. On a timescale 83	

of one second, we find that shared variability is highest when both stimuli are behaviorally 84	
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relevant and lowest in conditions in which only one stimulus is the focus of attention, arguing 85	

that, at this timescale, fluctuations in the state of attention, induced by changes in attentional 86	

allocation strategies, are an important factor governing shared neuronal variability. On a faster 87	

timescale of 200ms, we find attention-dependent reductions in correlated variability consistent 88	

with previous studies. Both effects predominate in supragranular cortical layers, as expected from 89	

a feedback signal such as attention. 20–23 90	

 91	

Results 92	

Change detection task and manipulation of attention 93	

We trained two rhesus macaque monkeys to perform a cued, orientation-change detection task 94	

(Fig. 3A). A trial was initiated when the subject fixated a central fixation spot. Two “noisy” Gabor 95	

patches appeared symmetrically in the lower left and lower right visual field 300ms later. During 96	

the Zero-Coherence Period (ZCP), these patches randomly changed their orientation every frame 97	

(10ms per frame; 36 orientations evenly spaced between 0 and 175 degrees). After a random 98	

period of time, drawn from an exponential distribution (minimum: 0.01s, mean: 2.17s, maximum: 99	

5s), one of the two stimuli entered the Coherent Period (CP). During the CP one particular 100	

orientation, called the “signal” orientation, was shown with a higher probability than the other 101	

orientations. By varying this probability, we could control the “coherence” of the stimulus, 102	

making the occurrence of the signal orientation more or less obvious over the background 103	

 
 
Figure 2. Predicted effects of attention on correlations when attending one or two stimuli. A) Scenario in which 
attentional fluctuations are negligible and attention primarily acts by suppressing common noise sources. In this 
case, we expect intermediate correlations when attending two stimuli (“Attend Both”). B) Scenario in which 
fluctuations in attention induce correlations. In this case, we expect attention to switch randomly between the two 
targets in the “Attend Both” condition, resulting in the highest correlations in this condition.  
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orientation noise, to manipulate the difficulty of a trial. The occurrence of this signal orientation 104	

was the change the monkey had to detect, which he reported by making a saccade to the changed 105	

stimulus within a short reaction time window. On 10% of trials no signal orientation occurred, 106	

and the monkey was rewarded for maintaining fixation throughout the trial.  107	

 We used a cued block design to manipulate the focus of the subject’s attentional state 108	

(Fig. 3B), where the cue was the color of the fixation spot. Two of these conditions, “Attend In” 109	

(AI) and “Attend Out” (AO), were similar to those in typical spatial attention tasks, where the 110	

stimulus overlapping the neurons’ receptive fields is cued in the AI condition, and the other 111	

stimulus is cued in the AO condition. The cues for these conditions (red for AI, blue for AO) were 112	

100% valid, such that the change occurred only at the cued location. In the condition labeled 113	

“Attend Both” (AB), indicated by a black fixation spot, either stimulus had an equal probability 114	

(50%) of showing the change on a given trial.  115	

Our paradigm therefore differs from typical covert attention tasks used to study neuronal 116	

variability in two respects. First, during the AI and AO conditions in our task, there are no catch 117	

trials with invalid cues 11 or signals in the distractor that need to be ignored. 17 While catch trials 118	

are typically used to measure the behavioral shift due to attention, they are likely to induce 119	

attentional fluctuations, as they render the cue unreliable and encourage some degree of 120	

attentional focus on the non-cued stimulus by rewarding successful performance at that location. 121	

As our goal in the AI and AO conditions is to minimize attentional fluctuations, we used 100% 122	

reliable cues. In our AB condition, either stimulus was equally likely to change. We used this 123	

condition as the baseline to measure the behavioral improvement attributable to attention, 124	

analogous to how other paradigms use catch trials. 125	

There were, therefore, three attentional conditions but two attentional strategies that our task 126	

engaged. To maximize reward in the AI and AO conditions, attention should be focused on only 127	

the cued stimulus. With attention deployed consistently across trials with regard to spatial 128	

location, attentional state fluctuations should be minimized. In the AB condition, attention should 129	

fluctuate more strongly between the two spatial locations across trials, as ignoring one of the 130	

stimuli is no longer a viable strategy for maximizing reward. One way to conceive of this 131	

allocation strategy is that the AB condition is comprised of a mixture of the attentional states 132	
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deployed in the AI and AO conditions. Note, attentional state fluctuations need not be non-133	

existent in the AI and AO conditions but only decreased relative to the AB condition in order to 134	

test our hypothesis. 135	

If subjects used the strategies described above, there should be some trials in the AB condition 136	

where the subject attended the unchanged stimulus and required a higher coherence level to 137	

notice a change in the correct stimulus on that trial. Such occurrences would lead to a rightward 138	

shift in the psychometric function and higher detection thresholds in the AB condition. The 139	

example session in Figure 3C exhibits a clear rightward shift in the psychometric curve along 140	

with a significantly elevated coherence 141	

threshold in the AB condition. This effect 142	

was consistent across sessions (Fig. 3D, 143	

F(2,29) = 41.8, p < 10-10, one-way repeated-144	

measures analysis of variance 145	

(rmANOVA); overall: AI 3.5±0.1, AB 146	

4.4±0.1, AO 3.4±0.1; Subject B: AI 3.7±0.2, 147	

AB 4.5±0.2, AO 3.4±0.3; Subject D: AI 148	

3.5±0.1, AB 4.4±0.1, AO 3.3±0.1; values 149	

indicate mean±standard error of the 150	

mean), being present in 25 out of 30 151	

sessions (Supplementary Fig. 1).  152	

To avoid potential confounds from 153	

changes in task difficulty across attention 154	

Figure 3. Task diagram with behavioral results. A) Orientation change-detection task. Two stimuli (L: left, R: right) 
randomly change their orientation during the ZCP (length 10-5000ms). One stimulus (R in this example) then enters 
the CP (300ms) when the signal orientation is shown (coherence exaggerated for clarity). This period is followed by 
another 200ms ZCP to allow time for a behavioral response. B) Illustration of attention conditions. Attention is cued 
according to fixation spot color. This color scheme is used in all figures to represent each condition. Percentages 
below the stimuli indicate the probability that the change occurs in this stimulus on a given trial. One stimulus 
overlaps the recorded neurons’ receptive fields. C) Example session psychophysical performance.  Individual points 
represent fraction of changes detected at a given coherence. Solid lines indicate fit of logistic function to the data. 
Inset shows 50% detection threshold with 95% CIs. D) Behavioral summary. Same as inset in C, but averaged across 
sessions in our dataset (N=30; mean±SEM). E) Percentage of changes detected in each condition averaged across 
sessions (mean±SEM).	
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conditions, we balanced the overall percent correct performance in each condition by raising 155	

coherence levels one step in the AB condition. Overall, subjects identified an average of 76±1.4% 156	

of changes (Subject B: AI 77±1.9%, AB 78±1.3%, AO 77±1.7%; Subject D: AI 76±2.0%, AB 74±1.8%, 157	

AO 77±1.8%), and there was no significant effect of attention condition on performance (Fig. 3E, 158	

F(2,29) = 2.1, p = 0.13, rmANOVA). Reaction times were somewhat longer in the AB condition 159	

(F(2,29) = 10.0, p = 0.0002, rmANOVA), but the difference was only about 3% (overall: AI 160	

334.3±3.4ms, AB 346.4±2.2ms, AO 336.5±2.3ms), and the effect was individually significant for 161	

only one subject (Subject D, F(2,22) = 23.0, p = 2e-7; Subject B, F(2,6) = 3.4, p = 0.07). The false alarm 162	

rate was on average lowest in the AB condition (AI 44.3±1.5%, AB 37.6±1.7%, AO 42.2±2.3%, 163	

F(2,29) = 15.9, p = 3e-6, rmANOVA), but this effect was again significant in only one subject 164	

(Subject D, F(2,22) = 24.6, p = 7e-8; Subject B, F(2,6) = 0.1, p = 0.91, rmANOVA). These results are 165	

depicted in Supplementary Figure 1. We conclude that behavioral differences between the split 166	

vs. focused attention conditions were not measurable in one monkey and small in the other. Thus, 167	

changes in task difficulty are unlikely to account for any of our physiological results, though we 168	

address this point with an additional control further below. 169	

Overall, our goal was to develop a behavioral paradigm in which attention could fluctuate or 170	

shift between two stimulus locations – the AB condition – and remain focused on one location in 171	

the other conditions. Recent work suggests that attention is likely to operate in this fashion in the 172	

AB condition, 18,19 and our behavioral results, particularly those pertaining to psychophysical 173	

threshold, are consistent with this attentional allocation strategy. However, these results are also 174	

consistent with a strategy in which attention acts as a zoom lens, 24 widening its focus to 175	

encompass both stimuli simultaneously. Note, the fact that detection thresholds are elevated in 176	

the AB condition suggests that if attention is allocated to both stimuli simultaneously, the stimuli 177	

are not processed to the same degree as they are in the AI or AO conditions. That is, widening 178	

the attentional field entails a reduction in attentional strength within the field. As we will see, 179	

however, these strategies make different predictions for the patterns of correlated variability we 180	

expect to see across our task conditions. 181	

 182	

Attentional modulation of neuronal firing rates 183	
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9	
	

While subjects performed the task, we recorded spiking responses from neurons in primary 184	

visual cortex using 32-channel silicon probes with a spacing of 60µm between channels 185	

(NeuroNexus V1x32-Edge-10mm-60-177). We recorded 474 single units (15.8±1 units per session) 186	

across 30 sessions (N=7 from Subject B, N=23 from Subject D) from two male macaque monkeys. 187	

The two Gabor stimuli in our task were placed symmetrically in the lower visual field with one 188	

stimulus covering the receptive fields of the recorded neuronal population. Given the laminar 189	

nature of our recordings, receptive fields overlapped almost completely.  190	

Our highly dynamic stimulus drove neurons strongly, with mean firing rates of 22.4±0.9 191	

spikes/sec across sessions. Consistent with previous studies we found that attention increased 192	

firing rates of V1 neurons, 25,26 with on average ~31% of single units being significantly modulated 193	

by attention in a given session. This 194	

modulation was present in both the 195	

AI and AB conditions and appeared 196	

strongest early in the ZCP (Fig. 4A 197	

and B).  198	

Note, our dataset contains fewer 199	

trials of long duration, given the 200	

exponential distribution of ZCP 201	

lengths and a slight tendency of 202	

subjects to prematurely abort longer 203	

trials (only ~40% of valid trials are 204	

longer than 1s, and ~15% are longer 205	

than 2s). We thus focused our 206	

analyses on the first second after 207	

stimulus onset, in which attentional 208	

modulation of firing rates was 209	

strongest, and on correct trials, 210	

where we can have the most 211	

confidence that attention was 212	

Figure 4. Attentional modulation of neuronal responses. A) 
Example session spike density function for each condition, 
normalized to the average response in AI condition (mean across 
units). B) Same as A but averaged across sessions (N=30). 
Attentional modulation is confined primarily to the first second 
following stimulus onset. C) Fractional increase in firing rates in 
the first second following stimulus onset in the AB and AI 
conditions relative to the AO condition averaged across sessions 
(N=30; mean±SEM). D) Example single unit tuning curves in AI, 
AB and AO conditions. Dots show responses to specific 
orientations; solid lines show fitted von Mises functions. 
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oriented as desired in our task. Additionally, all analyses of firing rates and spike counts were 213	

performed during the ZCP, before any changes in stimulus coherence or behavioral responses 214	

were made, ensuring that analyses were performed on identical stimuli across conditions.  215	

We first calculated fractional firing rate increases in the AI and AB conditions, relative to the 216	

AO condition (Fig. 4C). During this interval, firing rates in the AI and AB conditions were 217	

significantly elevated relative to the AO condition (AI: 5.4±1% increase, t(29) = 5.2, p = 0.00001, 218	

Bonferroni-corrected t-test, α=0.0167; AB: 4.1±1%, t(29) = 4.1, p = 0.0003) but not different from 219	

each other (t(29) = 1.4, p = 0.17). Amongst the roughly 31% of units showing significant 220	

modulation of firing rates by attention, around 32% showed pure gain modulation, around 20% 221	

showed pure offset modulation, while the remainder exhibited a mixture of multiplicative and 222	

additive modulation. Examples of pure gain- versus pure offset-modulated cells are shown in 223	

Figure 4D. Note, these tuning curves were fit in a manner that assumed preferred orientation and 224	

tuning width did not vary as a function of attention condition 25 (see Methods for further details). 225	

 226	

Differentiating the effects of attention on shared variability 227	

Our results so far, beyond demonstrating that our task engages attention, are consistent with 228	

two different attentional allocation strategies in the AB condition, while we conclude that 229	

attention is primarily focused on the single, relevant stimulus in the AI and AO conditions. The 230	

first strategy involves widening the focus of attention to encompass both stimuli. In this case, we 231	

would expect attentional fluctuations to be negligible. This scenario would support the 232	

interpretation that attention suppresses a common noise source,11,12 and we would expect 233	

correlations to be intermediate in the AB condition (Fig. 2A). The second strategy involves 234	

shifting the focus of attention randomly between the two stimuli. In this case, we would expect 235	

correlations to be highest in the AB condition (Fig. 2B). Note that this scenario does not rule out 236	

the possibility that attention suppresses a common noise source, as both mechanisms could be at 237	

play. However, given that the same dataset has been interpreted as evidence that attention 238	

suppresses noise11 and that attention fluctuates,14 it is an important question to quantify to what 239	

degree attentional fluctuations induce trial-to-trial variability. 240	

 241	
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Attentional modulation of shared variability 242	

To measure the degree to which attentional fluctuations induce trial-to-trial variability, we 243	

calculated pairwise spike count correlations over repeated presentations of identical ZCP 244	

sequences in each attention condition. Our results match the predictions in Figure 2B and support 245	

the hypothesis that fluctuations in the state of attention are the dominant factor inducing shared 246	

neuronal response variability in our dataset (Fig. 5A). Spike count correlations were significantly 247	

modulated by attention condition (F(2,29) = 15.1, p = 5e-6, rmANOVA), correlations were highest 248	

in the AB condition (t(29) = 5.7, p = 4.0e-6, t-test, see methods), and correlations in the AI and AO 249	

conditions were not significantly different from one another (p = 0.8, post-hoc Tukey’s test). This 250	

relationship held individually for both subjects (Fig. 5B “task”; Subject B: F(2,6) = 6.5, p = 0.013, 251	

Subject D: F(2,22) = 9.1, p = 0.0005, rmANOVA). Task-evoked correlations were higher overall in 252	

Subject D than in Subject B, though both subjects had more comparable correlation levels during 253	

fixation when no stimulus was present (Fig. 5B “fix”). Despite a clear modulation of shared 254	

variability across attention conditions, Fano factors, a measure of individual neuronal variability, 255	

assessed over the same time interval were not modulated significantly by attention condition 256	

(F(2,29) = 1.8, p = 0.18, rmANOVA). We believe this result is due to a lack of statistical power, 257	

because the expected effect size for Fano factors is smaller than that for the correlation coefficients. 258	

Next, we wanted to investigate the timescale of the correlation effect we found, to better 259	

understand its origin. Synaptic processes unfold on the millisecond scale whereas cognitive 260	

processes, such as attention, unfold over longer timescales. Behavioral work suggests that 261	

voluntarily shifting attention between different stimuli takes on the order of several hundred 262	

milliseconds. 18,19,27,28 Thus, if attention is indeed shifting between the two stimulus locations 263	

during the AB condition, these psychophysical results provide a lower bound for the timescale 264	

over which we expect to see correlations rise in the AB condition.  265	

Using the relationship between spike count correlations and cross-correlograms, described in 266	

Bair et al. (2001) and modified in Ecker et al. (2014), we calculated spike train cross-correlograms 267	

for neuronal pairs in each attention condition and integrated them from 1ms to 1000ms, our 268	
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maximum counting window. Examining the point at which the resulting correlation levels 269	

saturate provides an estimate of the timescale of correlation. The results in Figure 5C show that 270	

correlations in the AB condition began to diverge from the AI and AO conditions after 200ms, 271	

and correlations in the AI and AO condition saturated to similar levels near 400ms, while AB 272	

correlations continued to rise for several hundred milliseconds more. The time course of these 273	

results fits well with the estimated time course of changes in attentional state. 18,19,27,28 Interestingly, 274	

between 40ms and 400ms, the level of correlations appeared lower in the attended versus 275	

unattended conditions (Fig. 5C), consistent with earlier work, 11,12,17  suggesting that attention may 276	

indeed suppress common noise at this faster timescale. However, despite being consistent with 277	

previous results, this trend was not statistically significant for our overall dataset (F(2,29) = 1.8, p 278	

= 0.18 at 200ms, rmANOVA). 279	

It is worth pointing out here that our analyses in this paper focus on a set of recording sessions 280	

in which the two stimuli were horizontally separated from one another by at least 6° (that is, each 281	

stimulus was at least 3° from monitor center on the horizontal axis; see Methods for details). We 282	

also recorded some sessions in which the stimuli were closer to the vertical meridian. In these 283	

sessions, we failed to observe our predicted effect. We reasoned that this lack of effect was likely 284	

because the two stimuli were too close to each other, allowing the monkey to attend to both 285	

simultaneously. Indeed, the difference between correlations in the AB condition and the average 286	

of AI and AO increased as the two stimuli were further separated from one another (Fig. 5D; 287	

Figure 5. Effects of attention on shared variability. A) Spike count correlations from 0-1s following stimulus onset, 
averaged across sessions (N=30). B) Spike count correlations shown separately for both subjects during fixation 
(300ms interval) and during the task (same interval as in A). C) Cumulative correlation coefficient, calculated by 
integrating the cross-correlogram, for each attention condition and averaged across sessions. Data in A-B show 
mean ± SEM, C omits SEM. D) Correlation contrast versus eccentricity of stimulus on horizontal axis (Subject B: 
N=13, open circles; Subject D, N=39 (N=29 black dots, N=10 black squares); solid line, line of best fit, overall N=52).	
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Pearson’s r = 0.44, t(50) = 3.5, p = 0.001, N = 52; Subject B: r = 0.64, t(11) = 2.8, p = 0.018, N = 13; 288	

Subject D: r = 0.51, t(37) = 3.6, p = 0.001, N = 39). To verify that this effect was not a false positive 289	

due to post-hoc analysis, we collected an independent 10-session dataset at high eccentricities 290	

from Subject D, which confirmed the effect (Fig. 5D squares; see Methods for details).  291	

 292	

Laminar profile of attention effects 293	

To examine the laminar profile of the attentional modulation of firing rates and shared 294	

variability, we calculated the current source density (CSD) 29 across channels for each session from 295	

the task-stimulus evoked local field potentials (Fig. 6A). These profiles were quite consistent 296	

across sessions, with the most prominent stimulus-evoked sink-source configurations in L5-6 and 297	

L1-2/3, largely washing out the earliest sink-source switch typical of the L4-5 boundary (van 298	

Kerkoerle et al. (2017) report a similar effect). We computed CSDs to aid in the grouping of single 299	

units into the supragranular (S), granular (G), or infragranular (I) layers, but we also took 300	

advantage of known electrophysiological characteristics of cells in different layers. 30 The most 301	

reliable such property was the high spontaneous activity associated with L4C, 30 which was 302	

readily discernible from multi-unit activity and was located consistently close to the L4-5 303	

boundary determined from the CSD. Additional factors included the weaker orientation tuning 304	

of the deep granular layer and smaller receptive fields (Fig. 6A). The first channel below the L4-5 305	

boundary was our zero-point for relative unit depths. We defined the granular layer as the first 306	

400µm superficial to the L4-5 boundary, consistent with previous histological 31,32 and recent 307	

electrophysiological studies. 33,34 All units above this 400µm band were labeled supragranular, 308	

and all those below it were labeled infragranular. The G-I (L4-5) boundary could be determined 309	

most reliably across sessions, but the S-G boundary could not always be determined as precisely. 310	

We therefore varied the cut-off boundary between the supragranular and granular groups over 311	

a span of nearly 200µm and re-calculated the results presented in Figure 6. Doing so did not 312	

qualitatively affect our results. 313	
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Attentional modulation of V1 neuronal responses is thought to be a feedback process, 35–37 and 314	

anatomical work has shown that feedback projections from higher order visual areas target the 315	

supra- and infra-granular layers. 20–23 As a result, we expected the strongest attentional 316	

modulation of firing rates to manifest there. In the supragranular group, firing rate modulation 317	

was significant in both the AB and AI conditions relative to the AO condition (Fig 6B; AB: 318	

5.5±1.1%, t(29) = 4.7, p = 0.0001, AI: 6.0±1.2%, t(29) = 4.7, p = 0.0001, Bonferroni-corrected t-test, 319	

α=0.025). In the infragranular group, there was significant modulation of firing rates in the AI 320	

condition but not the AB condition (AB: 3.3±1.4%, t(28) = 2.2, p = 0.034, AI: 5.3±1.8%, t(28) = 2.8, p 321	

Figure 6. Laminar profile of attention effects. A) Example session CSD profile evoked by task stimulus (left column) 
with multi-unit receptive fields (middle) and tuning curves (right). Depths are relative to first L5 channel. Dotted 
black line shows L4-5 transition. Arrow shows initial current sink-source flip in L4C. B) Fractional increase in firing 
rates in AB and AI, relative to AO, conditions split by laminar group. C) Spike count correlation over 0-1000ms 
interval split by laminar group. D) Spike count correlation over 0-200ms interval split by laminar group. Data in B-
D show mean across sessions ± SEM (N=30).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/189282doi: bioRxiv preprint 

https://doi.org/10.1101/189282
http://creativecommons.org/licenses/by-nc-nd/4.0/


15	
	

= 0.0087, α=0.025). In the granular group, firing rates were again significantly elevated in the AI 322	

but not the AB condition (AB: .25±1.7%, t(27) = 0.1, p = 0.8887, AI: 4.4±1.5%, t(27) = 2.7, p = 0.0111, 323	

α=0.025). Thus, firing rates were significantly elevated in all laminar groups in the AI condition 324	

and only significantly elevated in the supragranular group in the AB condition. 325	

Next, we examined the laminar profile of attentional effects on spike count correlations for 326	

the same 1000ms interval evaluated in Figure 5 (Fig. 6C). Correlations were significantly 327	

modulated by attention condition in the supragranular group (F(2,29) = 7.1, p = 0.0018, 328	

rmANOVA). Post-hoc testing again showed correlations were highest in the AB condition (t(29) 329	

= 3.1, p = 0.004, t-test) and equivalently low in the AI and AO conditions (p = 0.83, post-hoc 330	

Tukey’s test). In the granular and infragranular groups, correlations were constant across 331	

attention conditions (F(2,22) = 0.1, p = 0.92, F(2,26) = 0.01, p = 0.99, respectively, rmANOVA). 332	

Although there was a downward trend in overall spike count correlation magnitude from 333	

superficial to deep, there was no significant effect of layer at this timescale (F(2,29) = 0.6, p = 0.53, 334	

rmANOVA; S: rsc = 0.10±0.02, G: rsc = 0.09±0.02, I: rsc = 0.08±0.02).  335	

Considering the consistency of the finding in previous studies that correlations are reduced 336	

in attended conditions, at least at shorter timescales, and the trend we observed at such timescales 337	

when not conditioning on laminar position (Fig. 5C), we analyzed correlations at a 200ms interval 338	

by laminar position as well (Fig. 6D). In the supragranular group, correlations were significantly 339	

modulated by attention condition (F(2,29) = 3.5, p = 0.036, rmANOVA), and consistent with 340	

previous studies, correlations were lower in the AI condition relative to the AO condition (t(29) = 341	

2.9, p = 0.007, t-test). Correlations were once again not significantly modulated by attention in the 342	

granular layer (F(2,22) = 0.1, p = 0.926, rmANOVA) or in the infragranular layer (F(2,26) = 0.5, 343	

p=0.612, rmANOVA). However, at this shorter timescale there was a significant effect of layer on 344	

correlation magnitude (F(2,29) = 3.5, p = 0.037, rmANOVA; S: rsc = 0.05±0.01, G: rsc = 0.01±0.01, I: 345	

rsc = 0.05±0.01). 346	

 347	

Fixational eye movements cannot account for our results 348	
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Fixational eye movements, also called micro-saccades, have been reported to modulate neuronal 349	

activity in the visual system, 38,39 contribute to neuronal response variability, 40,41 and act as an 350	

index of the focus of covert spatial attention based on subtle changes in their directionality with 351	

attention condition. 42 Given these findings, we considered two means by which micro-saccades 352	

could account for our results. First, micro-saccade direction may vary as a function of attention 353	

condition, differently modulating neuronal firing activity across conditions and potentially 354	

generating the pattern of correlated variability we report. However, the direction of micro-355	

saccades did not vary across attention 356	

conditions in our task (Fig 7A; F(2,7,29) = 1.2, 357	

main effect of attention condition, p = 0.32, 358	

two-way, rmANOVA). Second, an increase in 359	

the frequency of micro-saccades in the AB 360	

condition might explain the elevation in 361	

correlations seen in this condition. However, 362	

there was no difference in the number of 363	

micro-saccade events across attention 364	

conditions (Fig 7B; F(2,29) = 0.5, p = 0.63, 365	

rmANOVA). 366	

 367	

Changes in task difficulty cannot account for our results 368	

A further potential confounding variable is task difficulty. Recent work has shown that 369	

increasing task difficulty is associated with lower spike count correlations, presumably by 370	

modulating the overall level of arousal of the subject. 43 If behavioral conditions in which two 371	

stimuli must be monitored for a possible change are more difficult than conditions in which only 372	

one stimulus needs monitoring, then correlations should be lowest in the AB condition of our 373	

task. In fact, we found correlations to be highest in the AB condition (Fig. 5A), suggesting that 374	

increased task difficulty does not account for our results in the AB condition.  375	

As noted previously, however, to attempt to balance task difficulty across conditions, we 376	

increased coherences by one step in the AB condition. One could argue that this change in 377	

Figure 7. Microsaccade and pupil size by attention 
condition. A) Proportion of total microsaccades in a session 
(radius) as a function of microsaccade direction (angle) for 
each attention condition. B) Normalized number of 
microsaccades by attention condition. C) Normalized pupil 
size by attention condition. Data in A-C show mean across 
sessions ± SEM (N=30 for A, B; N=8 for C). 
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coherence may have over-corrected for task difficulty and made the AB condition easier, leading 378	

to higher correlations in the AB condition by the converse of the above argument. Several 379	

observations argue against this possibility. If the AB condition were easier than the other 380	

conditions, we would expect the percentage of changes detected to be higher in the AB condition, 381	

which was not the case (Fig. 3E). Additionally, decreased task difficulty in the AB condition 382	

cannot account for the positive correlation between stimulus eccentricity and the degree to which 383	

correlations are elevated in the AB condition (Fig. 5D), because task difficulty is likely to increase, 384	

rather than decrease, with eccentricity.  385	

Finally, exploiting the relationship between task difficulty and arousal level 43 and using pupil 386	

size as a measure of the overall arousal level of a subject, 44,45 we assessed whether changes in 387	

arousal level across task conditions could account for our results. Because we had not recorded 388	

pupil size for the sessions reported above, we collected a new set of behavioral sessions in which 389	

we recorded pupil size and for which stimulus parameters were matched to those used in our 390	

original dataset. We found no significant difference of pupil sizes between the attention 391	

conditions in this new dataset, suggesting that our results cannot be explained by changes in the 392	

level of arousal either (Fig. 7C; F(2, 7) = 2.7, p = 0.11, rmANOVA).  393	

 394	

Other potential confounds 395	

Further, our results are not trivially explained by changes in firing rates across conditions, as 396	

firing rates in the AI condition were elevated compared to the AO condition (Fig. 4B), but 397	

correlation magnitudes were not significantly different in these conditions (Fig. 5A and B). In fact, 398	

this dissociation between attentional modulation of firing rates and of spike count correlations is 399	

consistent with the predictions of our previously published model of attention. 8,46 Finally, 400	

changes in stimulus coherence cannot function as an explanation for elevated correlations in the 401	

AB condition, as spike counts were analyzed during the ZCP before any changes in the stimulus 402	

coherence occurred.  403	

 404	

Discussion 405	
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We developed a task to dissociate changes in the strength of attentional modulation from changes 406	

in variability in the attentional state by varying the behavioral relevance of two simultaneously 407	

presented stimuli and encouraging the use of different attentional allocation strategies across task 408	

conditions. We found the effects of attention on correlated variability to differ depending on the 409	

timescale analyzed. At a timescale of 1000ms, levels of shared variability were highest in the 410	

condition in which both stimuli were behaviorally relevant, supporting the idea that this 411	

condition introduced competition for attentional resources, which increased attentional state 412	

variability. In contrast, shared variability was lowest in the conditions in which attention could 413	

be focused on only one stimulus, and there was no difference in correlations in the AI and AO 414	

conditions at this timescale. These results are consistent with the scenario presented in Figure 2B, 415	

in line with our previous predictions,8 and support the hypothesis that fluctuations in the state of 416	

attention can be a prominent source of shared neuronal response variability. More generally, 417	

these results suggest that a significant fraction of shared variability in neuronal populations can 418	

be attributed to fluctuations in behaviorally-relevant, internally generated signals, rather than 419	

shared sensory noise. 8,16,46–51 420	

Further, at a timescale of 200ms, we found correlations between neurons in the supragranular 421	

cortical layers were lower in the AI relative to the AO condition, consistent with earlier work that 422	

considered faster timescales, both in V4 and in V1, 11,12,17,52 and with the scenario depicted in Figure 423	

2A. Verhoef and Maunsell (2017) recently demonstrated how the reduction of correlations under 424	

attention could be due to a suppression of (variable) normalizing inputs from the unattended 425	

surround,53 largely consistent with previously hypothesized explanations. 11,12 Taken together, 426	

these results suggest that both mechanisms – suppression of common noise and attentional 427	

fluctuations – impact levels of correlated variability, but they operate at different timescales. 428	

The importance of timescale could explain why a recent study that employed an attention 429	

task with conditions similar to ours, including a neutrally-cued condition akin to our AB 430	

condition, found correlations to be intermediate between the attend-in and attend-out conditions 431	

at a timescale of 200ms. 54 Further, both Mayo and Maunsell (2016) and Cohen and Maunsell 432	

(2010) collected data simultaneously from both hemispheres but reported no significant 433	

correlation, or anti-correlation as one would expect with a shifting spotlight-like attentional 434	
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allocation strategy, amongst neurons in opposite hemispheres. Perhaps such a correlation does 435	

exist at timescales longer than was analyzed in those studies. Unfortunately, our data cannot 436	

resolve this question, as we recorded from only one hemisphere at a time. 437	

Because the impact of variability in the attentional state on correlations manifested on a 438	

timescale of individual trials in our task, should we therefore expect that fluctuations in internal 439	

signals, in general, only induce correlations on long timescales? Ultimately, this timescale is likely 440	

to depend on the mechanism by which such signals impact neuronal populations. Work on 441	

orienting of attention and attentional dwell time suggests that voluntarily shifting attention 442	

between different stimuli takes on the order of several hundred milliseconds. 27,28 In an 443	

experimental paradigm similar to our AB condition, attention was found to alternate between 444	

two stimulus locations roughly every 250ms (4Hz).18,19 This shifting of attention between stimulus 445	

locations is the strategy we were hoping to induce in our paradigm and appears to be the likeliest 446	

explanation for how attention is allocated across trials in our AB condition, given our behavioral 447	

and neurophysiological results. We would, thus, expect that AB correlations should be elevated 448	

on a timescale of at least several hundred milliseconds, which is what we found (Fig. 5C).  449	

Note that this line of reasoning stands regardless of whether the shift in attention that occurs 450	

involves a narrowly-focused attention field encompassing only one stimulus at a time – 451	

resembling the spotlight or narrowly-focused Zoom Lens models 24,55 – or whether some degree 452	

of attention is allocated to both stimuli simultaneously, but with one stimulus receiving a greater 453	

degree of attention than the other on a given trial – resembling the Variable Precision model of 454	

resource allocation. 56 In this latter case, the shift of attention corresponds to alternations in which 455	

stimulus receives the greater strength of attentional focus on a given trial. The key, however, is 456	

that some change in attentional resources allocated to the receptive field stimulus occurs across 457	

trials. Therefore, our results are not consistent with models of attention that suggest that both 458	

stimuli are processed simultaneously and that a consistent or uniform degree of attentional 459	

processing is distributed across the full field of attention. 460	

Interestingly, we also found a correlation between the horizontal eccentricity of the stimuli 461	

and the degree to which correlations in the AB condition were elevated compared to the AO and 462	

AI conditions (Fig 5D). We interpret this finding to suggest that when stimuli are closer to each 463	
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other, it is easier to attend both simultaneously, resulting in a lower degree of attentional 464	

fluctuation in the AB condition. As the stimuli are placed farther apart, attending to both 465	

simultaneously becomes increasingly difficult, and subjects are more likely to deploy a switching 466	

allocation strategy, leading to more pronounced attentional fluctuations and, thus, higher 467	

correlations in the AB condition.  468	

While alternating which stimulus receives the greater strength of attentional processing on a 469	

given trial is one means by which attentional state variability increases (across trials), there may 470	

be other sources of variability in the attentional state as well. For example, a number of studies 471	

have shown that improvements in behavior due to attention, rather than being continuous across 472	

time within a trial, appear to exhibit a theta-frequency periodicity, which is related to theta-band 473	

cortical oscillations and can occur even with attention focused on only one stimulus. 57–59 If 474	

attention operates in a periodic manner, as these studies suggest, such oscillations could represent 475	

an additional source of variability in the attentional state beyond that induced by alternating 476	

attention between stimulus locations. Further studies have suggested that shifts in attention 477	

between stimulus locations are also linked to theta-band oscillatory activity, 19,58,60 raising a 478	

number of interesting questions. Does attention itself truly operate periodically, or do ongoing 479	

cortical oscillations mediate the effects of an otherwise more continuous attention signal, giving 480	

the appearance of periodicity? Are shifts in attention only possible at certain phases of these 481	

ongoing cortical rhythms? Ultimately, these are important empirical questions that future 482	

research should address. To do so will require a combination of behavioral paradigms that allow 483	

attention-related performance to be tracked more explicitly over time18 and multi-electrode array 484	

recordings with single-unit-resolution population analyses such as those undertaken in the 485	

present study. 486	

Another interesting question is how correlations in an attention task impact behavioral 487	

performance. Quantifying precisely how correlations affect the information encoding capacity of 488	

a neuronal population in an experimental setting is a challenge because one would have to decode 489	

from a large population of simultaneously recorded neurons. 9 Because we do not have such a 490	

sufficiently large dataset, we cannot draw any conclusions regarding the impact of correlations 491	

on performance. Nonetheless, this is a critical topic for future work to address. 492	
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Recent studies have examined the laminar profile of attentional modulation of firing rates 61 493	

or of spike count correlations during passive fixation. 33,34 Only one study has examined the 494	

laminar relationship between attentional modulation and shared variability,62 and ours is the first 495	

to do so in V1. Nandy et al. (2017) found significant attentional modulation of firing rates in all 496	

layers, with the strongest effects in the granular layer. In contrast, van Kerkoerle et al. (2017) 497	

found the weakest attentional modulation of firing rates in the granular layer of V1. Similar to 498	

Nandy et al. (2017), we found significant modulation of firing rates by attention in all layers in 499	

the AI condition. However, considering both the AB and AI conditions, our results are in better 500	

agreement with those of van Kerkoerle et al. (2017), as we found the strongest attentional 501	

modulation of firing rates in the supragranular, followed by the infragranular layers, as expected 502	

given the anatomical distribution of feedback cortical connections. 20–23  503	

Regarding correlation magnitude across layers, we observed different patterns of results at 504	

the two main timescales we analyzed, 200ms and 1000ms. At the 1000ms interval there was no 505	

significant effect of layer on correlation magnitude, whereas at the 200ms interval, correlations 506	

were lowest in the granular layer, consistent with previous laminar studies in V1. 33,34 This 200ms 507	

interval is similar to the window size used in Hansen et al. (2012). While Smith et al. (2013) found 508	

a similar pattern over a 1280ms interval, they recorded from anesthetized animals where the 509	

mechanisms driving correlated fluctuations are likely to be very different from those during 510	

wakefulness.49  511	

At both timescales, attentional modulation of correlations was confined primarily to the 512	

supragranular layers and was not present in the infragranular layers, despite attentional 513	

modulation of rates in the AI condition. One reason may be a lack of sufficient statistical power. 514	

Most of our isolated single units were from the supragranular layers (just over eight units per 515	

session on average), with about half that number isolated in the infragranular layers, and fewer 516	

still from the granular layer. The difference could also be attributable to the anatomical and 517	

computational characteristics of each layer, which by no means are completely understood. 32,63,64 518	

The infragranular layers additionally receive feedback from and send projections to subcortical 519	

regions 65 and such signals may modulate shared variability differently. Ultimately, the finding 520	

that attention predominantly modulates correlations in the supragranular layers matches the 521	
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location where we found the most pronounced attentional modulation of firing rates and accords 522	

well with the known anatomy of corticocortical interactions, particularly for feedback signals. 523	

Nandy et al. (2017) also found attentional modulation of correlations to be strongest in the 524	

same layer in which they found attentional modulation of firing rates to be strongest. 525	

Interestingly, this layer was not the supragranular layer but rather the granular layer. As 526	

suggested by Nandy et al. (2017), it is possible that the input layer in V4 inherits the correlation 527	

pattern from the output (supragranular) layers of V1. Our results at the 200ms interval in the 528	

supragranular layers are consistent with this possibility and match the findings reported by 529	

Nandy et al. (2017). It is also possible that attention operates somewhat differently in V4 than in 530	

V1, with attentional modulation of firing rates typically being stronger overall and occurring 531	

earlier in the response period in V4. 25,35 532	

Overall, correlations in the present study were a bit higher than in our earlier studies with 533	

awake fixating animals. 48 The primary difference between these studies is that subjects in the 534	

present study perform a demanding task engaging feedback processes such as attention, and our 535	

main results demonstrate the effect that fluctuations in such signals have on levels of correlated 536	

variability. Although attentional fluctuations are reduced in the focused attention conditions, 537	

they are unlikely to be entirely absent, so some elevation in correlation magnitude above zero in 538	

these conditions is to be expected. Additionally, correlations are also likely to be somewhat higher 539	

given that the highly dynamic stimulus in the current study drives the neurons much more 540	

strongly than static or drifting gratings. 541	

Finally, there has been an increasing interest in recent years in leveraging population 542	

recording and latent-variable modeling techniques to infer the state of internally-generated, 543	

cognitive signals, such as attention, on more behaviorally-relevant timescales, to better 544	

understand the nature of these signals and their impact on decision-making and behavior. 16,66–68 545	

To make such inferences, these methods make use of the patterns of covariance in population 546	

activity and rely on the assumption that this variability occurs in a low-dimensional space (e.g., 547	

the “attention axis” 14). A further, but critical, assumption of these techniques is that much of this 548	

shared variability is not noise but is attributable to the action of behaviorally-relevant, internally 549	

generated signals. However, a clearer demonstration that changes in internal signals indeed 550	
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contribute significantly to shared neuronal variability was lacking. We presented a paradigm 551	

designed specifically to test for such a contribution, and our results provide support for this 552	

critical assumption. Additionally, our results demonstrate the subtlety of the effects that internal 553	

signals such as attention have on correlated variability, exemplified by the two timescales over 554	

which attention modulated correlations.  555	
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Materials and Methods 556	

 557	

Experimental model and subject details 558	

All behavioral and electrophysiological data were obtained from two healthy, male rhesus 559	

macaque (Macaca mulatta) monkeys (B and D) aged 12 and 13 years and weighing 11 and 10 kg, 560	

respectively, during the time of study. All experimental procedures complied with guidelines of 561	

the NIH and were approved by the Baylor College of Medicine Institutional Animal Care and 562	

Use Committee (permit number: AN-4367). Animals were housed individually in a large room 563	

located adjacent to the training facility, along with around ten other monkeys permitting rich 564	

visual, olfactory and auditory interactions, on a 12h light/dark cycle. Regular veterinary care and 565	

monitoring, balanced nutrition and environmental enrichment were provided by the Center for 566	

Comparative Medicine of Baylor College of Medicine. Surgical procedures on monkeys were 567	

conducted under general anesthesia following standard aseptic techniques. To ameliorate pain 568	

after surgery, analgesics were given for 7 days. Animals were not sacrificed after the experiments.  569	

 570	

Visual stimuli and behavioral paradigm 571	

Visual stimuli were two Gabor patches (size: diameter of 2–3° depending on eccentricity; spatial 572	

frequency: 3–3.5 cycles per degree; contrast: 100% Michelson; eccentricity: 3.7-8.9°) presented on 573	

CRT monitors (at a distance of 100 cm; resolution: 1600 × 1200 pixels; refresh rate: 100 Hz) using 574	

Psychophysics Toolbox. 69 The monitors were gamma corrected to have a linear luminance 575	

response profile. Video cameras (DALSA genie HM640; frame rate 200Hz) with custom video eye 576	

tracking software developed in LabView were used to monitor eye movements. 577	

Monkeys performed a noisy, orientation–change detection task. Trials were initiated by a 578	

sound and the appearance of a colored fixation target (~0.15°). Monkeys were required to fixate 579	

within a radius of 0.5°–1°, but typically fixated much more accurately, as revealed by offline 580	

analysis. After fixating for 300ms, two Gabor patches were presented symmetrically in the lower 581	

left and right visual fields. During what we labeled the Zero-Coherence Period (ZCP), these 582	

stimuli changed their orientation pseudo-randomly every 10ms (uniform distribution over 36 583	

orientations spaced by 5° between 0 and 175°) for a random period of time drawn from an 584	
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exponential distribution with a minimum of 10ms, mean of 2170ms, and maximum of 5000ms.  585	

After this time one of the two stimuli entered the Coherent Period (CP), where one particular 586	

orientation, called the “signal” orientation, was shown with a higher frequency than the other 587	

orientations. The CP lasted 300ms (30 frames), and from trial to trial the number of frames in the 588	

CP showing the signal orientation was selected from a set of five unique “coherences” chosen for 589	

that session, which allowed us to vary the difficulty of the trials within a session and compute 590	

psychometric functions. After this period, the stimulus returned to the ZCP for a further 200ms 591	

to allow sufficient time for subjects to report whether or not they noticed the presence of the signal 592	

orientation by making a saccade to the stimulus showing the change. Subjects were prevented 593	

from responding within the first 100ms of the CP to minimize guessing. Successful identification 594	

of the signal orientation was rewarded with a small drop of juice. On 10% of trials in each 595	

attention condition no change occurred, and subjects were rewarded for maintaining fixation. 596	

Orthogonal signal orientations were used in the left (135°) and right (45°) stimuli. 597	

Note, occurrences of the signal orientation during the CP were not constrained to occur in 598	

successive frames. Also note that the left and right stimuli displayed different orientation 599	

sequences, so that subjects could not identify a change simply by noticing when the two 600	

orientation sequences diverged. Orientation sequences were described as pseudo-random for the 601	

following reason. For each trial a random number generator seed was chosen from a set of five 602	

such seeds selected for a given recording session. Doing so meant there were five unique stimuli 603	

that could be repeated across attention conditions for the purposes of calculating spike count 604	

correlations and Fano factors over identical stimuli. Sequences were constrained to show each 605	

orientation once before any repetitions were allowed so that the maximum number of signal 606	

orientations that could occur by chance in a period of time equal to the CP (300ms) was two. 607	

Attention was cued in blocks of trials by the color of the fixation spot (Fig. 3B). In the Attend 608	

Out (AO) condition, 100% of the changes occurred in the non-receptive field stimulus. In the 609	

Attend In (AI) condition, 100% of changes occurred in the receptive field stimulus. In the Attend 610	

Both (AB) condition, the change was equally likely to occur in either stimulus (50% chance that 611	

the change was in the receptive field stimulus). Block transitions occurred after a total of 60 hit 612	

and miss trials was achieved (i.e. false alarms did not count). Blocks were randomized in sets of 613	
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three so that each attention condition was seen before one was allowed to repeat. Coherences 614	

were increased by one frame in the AB condition to keep task difficulty approximately constant 615	

across conditions. 616	

 617	

Surgical methods 618	

Our surgical procedures followed a previously established approach. 70 A cranial headpost was 619	

first implanted under general anesthesia using aseptic conditions in a dedicated operating room. 620	

After premedication with atropine (0.05 mg/kg prior to sedation), animals were sedated with a 621	

mixture of ketamine (10 mg/kg) and dexdormitor (0.015 mg/kg). During the surgery anesthesia 622	

was maintained using isoflurane (0.5–2%). 623	

After subjects were trained to perform the above described task, they were implanted with a 624	

form-fitted titanium recording chamber, designed based on pre-operatively obtained anatomical 625	

MRI scans, placed at a location over the operculum in V1 determined by stereotactic coordinates. 626	

70 This surgery was performed under identical conditions as described for headpost implantation. 627	

The chamber was attached to the skull using orthopedic screws only. We used a small amount of 628	

dental cement to seal any openings between the bone and the lower surface of the recording 629	

chamber. A custom-made chamber cap was then placed to seal the chamber and prevent 630	

infection. A minimum of three weeks was provided for the implant to heal. After healing, small 631	

2–3mm trephinations could be performed, in aseptic conditions under ketamine (10 mg/kg) 632	

sedation with ketoprophen (2mg/kg) for analgesia and meloxicam (0.2mg/kg for two days), to 633	

enable access for subsequent daily electrophysiological recordings. 634	

 635	

Electrophysiology in awake, behaving monkeys 636	

We performed daily electrophysiological recordings beginning 48 hours after a craniotomy was 637	

performed. Custom-designed 32 channel, linear silicon probes (NeuroNexus V1x32-Edge-10mm-638	

60-177) with inter-channel spacing of 60µm, contact site dimensions of roughly 12x15µm, contact 639	

site area of 177µm2 and typical impedances around 1 mega-Ohm were mounted in a Narishige 640	

microdrive (MO-97) with a nested, stainless steel guide tube composed of one extra-thin walled 641	

23-gauge piece, spanning most of the length of the probe shaft, and a smaller 27-gauge piece 642	
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(roughly 6mm long) nested inside such that 4mm of the smaller tubing protruded beyond the 643	

large piece. This design enabled a tight fit around the probe to support it during dural 644	

penetrations. We took care during the insertion procedure to ensure that the dura was penetrated 645	

only by the probe itself, rather than the guide tube, to minimize damage to the superficial layers 646	

of cortex. We alternated lowering the guide tube in steps of 250µm and extending the probe up 647	

to ~500µm beyond the guide tube, retracting and repeating as necessary, until either characteristic 648	

changes in the LFP or multi-unit activity, or both, were observed, indicating successful 649	

penetration of cortex.  650	

The probe was then lowered in ~250µm steps at < 10µm per second, pausing for several 651	

minutes after each step, until activity was seen on all channels. As a result of this procedure there 652	

would be variable degrees of tissue compression. Some of this compression was relieved early in 653	

the positioning of the probe by retracting the guide tube by ~500µm after the probe was several 654	

hundred microns inside the cortex. If compression remained after completely lowering the probe, 655	

we could successfully relieve it by slowly retracting the guide tube further. The single most 656	

reliable indicator of the position of our probe in cortex before receptive field mapping was a band 657	

of high spontaneous activity corresponding to layer 4C, 30 which could be clearly seen to span 658	

roughly 6–7 channels. In general, we found the basic laminar properties described by Snodderly 659	

and Gur (1995) to be very reliable guidelines. After final positioning of the probe, we allowed 660	

between 30–60min for tissue settling and recording stability to become established. The entire 661	

insertion procedure typically took around 3-4 hours, from penetrating the dura to the start of 662	

recording. Receptive field mapping experiments were performed (see Data Analysis below for 663	

details) to determine where to place one of the two stimuli such that it covered the recorded 664	

neurons’ receptive fields for that session. 665	

 666	

Data acquisition and spike sorting 667	

The methods described below for spike detection and spike sorting were adapted for use with 668	

multi-channel silicon probes from our previous methods used for tetrode recordings. 49 Neural 669	

signals were digitized at 24 bits using analog acquisition cards with 30 dB of onboard gain (PXI-670	

4498, National Instruments, Austin, TX) and recorded continuously at 32 KHz as broad-band 671	
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signal (0.5 Hz to 16 kHz). Eye movement traces were sampled at 2kHz. 672	

Spikes were detected offline when the signal on a given channel crossed a threshold of five 673	

times the standard deviation of the corresponding channel. To avoid artificial inflation of the 674	

threshold in the presence of a large number of high amplitude spikes, we used a robust estimator 675	

of the standard deviation, given by 𝜎 = median(|𝑥|)/0.6745. 71 Spikes were aligned to the center of 676	

mass of the continuous waveform segment above half the peak amplitude. Code for spike 677	

detection is available online at [https://github.com/atlab/spikedetection].  678	

Virtual electrodes consisting of six channels were constructed in a sliding window (stride 2) 679	

spanning the length of the probe to aid in the spike sorting process by enabling some degree of 680	

triangulation, as with tetrodes. Given a channel spacing of 60µm, in many cases the waveforms 681	

of a single neuron could be detected by several channels. To extract features for spike sorting, we 682	

performed principal component analysis on the extracted waveform segments (individually for 683	

each channel). This step reduced the data to three dimensions per channel, resulting in an 18-684	

dimensional feature vector. We fit a mixture of t distributions with a Kalman filter on the cluster 685	

means to track waveform drift. 72 686	

The number of clusters was determined based on a penalized average likelihood, where the 687	

penalty term was a constant cost per additional cluster. Code for spike sorting is available online 688	

at [https://github.com/aecker/moksm]. Following this automatic step, results of the model were 689	

examined manually for each virtual electrode and single units were flagged at this time according 690	

to degree of cluster isolation, uniqueness of waveforms and size of refractory period. To avoid 691	

duplicate single units due to overlapping channel groups used for spike sorting, we included 692	

only those single units that had their largest waveform amplitude on one of the two central 693	

channels of the group (this was not an issue for the first and last two channels on the probe). 694	

 695	

Dataset and inclusion criteria 696	

Our dataset included 30 sessions (N=7, Subject B; N=23, Subject D), yielding 474 single units 697	

(N=83, Subject B; N=391, Subject D). We included recording sessions with at least 10 single units 698	

that were visually responsive and significantly orientation tuned in each attention condition. To 699	

ensure reliable estimates of neuronal (co-)variability, sessions were also excluded if there were 700	
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fewer than three (of five possible) valid seed conditions. A seed condition was considered invalid 701	

if in any of the three attention conditions there were fewer than three correct trials generated 702	

using that seed that had sufficient ZCP length available for spike count analysis. On average for 703	

the 1-second analysis window, included sessions had ~10 correct trials per seed per attention 704	

condition.  705	

After having collected a complete dataset of 13 sessions from Subject B and a dataset of 29 706	

sessions from Subject D, we found that sessions with recording locations close to the vertical 707	

meridian did not exhibit our predicted main effect. We reasoned that this lack of effect was likely 708	

because the two stimuli were too close to each other, allowing the monkey to attend to both 709	

simultaneously. To verify that this result was not a false positive due to post-hoc analysis, we 710	

collected an independent 10-session dataset at high eccentricities from Subject D (the termination 711	

condition of 10 sessions was set before starting to collect additional data), which confirmed the 712	

effect at high eccentricity. The results reported in this paper, except in Figure 5D, include all 713	

sessions with x-axis receptive field eccentricities of at least 3° (representing the median such 714	

eccentricities for Subject B), including the separate validation dataset from Subject D. 715	

 716	

Data analysis 717	

Data were analyzed in Matlab, using custom Matlab software and the DataJoint processing 718	

pipeline. 73 719	

Trial results were classified as ‘hits’, ‘misses’, ‘correct rejections’ (for successful completion of 720	

trials with no change) and ‘false alarms’ (for saccades made to a stimulus before any change 721	

occurred). For each session, behavior was analyzed by calculating the fraction of changes detected 722	

(hits / [hits + misses]), both conditioned on and marginalized over coherence in each attention 723	

condition. Psychometric functions were plotted as the fraction of changes detected versus 724	

coherence in each attention condition. Using the psignifit toolbox 74,75 in MATLAB, logistic 725	

functions were fit to the attention condition specific curves using the method of maximum 726	

likelihood, and 50% performance thresholds were extracted. Reaction times could be calculated 727	

using only hit trials and reaction time distributions for each session were quantified by calculating 728	
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the median deviation for each condition in each session. False alarm rates were calculated using 729	

all valid trials (‘hits’, ’misses’, ’correct rejections’, ’false alarms’). 730	

Prior to starting the main task, we quantitatively mapped receptive fields based on unsorted 731	

multi-unit responses using a white noise random dot stimulus. A single square dot of size 0.29 732	

degrees of visual angle was presented on a uniform gray background, changing location and 733	

color (black or white) randomly every three frames, or 30ms, for 1 second. Receptive field profiles 734	

were obtained by spike-triggered averaging. Average diameter of multi-unit receptive fields 735	

across sessions was 1.14±0.05 degrees. 736	

Our task allowed us to compute orientation tuning curves for each neuron. We binned the 737	

spike counts in bins of 10ms and used linear regression based on a one-hot encoding of the 15 738	

stimuli directly preceding the response (i.e. the stimulus is a 36×15-dimensional vector, because 739	

there were 36 possible stimulus orientations). We defined the optimal latency of each neuron as 740	

the time delay that produced the strongest response modulation across orientations (determined 741	

by taking the variance of the regression weights across orientations). The optimal latency of most 742	

neurons was 50ms. We then re-estimated the regression using only that single time lag to obtain 743	

a tuning curve. Significance of tuning was then tested by projecting the weight vector onto a 744	

complex exponential with one cycle, the norm of which was compared to its null distribution 745	

calculated by randomly shuffling orientation labels. A p-value was obtained by performing 1,000 746	

iterations of the shuffling procedure and using the fraction of runs in which the norm of the 747	

shuffled projection was greater than that observed in the real data. Signal correlations were 748	

computed for pairs of neurons by calculating the correlation coefficient between the two cells’ 749	

tuning curves. 750	

For each unit, a von Mises distribution function, parameterized as 751	

𝑌 = 	𝑤( + exp(𝑤. + 𝑤/ cos 𝑥 −	𝑤4 ), 752	

was fit to the tuning curve obtained across all trials via the method described above. From this fit, 753	

the shape and preferred orientation parameters, 𝑤/ and 𝑤4, were obtained. These parameters were 754	

assumed not to change across attention conditions, leaving only the offset, 𝑤(, and gain, exp(𝑤.), 755	

terms to vary across conditions. New von Mises functions were then fit for each attention condition 756	
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using a linear regression model with a binary indicator variable for attention condition and an 757	

interaction term. To illustrate, we write the response 𝑦 to orientation 𝑖 as 758	

𝑦8 = 	𝑤( + exp(𝑤. + 𝑤/ cos 𝑥8 −	𝑤4 ) = 	𝑏( + 𝑏.𝜃8 759	

where 𝜃8 = exp(𝑤/ cos 𝑥 −	𝑤4 ) and was obtained from the overall tuning curve as described. 760	

Our linear regression model comparing fits in the AO and AI condition, for example, then 761	

became: 762	

𝑦8 = 𝛽< + 𝛽(𝑋8( + 𝛽.𝑋8. + 𝛽/𝑋8(𝑋8. 763	

where 𝑋8( = 𝜃8 and 𝑋8. ∈ {0, 1}, with 0 coding the AO condition and 1 coding the AI condition. 764	

In this manner we enabled different gain and offset terms to be fit to different attention conditions. 765	

We then assessed whether significant attentional modulation was present by performing an F-test 766	

comparing the full model above to the reduced model containing only the 𝛽< and 𝛽( terms, and 767	

when significant, we tested whether the offset and gain parameters differed between conditions 768	

with t-tests. 769	

Visual responsiveness of neurons was determined by comparing firing rates in the 300ms 770	

fixation interval before stimulus onset to those in the 300ms immediately following stimulus 771	

onset. A t-test was performed to test for a significant change in rate following stimulus onset. 772	

Spike density functions (SDFs) were calculated first for a given neuron, across all hit trials 773	

grouped by attention condition and stimulus seed, by counting spikes in 50ms bins relative to 774	

stimulus onset and averaging across trials. Averages were then taken across seeds and smoothed 775	

with a Gaussian window. To calculate SDFs for a given session, individual neuron SDFs were 776	

normalized by the average response in the AO condition, starting from 100ms after stimulus 777	

onset, before averaging across neurons. Fractional firing rate increases were also calculated first 778	

at the individual neuronal level, by averaging all available bins from the first second following 779	

stimulus onset conditioned on the stimulus seed for each attention condition, and then averaging 780	

across seeds. The rates were again normalized by the AO condition rate before averaging across 781	

neurons to get a session-level rate modulation for each attention condition. Finally, responses in 782	

the AI and AB conditions were converted to fractional changes relative to the AO responses. 783	

Fano factors and spike count correlations were computed on the first 1000ms of the response. 784	
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Fano factors were computed as the variance of the spike count divided by its mean. Spike count 785	

correlations were computed as the covariance of the two neurons’ z-scored responses to identical 786	

repetitions of the same stimulus condition (seed). Z-scoring and Fano factor calculations were 787	

performed in a block-wise fashion to control for slow fluctuations in firing rate across a recording 788	

session. For the analysis of correlation timescale we used the relationship between spike count 789	

correlations and cross-correlation functions first described in Bair et al. (2001) to compute a 790	

cumulative correlation coefficient, rCCG. We compute a spike train cross-correlation function for a 791	

pair of neurons j and k, as well as a shift-predictor, which is the cross-correlation function of the 792	

spike density functions of neurons j and k. The shift-predictor is subtracted from the cross-793	

correlation function to control for stimulus-induced correlation. This shift-corrected cross-794	

correlation is denoted 𝐶EF(𝜏). The cumulative cross-correlation is given by 795	

𝐴EF	 = 	 𝐶EF(𝑡)𝑑𝑡
K

LK
 796	

Following Ecker et al. (2014), the cumulative correlation coefficient is 797	

𝑟NNO(𝜏) =
𝐴EF(𝜏)

𝐴EE(𝑇)𝐴FF(𝑇)
 798	

where T is the last time point in the counting window, in our case 1000ms. 799	

The CSD profile at each time point was calculated as the second spatial derivative of the task-800	

stimulus evoked LFPs across channels, smoothed with a Gaussian kernel to aid visualization.29 801	

The granular layer was identified according to several criteria used in conjunction. The earliest 802	

current sink to source transition (identified by an arrow in Fig. 6A) is one indicator, immediately 803	

below which is a complementary source to sink transition in L5. We used additional criteria, 804	

described by Snodderly and Gur (1995), to verify this positioning, because there was a prominent 805	

current sink to source transition in L6 as well. These criteria included higher spontaneous activity 806	

and more poorly defined orientation tuning curves characteristic of the granular layer. 30 807	

Additional reports have described the granular layer to contain smaller receptive fields 76,77, which 808	

we also saw (Fig. 6A). In general across sessions, all of these granular layer features were quite 809	

consistent, allowing for confident determination of the L4-5 boundary. The first L5 channel was 810	

labeled as the zero-point for depth. Negative depths are more superficial to this point. The 811	

granular layer was defined as a roughly 400µm band just superficial to the zero-point. 31–34 The 812	
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supragranular group (L1–3) was defined as everything superficial to the top of the granular layer, 813	

and the infragranular group (L5–6) was defined as everything deeper than and including the 814	

zero-point. 815	

We identified micro-saccades our subjects made during the ZCP of our task (when spike 816	

counts were analyzed) to determine whether our correlation results could be accounted for by an 817	

increase in micro-saccade frequency in our AB condition, relative to the AI and AO conditions. 818	

Periods of stable gaze were taken to be those intervals during which eye position remained within 819	

a 0.1-degree window, and deviations greater than 0.1 degree in 10ms (10deg/s velocity) were 820	

taken to be micro-saccades.78 The number of micro-saccades during analysis periods was counted 821	

for each attention condition in each session and a repeated-measures ANOVA was performed to 822	

determine whether micro-saccades differed across conditions. Micro-saccades were also grouped 823	

according to the direction in which the saccade was made (unit circle divided into 8 equal 824	

direction bins) and a two-factor, repeated-measures ANOVA was used to assess for effects of 825	

direction and condition (the two factors). Pupil size was measured for a set of N=8 sessions 826	

recorded from Subject B using the same camera and software used for eye-tracking described 827	

above. Stimulus parameters were matched with those used for the original dataset. Pupil size was 828	

determined based on the number of pixels above a threshold brightness value and an effect of 829	

attention condition on pupil size was determined using a repeated-measures ANOVA. 830	

 831	

Quantification and Statistical Analysis 832	

Although customary in the field, we did not consider units or pairs as independent samples. 833	

Treating units as independent samples ignores the session-to-session variability and leads to 834	

underestimated confidence intervals and, consequently, inflated false positive rates. Instead, we 835	

first averaged our measurements across observations within a session and then performed all 836	

statistical tests across sessions, treating the session averages as independent samples. While this 837	

approach sacrifices some statistical power, it leads to conservative estimates of p values. 838	

For statistical analyses involving our attention conditions, repeated-measures ANOVAs were 839	

used, with session as the random factor and attention condition as the fixed factor. F-statistic 840	

values are reported as F(x,y), where x represents the number of degrees of freedom for the fixed 841	
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factor of attention condition, and y is the equivalent for the random factor of session. The Tukey-842	

Kramer method was primarily used for post-hoc analyses. To test for significantly elevated AB 843	

condition correlations, we performed a one-tailed t-test on a contrast between the AB condition 844	

and the average of the AO and AI condition results. This choice is justified by our previously 845	

published model, 8 which predicts this effect and its direction and was hypothesized and specified 846	

before data collection. Statistics for the t-test are reported as t(x), where x represents the degrees 847	

of freedom. Note, in the section discussing laminar results, any reductions in the number of 848	

degrees of freedom are due to instances in which insufficient single units were isolated in a 849	

particular layer for that session to be included in that particular analysis. 850	

A two-factor, repeated-measures ANOVA was used to test changes in microsaccade direction 851	

with attention condition. In this case the F-statistic is reported as F(x,y,z), where x represents the 852	

number of degrees of freedom for the factor of attention condition, y represents that for the factor 853	

of direction, and z represents that for the random factor of session. For assessments of visual 854	

responsiveness and significant increases in fractional firing rates, two-tailed t-tests were used, 855	

which, for rate increases, were Bonferroni-corrected for multiple comparisons. Orientation tuning 856	

significance was assessed according to the permutation test described above. Statistical 857	

comparisons were considered significant at p < 0.05 (p < 0.0167 for Bonferroni-corrected tests for 858	

firing rates in association with Figure 4C, as there were 3 comparisons; p < 0.025 for those 859	

associated with Figure 6B, given two comparisons). All error bars show the standard error of the 860	

mean (SEM; either directly calculated or estimated via ANOVA), except in the Figure 3C inset, 861	

which shows 95% confidence intervals. No blinding was used in the analysis. 862	

 863	

Code Availability 864	

The code used to process and analyze the data for the current study are available from the 865	

corresponding author on reasonable request. Links to some of this code have been provided in 866	

the Methods section “Data acquisition and spike sorting.” 867	

 868	

Data Availability 869	
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The datasets generated during and analyzed during the current study are available from the 870	

corresponding author on reasonable request. 871	
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Figure Legends 1087	

Figure 1. Attention and correlated variability.  1088	

A) Hypothesis 1: Attentional gain is increased, but relatively stable under both conditions (top 1089	

left). Correlated variability is driven by a common noise source (top right), which is suppressed 1090	

by attention.11,12 B) Hypothesis 2: Attentional gain is increased, but fluctuates from trial to 1091	

trial.8,14,15 Correlated variability is driven by fluctuations of attentional state. The reduction in 1092	

correlations under attention would imply that the attentional gain is less variable when attending. 1093	

Figure 2. Predicted effects of attention on correlations when attending one or two stimuli.  1094	

A) Scenario in which attentional fluctuations are negligible and attention primarily acts by 1095	

suppressing common noise sources. In this case, we expect intermediate correlations when 1096	

attending two stimuli (“Attend Both”). B) Scenario in which fluctuations in attention induce 1097	

correlations. In this case, we expect attention to switch randomly between the two targets in the 1098	

“Attend Both” condition, resulting in the highest correlations in this condition.  1099	

Figure 3. Task diagram with behavioral results.  1100	

A) Orientation change-detection task. Two stimuli (L: left, R: right) randomly change their 1101	

orientation during the ZCP (length 10-5000ms). One stimulus (R in this example) then enters the 1102	

CP (300ms) when the signal orientation is shown (coherence exaggerated for clarity). This period 1103	

is followed by another 200ms ZCP to allow time for a behavioral response. B) Illustration of 1104	

attention conditions. Attention is cued according to fixation spot color. This color scheme is used 1105	

in all figures to represent each condition. Percentages below the stimuli indicate the probability 1106	

that the change occurs in this stimulus on a given trial. One stimulus overlaps the recorded 1107	

neurons’ receptive fields. C) Example session psychophysical performance.  Individual points 1108	

represent fraction of changes detected at a given coherence. Solid lines indicate fit of logistic 1109	

function to the data. Inset shows 50% detection threshold with 95% CIs. D) Behavioral summary. 1110	

Same as inset in C, but averaged across sessions in our dataset (N=30; mean±SEM). E) Percentage 1111	

of changes detected in each condition averaged across sessions (mean±SEM). 1112	

Figure 4. Attentional modulation of neuronal responses. 1113	
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A) Example session spike density function for each condition, normalized to the average response 1114	

in AI condition (mean across units). B) Same as A but averaged across sessions (N=30). 1115	

Attentional modulation is confined primarily to the first second following stimulus onset. C) 1116	

Fractional increase in firing rates in the first second following stimulus onset in the AB and AI 1117	

conditions relative to the AO condition averaged across sessions (N=30; mean±SEM). D) Example 1118	

single unit tuning curves in AI, AB and AO conditions. Dots show responses to specific 1119	

orientations; solid lines show fitted von Mises functions. 1120	

Figure 5. Effects of attention on shared variability.  1121	

A) Spike count correlations from 0-1s following stimulus onset, averaged across sessions (N=30). 1122	

B) Spike count correlations shown separately for both subjects during fixation (300ms interval) 1123	

and during the task (same interval as in A). C) Cumulative correlation coefficient, calculated by 1124	

integrating the cross-correlogram, for each attention condition and averaged across sessions. Data 1125	

in A-B show mean ± SEM, C omits SEM. D) Correlation contrast versus eccentricity of stimulus 1126	

on horizontal axis (Subject B: N=13, open circles; Subject D, N=39 (N=29 black dots, N=10 black 1127	

squares); solid line, line of best fit, overall N=52). 1128	

Figure 6. Laminar profile of attention effects.  1129	

A) Example session CSD profile evoked by task stimulus (left column) with multi-unit receptive 1130	

fields (middle) and tuning curves (right). Depths are relative to first L5 channel. Dotted black line 1131	

shows L4-5 transition. Arrow shows initial current sink-source flip in L4C. B) Fractional increase 1132	

in firing rates in AB and AI, relative to AO, conditions split by laminar group. C) Spike count 1133	

correlation over 0-1000ms interval split by laminar group. D) Spike count correlation over 0-1134	

200ms interval split by laminar group. Data in B-D show mean across sessions ± SEM (N=30).	1135	

Figure 7. Microsaccade and pupil size by attention condition.  1136	

A) Proportion of total microsaccades in a session (radius) as a function of microsaccade direction 1137	

(angle) for each attention condition. B) Normalized number of microsaccades by attention 1138	

condition. C) Normalized pupil size by attention condition. Data in A-C show mean across 1139	

sessions ± SEM (N=30 for A, B; N=8 for C). 1140	

 1141	
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 1142	

 1143	

Supplementary Figure 1. Behavioral results for each subject and session.  1144	

Black lines show mean across sessions with error bars representing SEM. Lighter gray lines show 1145	

individual session results. A) 50% detection thresholds averaged across all sessions (top), for 1146	

Subject B sessions only (middle), and for Subject D sessions only (bottom). B)-E) show percent 1147	

detect, reaction times, reaction time median deviations, and false alarm rates, respectively, using 1148	

a similar organization as panel A. 1149	
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