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 3 

Abstract 1 

It is a long standing question as to which genes define the characteristic facial features 2 

among different ethnic groups. In this study, we use Uyghurs, an ancient admixed 3 

population to query the genetic bases why Europeans and Han Chinese look different. 4 

Facial traits were analyzed based on high-dense 3D facial images; numerous 5 

biometric spaces were examined for divergent facial features between European and 6 

Han Chinese, ranging from inter-landmark distances to dense shape geometrics. 7 

Genome-wide association analyses were conducted on a discovery panel of Uyghurs. 8 

Six significant loci were identified four of which, rs1868752, rs118078182, 9 

rs60159418 at or near UBASH3B, COL23A1, PCDH7 and rs17868256 were replicated 10 

in independent cohorts of Uyghurs or Southern Han Chinese. A prospective model 11 

was also developed to predict 3D faces based on top GWAS signals, and tested in 12 

hypothetic forensic scenarios.  13 

 14 

Introduction 15 

The human face plays a pivotal role in daily life. Communication, mutual 16 

identification, sexual attraction, etc... all strongly depends on face. It has been long 17 

noted that faces bear characteristic features that may surrogate one’s ancestry, even in 18 

highly admixed populations 1. Our recent investigation 2 also revealed strong 19 

morphological divergence on multiple facial features, including nose, brow ridges, 20 

cheeks and jaw, between Europeans and Han Chinese. It is therefore a fundamental 21 

and intriguing question to ask: Which genetic variants contribute to the substantial 22 
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morphological differences among continental populations?  1 

Normal facial shape is known to be highly heritable 3-5. However, until recently, 2 

very little was known about the genetic basis of common variation of facial 3 

morphology. In the last few years, several genome-wide association studies (GWAS) 4 

were carried out and multiple face shape associated loci were identified 6-10. These 5 

studies all based their phenotyping on conventional scalar measurements involving 6 

limited number of landmarks. On the other hand, efforts have been paid to use dense 7 

3D face modeling (3dDFM), a novel high-dimensional data format, to fully represent 8 

the complex facial shape phenome 2,11,12. Peng et al. first applied 3dDFM to identify 9 

the association between common mouth shape variation and a cleft-lip related genetic 10 

locus 13. Claes et al. showed that numerous genes are associated with complex normal 11 

facial shape variation based on 3dDFM 14, and proposed the potential of modeling the 12 

3D face based on genotype and its use in forensic practice 14,15.  13 

In this study, we aimed at identifying loci on a genome-wide scale that contribute 14 

to the divergent facial morphological features between Europeans and Han Chinese. 15 

In brief, GWAS were conducted on the polarized face phenotypes along the 16 

European-Han dimensions, and Uyghur was used as the study cohort to dissect the 17 

genotype-phenotype association. Uyghur is a minority group living in Xinjiang 18 

province in China, and was found to have arisen from ancient admixtures between 19 

East-Asian and European ancestries at a roughly equal ratio, followed by a long 20 

period of isolation 16-18. Furthermore, Uyghur facial traits demonstrated a wide range 21 

of shape gradients between the characteristic Europeans and Han-Chinese faces 2. 22 
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 5 

These properties made Uyghur an ideal group to study the genetic variants of 1 

divergent facial features across Eurasia. We performed GWAS in 694 Uyghurs using 2 

both landmark based and 3dDFM based phenotypes. Significant loci were replicated 3 

in an independent Uyghur sample and a Han Chinese cohort. Next, we carried out a 4 

prospective investigation on whether 3D faces could be predicted to certain degree by 5 

using the top associated single nucleotide polymorphisms (SNPs). A quantitative 6 

model was established to summarize the phenotypic effects of multiple loci and to 7 

simulate realistic 3D face models. The prediction model was further tested in 8 

hypothetic forensic scenarios to evaluate the potential enhancement of face 9 

identification based on DNA.   10 

 11 

Results 12 

The studied cohorts included two independent Uyghur panels (694 and 171 13 

individuals) from Xinjiang China, used as GWAS discovery panel (UIG-D) and 14 

replication panel (UIG-R) respectively. UIG-D and UIG-R were genotyped on 15 

Illumina Omni ZhongHua-8 and Affymetrix Genome-Wide Human SNP Array 6.0 16 

respectively. In order to obtain a common set of SNPs, the array data of UIG-D and 17 

UIG-R was imputed to obtain the whole genome sequencing (WGS) SNPs (see 18 

Materials and Methods). The SNPs genotyped on arrays are referred to as genotyped 19 

SNPs hereafter, in order to distinguish from the imputed SNPs. In addition, 1504 Han 20 

Chinese were sampled from Chenzhou China (HAN-CZ) as a replication panel for 21 

candidate SNPs (Table 1). Furthermore, a Han Chinese cohort from Taizhou China 22 
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(HAN-TZ, 929) and 86 Shanghai residents of European ancestry (EUR) were used as 1 

the phenotype reference groups (Table 1). The participants were peer group with 2 

20.02 +/- 2.16 (SD) years old. We collected their three-dimensional facial images and 3 

mapped them to a common 32,251 points’ spatial dense mesh automatically 12. Based 4 

on these, we first defined the candidate phenotypes of study. Briefly, the face images 5 

were jointly analyzed among EUR, UIG-D and HAN-TZ, and complex face data was 6 

decomposed to various phenotype measurements (see Materials and Methods). A 7 

candidate phenotype is chosen and termed an ancestry-divergent phenotype if there 8 

exists a strong phenotypic divergence between EUR and HAN-TZ, and UIG-D covers 9 

a wide range in-between (Fig. 1). Three types of ancestry-divergent phenotypes were 10 

defined. First, ten inter-landmark distances were selected (see Materials and Methods; 11 

Fig. S1A and Tables S1-S3). The other two types of phenotypes were based on 12 

decomposing the high dimensional 3dDFM data. Briefly, we first extracted six facial 13 

features, namely, the brow ridge, eyes, side faces, cheeks, nose and mouth, grossly 14 

based on the reported high among-population differentiation 2 (Fig. S1B). The 15 

extracted 3dDFM data was decomposed by either partial least square (PLS) or 16 

principle component (PC) analysis 2, and the PLS model and PC model that defined 17 

the strongest segregation between EUR and HAN-TZ were selected as 18 

ancestry-divergent phenotypes, hereafter termed as sPLS and sPC respectively in each 19 

feature (see Materials and Methods; Fig. 2, Figures S2-S4 and Table S4). In total, six 20 

sPLS and sPC phenotypes were defined, corresponding to the six facial features.  21 

 22 
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 7 

Genome-wide association studies of Eurasian facial shape 1 

We carried out sex-stratified and sex-mixed GWAS in UIG-D on 8,100,752 2 

genome-wide SNPs for the 22 ancestry-divergent phenotypes (see Materials and 3 

Methods; Table S5). In general, the lower P value inflation assessed by 4 

Quantile-Quantile (Q-Q) plot 19 analyses revealed little subpopulation stratification 5 

(Fig. S5). Six regions revealed signals of genome-wide significance 20 at the level of 6 

P<5 × 10-8 (Fig. 2 and Table 2). We focus the discussion on the genotyped SNPs of 7 

the highest signal (index SNP) within each region, as their genotypes were more 8 

reliable. These include rs1868752 (at 11q24.1) associated with distance between 9 

external canthus and internal canthus (ExtCan-IntCan) in mixed genders, 10 

rs118078182 (on COL23A1 at 5q35.3) associated with distance of Nasion 11 

point-Pronasale-Subnasale (Nsn-Prn-Sbn) in mixed genders, rs60159418 (on PCDH7 12 

at 4p15.1) associated with mouth sPC in males, rs17868256 (at 2p16.3) associated 13 

with cheek sPLS in females, rs3920540 (near BMP2 at 20p12.3) associated with nasal 14 

sPLS in females, and rs61672954 (at 3p12.2) associated with the sPLS of side-faces 15 

in mixed genders. In order to control for potential confounding effects from varying 16 

ancestry makeup with mean contribution of ~ 50:50 (CEU:CHB, 0.05 s.d.) (Fig. S6), 17 

we inferred the ancestry proportions for each UIG-D individual. The six signals 18 

remained after accounting for the inferred ancestry in the association model (Table 19 

S6). The genome-wide p-values of the index SNPs should be taken as nominal, as in 20 

total 66 GWA analyses (22 traits in females, males and gender mixed) were carried 21 

out in total. Noticing that the ancestry-divergent phenotypes were highly correlated 22 
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 8 

among each other (Table S7), we applied Benjamini-Hochberg procedure for FDR 21 1 

to address the multiple testing problem (see Materials and Methods). Four index SNPs 2 

remained significant genome-widely, including rs1868752, rs118078182, rs60159418 3 

and rs17868256 (Table 2, Table S8). 4 

Ideally, the effects of shape related loci should be directly visualized on facial 5 

images. We modeled the effects of index SNPs using heat plots as well as extrapolated 6 

faces 22 (Fig. 3, Movies S1-S6). As can be seen in Figure 3A (Movie S1), the 7 

extrapolated face towards the effect of rs1868752T had narrower eyes (smaller 8 

ExtCan-IntCan distance) compared to the G allele, resulting in a substantial 9 

displacement on the X axis; G also seemed to be associated with elevated nose ridge. 10 

SNP rs118078182 showed an obvious impact on the nasal shape along the Y and Z 11 

axes. Compared to rs118078182A, rs118078182G seemed to make the nose longer 12 

and more protrusive (taller) from the face, consistent with the association with 13 

Nsn-Prn-Sbn distance (Fig. 3B, Movie S2). For rs60159418 in males (Fig. 3C, Movie 14 

S3), the main shape changed the mouth along the Y axis, followed by Z axis. Allele G 15 

seemed to make the whole mouth area recessed from the face plane; in comparison, 16 

the mouth-chin curve bended convexly from the facial plane in the extrapolated face 17 

of the A allele. rs60159418 also seemed to influence other facial features: for G allele, 18 

nose and chin looked relatively protrusive outwards, and eye brow ridges seemed to 19 

elevate. The SNP rs17868256 mainly affected the shape of cheeks (Fig. 3D, Movie 20 

S4), with G allele associated to laterally expanded cheeks, making the face look wider 21 

on the X axis. On the Y axis, rs17868256G also seemed to lift the cheek protrusion 22 
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 9 

upwards. For SNP rs3920540 in females (Fig. 3E, Movie S5), G allele was mainly 1 

associated with repressed nasal bridge and nasal tip along Z axis compared to T allele; 2 

G allele also seemed to link to more protrusive chin on the extrapolated face. The 3 

most notable effect of rs61672954 occurred around the jaw lines (Fig. 3F, Movie S6), 4 

with the A allele associated with stronger jawlines and therefore comparatively wider 5 

lower face than the extrapolated face of G allele. 6 

 7 

Replication studies and meta-analysis 8 

We replicated the six GWAS significant loci in an independent Uyghur cohort (UIG-R) 9 

and a Han Chinese cohort (HAN-CZ) (Table S9). The former has the same ethnic 10 

background with UIG-D 16-18 and the latter represents a pool of Han Chinese ancestry 11 

from southern China 23. Face is highly complex, and the effects of genetic variants on 12 

face can be subtle and strongly depend on other factors such as ethnicity and gender 13 

14,24,25. On the other hand, face related genetic loci may be pleiotropic, e.g., that a 14 

single variant may influence facial morphology on different parts and/or in different 15 

ways 6,7,14,26,27. In view of this, we defined two types of association replications: the 16 

narrow-sense and broad-sense replications. Narrow-sense replication stood for the 17 

association signals replicated on exactly the same ancestry-divergent phenotypic 18 

measurement; whereas broad-sense replication required the index loci to show 19 

evidences of association with any shape changes in the same facial feature. In this 20 

study, both the narrow- and broad-sense replications were conditioned in the same 21 

gender group as for the discovery panel. As a result (Table 2), the association of 22 
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rs1868752 with ExtCan-IntCan exhibited narrow-sense replication (P=0.04) in a 1 

dominant model in HAN-CZ. The SNP rs118078182 showed narrow-sense 2 

replications in an additive (P=0.004) and a dominant model (P=0.003) in UIG-R, in a 3 

dominant model (P=0.02) in HAN-CZ, as well as in the additive model of UIG-R and 4 

HAN-CZ combined (P=0.02). For rs60159418, the narrow-sense replication was 5 

tested by projecting the UIG-R and HAN-CZ 3dDFM data to the sPC of mouth where 6 

the GWAS signal was found in UIG-D males, and revealed marginal significance in 7 

HAN-CZ (P=0.09) and combined group of UIG-R and HAN-CZ (P=0.05). For 8 

rs17868256, the narrow-sense association in females was successfully replicated for 9 

cheek sPLS in UIG-R for both the additive model (P=0.04) and a dominant model 10 

(P=0.02). The other two index loci didn’t show evidences of narrow-sense replication. 11 

To systematically test the broad-sense replication, we carried out pair-wise shape 12 

distance (PSD) permutation as previous proposed 13 and PLS-based permutation for 13 

the 3dDFM data (see Materials and Methods). Table 3 summarized the results of 14 

broad-sense replications. In general, these tests confirmed the results of narrow-sense 15 

replications, showing that rs1868752, rs118078182, rs60159418 and rs17868256 16 

affect the overall shapes of the corresponding features. Furthermore, rs3920540, the 17 

nose related locus that failed to replicate in the narrow-sense test, turned out to 18 

significantly affect the overall nasal shape in PSD permutation test (P=0.01) and 19 

PLS-based permutation test (P=0.03) in HAN-CZ.  20 

Visualization in UIG-R and HAN-CZ revealed highly consistent effects of the 21 

ancestry-divergent variants as in UIG-D 22 (Fig. 4), despite the distinct ethnicity of 22 
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HAN-CZ. Intriguingly in UIG-R, the effects of some index SNPs were strongly 1 

persistent not only within the facial features of GWAS signals, but also across the 2 

whole face. In HAN-CZ, similar influence on the whole face could also be observed. 3 

In particular, rs1868752T was involved in recessive eye-sockets and repressed nasal 4 

bridge in all three cohorts (Fig. 4A); rs118078182A seemed to make the whole face 5 

more flat and round in addition to its effects on nasal shape (Fig. 4B); Other than 6 

affecting the mouth shape (Fig. 4C), rs60159418G was also associated with stronger 7 

brow ridges and more protrusive chin among the three groups. These indicated that 8 

the identified association signals were authentic, and the candidate variants were in 9 

general highly pleiotropic. 10 

 11 

Replication of reported variants of facial variation  12 

We explored whether the candidate SNPs that previously reported to affect normal 13 

facial variation 6-8 also showed signals of association in our combined Uyghur cohort 14 

(UIG-D + UIG-R). Replications were carried out either on the original or related 15 

measurements for 12 SNPs (Table S10). Notably, numerous candidate loci were 16 

re-validated to varying degrees. Briefly, rs4648379 in PRDM16, rs7559271 in PAX3, 17 

rs2045323 in DCHS2, rs17640804 in GLI3, rs805722 in COL17A1 and rs927833 in 18 

PAX1 reported to affect nasal phenotypes in different ethnic groups 6-8, were found to 19 

also modulate normal nasal shape in Uyghurs (Table S10). The SNPs rs3827760 in 20 

EDAR and rs6184 in GHR that were previously linked to mandibular shape variation 21 

turned out to be significant or marginally significant in our study 8,27,28 (Table S10). 22 
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Interestingly, the SNP rs642961 in IRF6, previously found to be associated with the 1 

mouth shape in Han Chinese females 13,29, also showed marginal significance (P=0.05) 2 

in Uyghur females but not in males or mixed gender group, implying that the 3 

dependence of the genetic effect of rs642961 on gender was shared among different 4 

populations.  5 

 6 

A prospective3D face prediction model based on genome-wide SNPs 7 

Hypothetically, if a quantitative trait is highly heritable, a proper model featuring 8 

major genetic factors should lead to true prediction 30-32. For the purpose of face 9 

prediction within Uyghurs, GWA analyses should be carried out on common facial 10 

variations in all dimensions. Therefore, in addition to the 22 ancestry-divergent 11 

phenotypes, we further included GWA analyses on a comprehensive list of phenotypes 12 

of various perspectives within Uyghurs, including 26 inter-landmark, 18 PC and 12 13 

PLS phenotypes (see Supplementary Note). The total number of GWA analyses used 14 

for face prediction was exceptionally large (234) and a conventional cutoff for GWAS 15 

is impractical. We therefore assumed that SNPs reaching a nominal genome-wide 16 

threshold of P value < 1 × 10-6 were enriched for facial shape related loci. All SNPs 17 

that satisfy the threshold were combined into a panel of 277 top SNPs (Table S11). 18 

Based on these top SNPs, a simple quantitative model was constructed using UIG-D 19 

data. Briefly, for each SNP, a residual face was obtained for each genotype by 20 

subtracting the genotype average face by the global average. To compose a predicted 21 

face (PF), the 277 residual faces were scaled by a global “effect coefficient” α (see 22 
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Supplementary Note; Fig. S7), and then added to the base face (the average face 1 

stratified by gender) according to the specific genotypes of the individual of interest. 2 

Details of the model construction can be referred to the supplementary materials 3 

(Supplementary Note).  4 

The prediction model was applied to Uyghur individuals from the independent 5 

replication panel (UIG-R). The PF and actual faces can be visualized but quantitative 6 

evaluation of their similarity is difficult with human observers (Fig. 5A, Movie S7). 7 

To formally access the resemblance between predicted and actual faces we 8 

constructed a robust shape similarity statistic: the shape space angle (SSA). SSA was 9 

defined as the angle between two shapes in the 3dDFM data space 15,33 (see 10 

Supplementary Note). SSA would achieve 0 if the two shapes were the same. A SSA 11 

of 90 degree stood for statistical independence, whereas a SSA greater than 90 12 

indicated that two faces deviated from the mean face in reverse directions. Tests of 13 

shape similarity were carried out in UIG-R stratified by gender to see whether the 14 

differences from the actual face to their corresponding PF was indeed smaller than to 15 

random faces. We used two types of random faces. The first was the random-genotype 16 

predicted faces (RGF; see Supplementary Note), adopted from a previous study 15. 17 

Briefly, a RGF was generated in the same way as the PF, except that the genotype set 18 

used for prediction was replaced by a random genotype set permuted from the known 19 

frequencies of genotypes in the combined UIG cohort. The other was the 20 

random-actual faces (RAF) set, which was obtained by randomly sampling the UIG-R 21 

actual faces. We constructed two types of tests, one is to compare the SSA 22 
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distributions (inter-distribution test) between the random predicted faces and the PF 1 

faces; the other test the average similarity score (single-score test) between the PF and 2 

actual faces, against the null distributions based on multiple iterations using RGF 15 or 3 

RAF as prediction (see Supplementary Note). Both tests generated similar results 4 

(Figs. 5B and 5C), that the females of UIG-R did not show marked differences 5 

between the PF and random predictions (the inter-distribution test P=0.87 in RGF and 6 

P=0.73 in RAF; the single-statistic test P=0.35 in RGF and P=0.34 in RAF). However, 7 

in males, the true prediction significantly outperformed the random predictions in all 8 

the tests (the inter-distribution test P=0.01 in RGF and P=0.04 in RAF; the 9 

single-statistic test P=0.02 in RGF and P=0.02 in RAF).   10 

Intriguingly, face prediction based on genotypes would promote the suspect 11 

identification in pragmatic forensic scenarios. We simulated toy forensic scenarios 12 

where a single true suspect should be picked up from a group of 8 candidates (Fig. 13 

S8). We supposed that the 3D facial data and genotypes could be obtained from each 14 

candidate to allow mathematical comparison between the actual and PF. Interestingly, 15 

there was a significant increase in accuracy (+6.3%, empirical P=0.025) in males 16 

compared to the simulated neutral distribution (12.4% ± 0.03SD) assuming no 17 

prediction power at all (see Materials and Methods). In females, the prediction did not 18 

substantially enhance the accuracy (+3.3%, empirical P=0.076) (Fig. 5D).  19 

 20 

Discussion 21 

To our knowledge, this was the first GWAS aimed at identify genetic loci associated 22 
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with normal facial variations based on complex 3dDFM data that revealed multiple 1 

genetic determinants underlying the European-East Asian facial trait divergence. The 2 

genome-wide significant loci were located on independent regions and respectively 3 

associated with shape of eyes, nose, mouth, cheeks and side faces. We successfully 4 

replicated four loci, rs1868752, rs118078182, rs60159418 and rs17868256 in 5 

independent cohorts on the same phenotype measurements. In addition, the 6 

association signal of rs3920540 was replicated in broad-sense.  7 

SNP rs1868752 is not located in any gene region. The nearest protein coding gene 8 

is the ubiquitin associated and SH3 domain containing B (UBASH3B) about 140kb 9 

distal, which regulates epidermal growth factor receptor (EGFR) and platelet-derived 10 

growth factor receptor (PDGFRA). The longer eye length, consistent to European 11 

traits is associated with the derived allele rs1868752G. However, rs1868752G has a 12 

low global frequency (< 10%), and the population frequency in CEU is even lower 13 

(~1.5%) than in CHB (~4%), suggesting that this SNP does not play a major role in 14 

the Eurasian face differentiation. The SNP rs118078182 has the most consistent 15 

association signals across different sample panels and test models. This SNP is an 16 

intronic variant in collagen type 23 alpha 1 (COL23A1). COL23A1 codes a 17 

non-abundant trans-membrane collagen, primarily found in head, skin, tendon, and 18 

kidney 34. A possible role of spatial/temporal regulation in facial morphogenesis was 19 

noted for COL23A1 35. Interestingly the G allele of rs118078182, associated with the 20 

European trait of longer and taller nose is almost fixed (99.5%) in CEU compared to 21 

the sequentially lower frequencies of ~90% in Uyghur and ~79% in CHB, suggesting 22 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 15, 2017. ; https://doi.org/10.1101/189332doi: bioRxiv preprint 

https://doi.org/10.1101/189332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

that rs118078182 plays a major role in the nasal shape divergence across Eurasia. The 1 

other nasal shape related SNP, rs3920540 is approximately 300kb away from the 2 

nearest protein coding gene BMP2, which is a member of the bone morphogenetic 3 

proteins involved in the development of bone and cartilage 36-39. The T allele of 4 

rs3920540 pertaining to the European trait of taller nose does not seem to differ in 5 

frequency (0.86, 0.85 and 0.88 in CEU, UIG and CHB respectively) among the three 6 

populations, suggesting that this SNP mainly contribute to the within-group variation 7 

of nasal shape. The mouth shape related SNP rs60159418 is situated in an intron of 8 

the protocadherin 7 gene (PCDH7). PCDH7 codes an integral membrane protein 9 

functioning in cell-cell recognition and adhesion. Previous studies showed that 10 

PCDH7 played a key role in osteoclastogenesis 40, and its homologue gene is a pivotal 11 

regulator in the head formation of the mouse embryo 41. Consistently, the derived G 12 

allele that co-occurs with the concaved European mouth shape is almost fixed in CEU 13 

(0.96, Table 2), much lower (0.64) in UIG, whereas in CHB the ancestral A allele is 14 

the major allele (allele frequency 0.63). These suggest that rs60159418 contributes to 15 

the mouth shape differentiation across Eurasia. Notably, rs60159418 is among the 16 

most divergent SNPs between CEU and CHB (FstCEU-CHB = 0.4), suggesting an 17 

involvement of local adaptations in this region. For the SNP rs17868256, the derived 18 

G allele is associated with the Han Chinese trait of higher zygomatic arches and more 19 

cambered outwards and backwards zygomatics, and the corresponding allele 20 

frequency is also the highest in CHB (0.52), followed by UIG (0.36) and CEU (0.25), 21 

as indicates that rs17868256 is involved in the phenotypic divergence in cheeks 22 
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between Europeans and Han Chinese. The SNP rs61672954, associated with side face 1 

shapes was not replicated statistically in HAN-CZ (sample sizes for AA, GA 2 

genotypes were too small to analysis in UIG-R), but had the same facial variation 3 

patterns among different genotypes as in the discovery UIG-D cohort (Fig. S9). So we 4 

cannot remove their potential effect on facial shape.  5 

One evident limitation of this study is the relative small sample sizes for the UIG 6 

cohorts. A power analysis revealed that tests would be constrained and the association 7 

signals would not be highly significant (e.g. all GWAS P values>1 × 10-11). And yet, 8 

even given the limited sample sizes we were still able to detect 6 genome-wide 9 

association signals, among which five were replicated to various degrees. This may be 10 

attributed mainly to the specific study designs: first, as the Uyghur was examined on 11 

the phenotypic dimensions where the ancestral groups EUR and HAN differ the most, 12 

the search was thus focused on genetic variants of large effect size, rendering higher 13 

test power for a given sample size. Second, the 3dDFM data densely annotates each 14 

face by over 30,000 vertices, resulting in virtually face phenome data. Based on this, 15 

the association signals were scanned both phenome-widely and genome-widely, as 16 

would greatly enhance the power of detecting the phenotype-genotype associations.  17 

Several trends are notable involving the genetic architecture of facial morphology. 18 

First, no GWAS loci of “major effects” were identified that account for a large portion 19 

of phenotypic variance in spite of the strong overall divergence, e.g., in nasal shape 20 

across Eurasia 2. This is in contrast to the case of skin pigmentation whose major 21 

genetic factors explain substantial phenotypic variance 42-44. This suggests that the 22 
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human face should be best described by a typical polygenic model of complex trait, 1 

characterized by a large number of variants of small effects. Second, most facial shape 2 

related variants seem to be pleiotropic. All the candidate loci in our study seem to be 3 

associated to the complex shape changes of whole face, not limited to the features of 4 

GWAS signals, in similar trends across the three sample cohorts, implying that such 5 

dispersive facial changes were induced by genetic variants rather than stochasticity 6 

(Figs. 3 and 4). At the individual gene level, PCDH7 was also known for its versatile 7 

functions, related to not only mouth shape but also musical aptitude 45, waist-to-hip 8 

ratio 46 and many diseases 40,41,47-49. Another SNP rs3827760 in EDAR, replicated in 9 

this study was also known for its broad effects in hair morphology, incisor shape and 10 

sweat gland density 26,27,50,51. Third, the genetic effects of face related loci seem to be 11 

shared among different ethnicities 52-54. This is evident given that the association 12 

signals and facial patterns are in general consistent between Uyghur and Han Chinese 13 

(Tables 2 and 3, Fig. 4). It may be thus hypothesized that the stereotypic faces of 14 

ethnicities are merely result of population stratification of the face-related allele 15 

frequencies. For example, a European nose is “big” probably due to the 16 

co-segregation of a higher proportion of “big” nose alleles compared to that of an 17 

average Han Chinese. Indeed, four (rs118078182, rs60159418, rs61672954 and 18 

rs17868256) out of the six candidate SNPs in this study have moderate (FstCEU-CHB > 19 

0.08) to strong (for rs60159418, FstCEU-CHB = 0.5, top 0.3% genome-widely) 20 

population differentiation, each of which seems to contribute a gradient to the 21 

continuous transition from European to Han Chinese faces.  22 
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In the end, we showed that an additive genetic model of whole face shape, based 1 

on a set of SNPs of top association signals, would lead to measurable predictive 2 

power. We showed that for independent individuals (UIG-R), the prediction model 3 

can also construct realistic 3D faces significantly closer to the actual face than random 4 

expectation (Figs. 5B and 5C); test in the hypothetic forensic scenarios revealed a 5 

moderate yet significant enhancement of the identification rate in males (Fig. 5D). 6 

The better performance in male face prediction than in females may attribute to the 7 

sexual dimorphism 55,56 and greater variation in male faces. If we measure the sample 8 

dispersion of individuals from the corresponding average faces by PSD, the dispersion 9 

was substantially larger in males (mean dispersion = 1.80) than in females (mean 10 

dispersion = 1.73, Kolmogorov-Smirnov test P = 0.0025). As on average the genetic 11 

distance from an individual to the average genome is equal for male and female 12 

(assuming only autosomal variants are concerned), the larger dispersion suggests on 13 

average bigger allelic effects in males than in females, thus better statistical power 14 

and prediction model in males. There may be redundant markers within the 277 top 15 

SNPs, as the SNP sets filtered for strong LD gave very similar performance (see 16 

Supplementary Note; Table S12 for prediction, Table S13 for forensic). 17 

Fundamentally, it can be argued that this prediction model is not really additive, as the 18 

best-fitting effect coefficient α is far lower than 1 (Fig. S7), even for the SNP set (209) 19 

well controlled for the physical LD (Fig. S7C). This may implicate epistatic 20 

interactions between the causal SNPs, or is probably mainly due to a proportion of 21 

false-positive signals in the top SNPs set. Further studies specifically designed for 22 
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examination of the genetic architecture is needed to address this question. 1 

Furthermore, we noticed that increasing the number of top SNPs in the prediction 2 

model (either for P value < 1 × 10-7 or 1 × 10-5 SNPs) could not improve the 3 

predictive power. Such saturation analysis suggests a finite number of loci affecting 4 

the normal facial shape. After all, this prediction model is highly simplified and 5 

explorative. Much work is needed to improve its performance to be formally tested in 6 

real forensic scenarios.   7 

 8 

Materials and Methods 9 

Study cohorts 10 

EUR was a resident cohort living in Shanghai with self-reported European ancestry 11 

between 16 and 42 years old. The HAN-TZ participants were self-reported Han 12 

Chinese samples collected from Taizhou, Jiangsu province. College students of 13 

self-reported Han ethnicity from Xiangnan University in Chenzhou, Hunan province 14 

were collected as HAN-CZ. The UIG-D and UIG-R were composed of college 15 

students of self-reported Uyghurs collected from Xinjiang Medical University in 16 

Urumchi, Xinjiang province. The self-reported ancestry information was requested for 17 

the last three generations, and individuals with mixed ancestry or missing information 18 

were excluded from further analyses. For EUR, a participant was used only if his/her 19 

ancestries of the last three generations were all from EU countries (as for 2015) plus 20 

Switzerland, Norway and Iceland. Individuals with obvious health problems or any 21 

history of facial surgery were ruled out. All sample collection in this study was carried 22 
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out in accordance with the ethical standards of the ethics committee of the Shanghai 1 

Institutes for Biological Sciences (SIBS) and the Declaration of Helsinki, and has 2 

been specifically surveyed and approved by SIBS. All methods were carried out in 3 

accordance with the corresponding guidelines and regulations. A written statement of 4 

informed consent was obtained from every participant, with his/her authorizing 5 

signature. The participants, whose transformed facial images were used in this study 6 

as necessary illustrations of our methodology, have been shown the manuscript and 7 

corresponding figures. Aside from the informed consent for data sampling, a consent 8 

form stating the identifying information in an online open-access publication was 9 

shown and explained to each participant and their authorizing signature was obtained 10 

as well. 11 

 12 

High-density 3D facial images alignment 13 

The 3dMDface® system (www.3dmd.com/3dMDface) was used to collect 14 

high-resolution 3D facial images. We first established dense anatomical 15 

correspondence across dense surfaces of 3D facial images automatically as described 16 

previously 12. Briefly, 15 salient facial landmarks were annotated automatically based 17 

on the principal component analysis (PCA) projection of texture and shape 18 

information. A reference face was selected for high image quality and smooth surface, 19 

and its mesh was resampled to achieve an even density of one vertex in each 1mm × 20 

1mm grid. There were 32,251 vertices in total for the reference mesh. Afterwards, the 21 

reference face was warped to register to each objective face to ensure the complete 22 
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overlapping of the 15 landmarks via a thin-plate spline (TPS) transformation. The 1 

vertices on the reference face then found their closest projections on the sample face 2 

to define the samples’ new vertices, resulting in a point-to-point correspondence. At 3 

last, the Generalized Procrustes analysis (GPA) was used to align the sample grids 4 

into a common coordinate system. As a result, we obtained a set of 32,251 3D points 5 

to represent each participant’s face. Samples with defective images were removed 6 

from the study.   7 

 8 

Genotyping, quality control and imputation 9 

Genomic DNA extracted from blood samples of UIG-D and UIG-R were genotyped 10 

on corresponding genotyping arrays. Quality control were performed using PLINK 11 

v1.07 57. Furthermore, 92 individuals from UIG-D were whole-genome sequenced at 12 

high-coverage (30×). We didn’t consider SNPs on mitochondria. SNPs with MAF 13 

<0.01, call rate <90%, or rejection in the Hardy-Weinberg Equilibrium test with P<1 14 

× 10-6 were omitted from the study. Genomic ancestry was detected using 15 

EIGENSTRAT 5.0.2 58,59 with CHB and CEU from 1000 Genomes Project 60 (1KG 16 

phase1 release v2) to remove samples who were not Uyghurs ancestry. Specifically, 17 

principal component analysis using 17,552 autosomal SNPs pruned from UIG-D 18 

panel based on call rate (>90%), MAF (>0.01), and LD (pairwise r2 <0.1) was used to 19 

assess population structure. Samples with genotype missing rate >0.1 were removed. 20 

Samples were further examined by pairwise IBD estimation and inbreeding 21 

coefficients to remove individuals of close genetic relationships. Specifically, we used 22 
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17,552 independent SNPs to estimate the pairwise IBD to find pairs of individuals 1 

who genetically look too similar to each other and set inbreeding coefficients >0.2 or 2 

<-0.2 as in inbreeding. Individuals with aberrant gender information checked using X 3 

chromosome data were discarded. Finally, samples with defective 3D images were 4 

removed from the study. Detailed results of QC were given in Table S5. In the end, a 5 

total of 847,046 SNPs were used in 694 UIG-D and 758,453 SNPs were used in the 6 

171 UIG-R. Genomic DNA of HAN-CZ was extracted from saliva according to a 7 

modified Phenol-chloroform protocol 61. Targeted genotyping for the index SNPs 8 

were carried out by SNaPshot multiplex system on an ABI3130xl genetic analyzer by 9 

Genesky Biotech, Shanghai, China. The results of SNaPshot genotyping quality 10 

control were shown in Table S14. 11 

In order to merge the data between UIG-D and UIG-R, which used different 12 

genotyping platform, we carried out imputation within UIG-D and UIG-R separately, 13 

using whole genome sequencing data as reference. Specifically, the chip data were 14 

pre-phased using SHAPEIT v2.r790 62, and then imputed for probabilistic genotypes 15 

by Impute2 63 taking 1,092 individuals from 1000 Genomes project phase 1 and 92 16 

high-coverage (30×) whole-genome sequencing data of Uyghurs (unpublished data) 17 

as reference. The genotyped SNPs with a large difference between the info and 18 

concordance values (info_type0 – concord_type0 >0.1) or a low concordance value 19 

(<0.7) were excluded for further analysis. Additionally, SNPs were removed with low 20 

imputation quality score (<0.4), followed by converting the genotype probabilities to 21 

corresponding allele pair when it was over the threshold >0.9 using GTOOL software 22 
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62. SNPs with MAF <0.01 or a call rate <90% were omitted.  1 

 2 

Extraction of ancestry-divergent phenotypes 3 

Three types of ancestry-divergent phenotypes were defined. The first type, the 4 

landmark based ancestry-divergent phenotypes were defined based on the 15 5 

landmarks (Fig. S1A). Briefly, the whole face were divided into five parts (Table S1). 6 

Thirty six distances or angles were then defined as traditional anthropometric traits, 7 

many of which measure highly correlated facial features (Table S2). We chose 10 8 

traits (Table S3) as the ancestry-divergent phenotypes, which surrogate the 36 traits 9 

and showed higher segregation (lower Students’ test P value, Table S3) between EUR 10 

and HAN-TZ.  11 

The second type is the PCA based ancestry-divergent phenotypes (sPC). Six 12 

facial features were extracted from the 3dDFM face data (Fig. 1B), which were then 13 

decomposed using PCA separately. The top PCs that together explained 98% total 14 

variance were examined for phenotypic segregation between EUR and HAN-TZ using 15 

Students’ Test (Fig. S2 and Table S4). The PC that defined the most significant 16 

segregation was taken as the ancestry-divergent phenotype, named as sPC.  17 

PLS based ancestry-divergent phenotypes (sPLS) were defined as follows: In the 18 

PLS equation “response ~ predictor”, we labeled the individuals from EUR as 1 and 19 

HAN-TZ as 2 in response. The predictor term featured 3 × n matrix of the 3dDFM 20 

data, where n stood for the number of vertices in the corresponding facial feature. The 21 

PLS regression were first carried out only with EUR and HAN-TZ data. An optimal 22 
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PLS model is a regression model composed of the first k top ranking PLS 1 

component(s), where k renders the best prediction from predictor to response. 2 

Leave-one-out (LOO) was used to cross-validate PLS models, with increasing number 3 

of top components, and the root mean squared error of prediction (RMSEP) was used 4 

to evaluate the overall prediction. There exist two cross-validation (CV) estimates 5 

based on RMSEP (Fig. S3 and Table S4): ‘CV’ was the ordinary CV estimate, and 6 

‘adjCV’ was a bias-corrected CV estimate. A PLS regression model achieves the 7 

maximal discrimination between EUR and HAN-TZ (Table S4) when the RMSEP 8 

showed turning point on adjCV curve (Fig. S3), and the corresponding k was used. An 9 

optimal PLS model was found in each facial feature and termed sPLS model.  10 

 11 

Statistical analyses and replications 12 

Genome-wide association tests were carried out using PLINK v1.07 57 and a linear 13 

regression model with additive SNP effects was used. For multiple testing correction, 14 

we performed the Benjamini-Hochberg procedure for FDR 21 to the combined results 15 

of the 66 autosomal GWA analyses. A FDR level of 0.05 was used to determine 16 

whether a test remained significant after multiple-testing correction. 17 

For narrow-sense replication, the 3dDFM data from UIG-R and HAN-CZ were 18 

either projected to the sPC spaces or input to the sPLS models defined in UIG-D, to 19 

obtain the corresponding phenotype scores in narrow-sense replication. An additive 20 

linear regression was used to test the association between index SNPs and the 21 

corresponding narrow-sense phenotype. This test required a minimum of 10 22 
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individuals that carry at least one minor allele. 1 

Index SNPs were also tested for broad-sense replication. For PLS-based 2 

permutation, genotypes (0, 1, 2 in additive model and 0, 1 in dominant model) of each 3 

SNP were taken as predictor. Principle components (PCs) that together explained 99% 4 

of the total variance of each facial feature were adopted as response. A scheme of 5 

Leave One Out (LOO) was used in which N-1 individuals were used as training and 6 

the left-out was used as test. This was repeated until every individual was used as a 7 

test sample. The training set was used to build a PLS regression model whose optimal 8 

number of components was determined by RMSEP under cross-validation, as 9 

described before. Based on this model, a predicted genotype was given to the test 10 

sample. By such analogy, every sample obtained a predicted genotype. Afterwards, 11 

the correlation between actual genotype and predicted genotype can be calculated. 12 

Next, we performed a permutation procedure to control the supervised effect of PLS 13 

64-67. Briefly, the genotypes were reshuffled randomly among the samples for 1,000 14 

times, followed by the same procedure as above to calculate correlations between the 15 

actual and predicted genotypes. The null distribution of correlations can be thus 16 

established based on the permutation sets. The corrected PLS-based permutation P 17 

value was generated by ranking the empirical raw correlation against the null 18 

distribution.  19 

For the pair-wise shape distance (PSD) permutation among genotypes 13, we 20 

calculated the Euclidean distances between the mean shapes of any two genotype 21 

groups. The mean shape can be denoted as a vector, 22 
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𝑠 = [𝑥1,𝑦1, 𝑧1, … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛]          (1) 1 

where 𝑥𝑖 ,𝑦𝑖, 𝑧𝑖 was the X, Y, Z coordinate values of the 𝑖th points, 𝑛 was the 2 

number of points.  3 

For each two genotypes mean shape 𝑠 and 𝑠′, the PSD was defined as 4 

𝑃𝑃𝑃 =  ∑  𝑑𝑖
2𝑛

𝑖=1
3𝑛

                   (2) 5 

where 𝑑𝑖2 = (𝑥𝑖 − 𝑥𝑖′)2 + (𝑦𝑖 − 𝑦𝑖′)2 + (𝑧𝑖 − 𝑧𝑖′)2.  6 

We also randomly permuted the genotypes among the samples and then 7 

calculated the PSD between the peudo-genotype groups. The PSD scores resulted 8 

from permutation formed the null distribution. The one-side P value was calculated by 9 

the proportion of permuted PSD smaller than or equal to the true PSD. 10 

 11 

Data availability 12 

All of the phenotypic measurements tested for association and 277 markers genotypes 13 

used for prediction are available through the Figshare, an online digital repository 14 

(https://figshare.com) with DOI: 10.6084/m9.figshare.4284770 15 

(https://dx.doi.org/10.6084/m9.figshare.4284770). 16 

 17 
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Figure Legend 13 

Figure 1. Overall scheme of the study design. In the top panel, the genetic structure 14 

of three Eurasian populations was analyzed by PCA based on the 1KG genome data of 15 

97 CHB (red), 85 CEU (blue) and the whole-genome sequencing of 694 UIG-D 16 

(green). Clear clustering can be seen based on the ethnic backgrounds. In particular, 17 

UIG-D individuals clearly lie in the half way between CEU and CHB along PC1, all 18 

consisted of a roughly equal ratio of CHB and CEU ancestries. Compared to the 19 

genetic composition, Uyghur individuals exhibit broad gradients of admixture in the 20 

facial phenotypes. The middle panel shows the average face models for EUR, 21 

European-like Uyghurs (EUR-like UIG-D), UIG-D, Han-like Uyghurs (HAN-like 22 
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UIG-D) and HAN-TZ from left to right. EUR-like UIG-D and HAN-like UIG-D were 1 

obtained by averaging over 20 UIG-D individuals visually accessed to resemble 2 

Europeans or Han Chinese. The bottom panel shows the distribution of sPLS in nose, 3 

revealing a distinct segregation between EUR and HAN-TZ and a wide spread of 4 

UIG-D stretching between EUR and HAN-TZ along this phenotype dimension. In this 5 

study, the highly divergent phenotypes as shown above were selected and tested for 6 

association loci genome-widely in UIG-D. 7 

Figure 2. Six genomic regions harboring SNPs of genome-wide significant 8 

associations with facial shape. (A) 11q24, (B) 5q35, (C) 4q15, (D) 2q16, (E) 20q12, 9 

(F) 3q12. The LocusZoom plots show the association (left y-axis) with corresponding 10 

ancestry-divergent traits labelled on the top. Genotyped SNPs are denoted by circles 11 

and imputed SNPs are denoted by stars. The plots are given for the 500kb flanking 12 

region centered by the genotyped index loci indicated by purple circles. Color 13 

gradient of SNPs depict the linkage disequilibrium (r2) between each SNP and index 14 

SNP. 15 

Figure 3. Heat plots and extrapolated faces of six index SNPs affected on 16 

responding partial shape. (A) the association of rs1868752 with the distance 17 

between ExtCan and IntCan, (B) the association of rs118078182 with the distance of 18 

Nsn-Prn-Sbn, (C) the association of rs60159418 with the sPC of mouth in males, (D) 19 

the association of rs17868256 with the sPLS of cheeks in females, (E) the association 20 

of rs3920540 with nasal sPLS in females, (F) the association of rs61672954 with the 21 

sPLS of side faces. For each SNP, the first face shows the general effect on the 22 
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corresponding feature as the displacement of landmarks or meshes. The mid-panel of 1 

four miniature faces gives the extrapolations towards the Han trend on the top, or the 2 

European trend on the bottom, with the associated allele labeled at the left side. The 3 

extrapolated faces were morphed by exemplifying the difference between the average 4 

faces of the opposite homozygotes if both are more than 10% frequent in UIG-D, or 5 

the major homozygote and the heterozygote if otherwise. The last three faces depict 6 

the signed displacement of the average faces of the fore-mentioned genotypes in X, Y 7 

and Z axes; obtained by subtracting the average face of European-trend from that of 8 

the Han-trend.  9 

Figure 4. Visualization in UIG-R and HAN-CZ revealed largely consistent effects 10 

of the ancestry-divergent variants as in UIG-D. For the four index loci, (A) 11 

rs1868752, (B) rs118078182, (C) rs60159418 and (D) rs17868256, we compared the 12 

extrapolated faces in UIG-D, UIG-R and HAN-CZ from left to right. For each locus, 13 

the top faces in the trend of Han Chinese and the bottom ones are in European trend 14 

for the corresponding feature. 15 

Figure 5. Test of the prediction model in UIG-R. (A) cases of visualization of 16 

actual face (left column), the PF (middle column) and the displacement between the 17 

pair in heat plot (right column). (B) Evaluation by inter-distance test. The comparison 18 

between true SSA distribution (in brown) and random SSA distribution in RGF (left 19 

column) or RAF (right column) was tested by Student’s Test. (C) Evaluation by 20 

single-statistic test. The average SSA determined for the cohorts (in brown) were 21 

compared to the RGF (left column) and RAF (right column) distributions under null 22 
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hypothesis (in dodgerblue). P values are the probability of predicted statistic 1 

distributed on the relative random normal distribution calculated like normal one-side 2 

P value. (D) Evaluation of the face prediction in a hypothetic forensic scenario. SSA 3 

as accuracy statistics are evaluated in UIG-R females (left column) and UIG-R males 4 

(right column). The true accuracy rate based on SSA, in brown, were determined by 5 

examining how many cases of successful identification were achieved in all combined 6 

iterations. The random accuracy rate was calculated after reshuffling the pairwise 7 

corresponds between actual face and PF. This process was repeated 1,000 times to 8 

obtain a distribution of random accuracy rates (in dodgerblue) under null hypothesis. 9 

The P values are the proportion of how many random accuracy rates were larger than 10 

true accuracy rate calculated as the empirical p-value. 11 

 12 

Tables 13 

Table 1. Characteristics of study samples. 14 

15 

Location Abb. For Ethnic Total N Male N Mean Age Range (s.d.) 

Urumchi, China UIG-D discovery Uyghur 694 270 20.09 17-25 (1.24) 

Urumchi, China UIG-R replication Uyghur 171 63 20.55 17-25 (1.42) 

ChenZhou, China HAN-CZ replication Han Chinese 1,504 424 19.69 17-32 (1.67) 

TaiZhou, China HAN-TZ discovery Han Chinese 929 363 19.81 17-25 (0.95) 

Europeans living Shanghai EUR discovery European 86 57 27.59 16-42 (5.59) 

N, sample size 
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Table 2. SNPs with GWAS signals and their narrow-sense replications 1 

 2 

Table 3. Broad-sense replications of SNPs with GWAS signals 3 

 PSD-based Permutation in HAN-CZa PLS-based Permutation 

SNP between genotypes HAN-CZ UIG-R HAN-CZ 

rs1868752 TG:TT 3 × 10-2 - 7 × 10-1 

rs118078182 AA+GA:GG 3 × 10-2 3 × 10-3 3 × 10-1 

rs60159418 AA:GG 2 × 10-1 2 × 10-1 <1 × 10-3 

rs17868256 AA:GG 9 × 10-3 1 <1 × 10-3 

rs3920540 TG:TT 1 × 10-2 7 × 10-1 3 × 10-2 

rs61672954 AA:GG 4 × 10-1 - 3 × 10-1 

areplication only in HAN-CZ as sample sizes in different genotype groups are too small in UIG-R 

 4 

    
 

 
Ancestral Allele Frequency 

  
  Discovery in additive modelg Replication in additive model 

Replication in dominant Modelh 
Meta-analysis 

UIG-D+UIG-R in 

additive model     
 

 
  

  
aa+ab:bb aa:ab+bb 

    
 

 
  

  
UIG-D UIG-R HAN-CZ UIG-R+HAN-CZ UIG-R HAN-CZ UIG-R HAN-CZ 

SNP Chr. BPa 
at or near 

Gene 
MAF AAb UIGc CHBd CEUd Fste Ratiof 

gender 

group 
Feature Beta P 

Adjusted 

P 
Beta P Beta P Beta P P P P P Beta P 

rs1868752 11 122391442 UBASH3B 0.015 T 0.99 0.96 0.99 2 × 10-4 0.95 mixed ExtCan-IntCan 3.8 1 × 10-10 3 × 10-3 - - 0.1 6 × 10-1 0.1 6 × 10-1 - 4 × 10-2 6 × 10-1 8 × 10-1 3.19 7.70 × 10-9 

rs118078182 5 177922198 COL23A1 0.10 G 0.90 0.79 0.99 2 × 10-1 0.11 mixed Nsn-Prn-Sbn -2.0 8 × 10-9 5 × 10-2 -2.3 4 × 10-3 -0.3 7 × 10-2 -0.4 2 × 10-2 3 × 10-1 2 × 10-2 3 × 10-3 2 × 10-1 -2.07 2.64 × 10-10 

rs60159418 4 31120752 PCDH7 0.36 A 0.36 0.63 0.04 5 × 10-1 0.003 male Mouth sPC -19.8 9 × 10-11 3 × 10-3 -5.7 3 × 10-1 -4.4 9 × 10-2 -4.6 5 × 10-2 7 × 10-1 1 × 10-1 2 × 10-1 2 × 10-1 -17 9.78 × 10-10 

rs17868256 2 52032773 - 0.36 A 0.64 0.48 0.75 1 × 10-1 0.20 female Cheek sPLS 0.05 7 × 10-9 5 × 10-2 0.05 4 × 10-2 0.003 5 × 10-1 0.005 3 × 10-1 2 × 10-2 2 × 10-1 2 × 10-1 9 × 10-1 0.0522 1.07 × 10-9 

rs3920540 20 7067738 BMP2 0.15 T 0.85 0.88 0.86 2 × 10-5 0.99 female Nose sPLS 0.07 3 × 10-8 1 × 10-1 0.03 4 × 10-1 -0.0007 9 × 10-1 -0.0008 9 × 10-1 - 4 × 10-1 4 × 10-1 6 × 10-1 0.0652 4.69 × 10-8 

rs61672954 3 82196528 - 0.033 G 0.97 0.88 1 8 × 10-2 0.25 mixed side-faces sPLS 0.1 2 × 10-8 9 × 10-2 - - 0.002 8 × 10-1 0.001 9 × 10-1 - 4 × 10-1 7 × 10-1 1 0.101 2.61 × 10-7 

aNCBI build 37 
bAncestral allele 
cin meta-UIGhurs (UIG-D + UIG-R) 
d1KG phase 3 database 
eFst calculated between CHB and CEU in 1KG phase1 release 2 database 
gin additive linear regression model, homozygote ancestral alleles as 0, heterozygote as 1, homozygote derived alleles as 2 
ha allele stands for ancestral allele 

“-” indicates null results in genes or null test in replications 
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