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Abstract 23 

All of the drug trials of the Alzheimer’s disease (AD) have failed to slow progression of 24 

dementia in phase III studies, and the most effective therapeutic approach still remains 25 

controversial due to our incomplete understanding of AD pathophysiology. Amyloid beta (Aβ) 26 

and its cascade have been the primary focus of drug design efforts for more than a decade. 27 

However, mounting evidence indicates that mechanisms of AD etiopathogenesis are probably 28 

more complex than the previous reductionist models. 29 

Several genome-wide association studies (GWAS) have recently shed light on dark aspects of 30 

AD from a hypothesis-free point of view. While the newly-identified AD risk genes rather raise 31 

more questions than they answer in deciphering the amyloid cascade, as a potentially overlooked 32 

finding, many of them code for receptors and transducers of cell adhesion signaling cascades. 33 

Remarkably, the hallmark genetic factors of AD, including the amyloid precursor protein (APP), 34 

presenilins (PSEN) and APOE also take part in highly similar pathways of cell adhesion 35 

regulation and coordinate contact-guidance of neuronal growth cones in brain development, 36 

albeit these Aβ-independent roles remain highly underexplored. 37 

Here, we have revisited function of 27 AD risk genes in pathways of normal cell physiology. Our 38 

review clearly shows that a disrupted cell adhesion signaling nexus, rather than a protein 39 

aggregation process, is the central point of convergence in the unbiased genetic risk factors of 40 

AD. To further elucidate a potential relationship between aging and pathways of cell adhesion, 41 

we have conducted an exploratory bioinformatics analysis which revealed that cell adhesion is 42 

the most representative ontology of human genes larger than 500kb (p=8.0×10⁻¹³), and these 43 

extremely large genes are mostly expressed in brain (p=2.1×10⁻¹⁷) and selectively take part in 44 

synaptic composition (p=2.4×10⁻¹⁴). As possible driving forces of brain evolution, large genes 45 

may coordinate complex wiring of synaptic circuits in neurodevelopment, and we suggest that 46 

they may also be vulnerable to the impact of somatic mutations in aging due to their exceptional 47 

sizes which will be assessed by statistical models. An exemplar of this notion is the giant APOE 48 

receptor Lrp1b which is one of the most frequently deleted genes in various cancers and also 49 

represents the only brain-specific lipoprotein receptor. Our model, the large gene instability 50 

hypothesis, highlights alternate strategies for AD prevention, biomarker discovery and 51 

therapeutic design based on targeting genomic instability and synaptic adhesion. 52 
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Introduction 59 

More than a century has passed since the first report of a presenile dementia case by Alois 60 

Alzheimer1, and current molecular understanding of AD mostly borrows from identification of 61 

the Aβ peptide as the main constituent of senile plaques and subsequent discovery of APP and 62 

PSEN mutations in rare cases of familial AD2,3. These observations were compiled to the 63 

amyloid cascade hypothesis in the pre-genomic era, a theory which implicates Aβ species, 64 

proteinous aggregates and neurofibrillary tangles as the driving force of dementia with broad 65 

influence as the central model of AD etiopathogenesis4. 66 

Nevertheless, due to various methodological difficulties, Aβ species has hardly been validated as 67 

a causal force of neurodegeneration in AD patients. Despite receiving support from preclinical 68 

studies, manipulating the pathways of Aβ generation and clearance has also yielded 69 

disappointing results in several clinical trials so far5. While a handful of clinical failures do not 70 

necessarily disprove a theory per se, overemphasis on a single disease model is a dangerous 71 

gamble and could be one of the many explanations for the lack of progress in AD therapeutic 72 

design6. Accuracy of the amyloid cascade hypothesis is a topic of ongoing debate, and it goes 73 

without saying that this theory may be rejected in future7-12, a critical possibility warranting 74 

development of alternate disease models for interpreting exploratory evidence including recent 75 

high-throughput genomic findings. 76 

In contrast to the classical hallmarks of AD including senile plaques and neurofibrillary tangles 77 

that are still of questionable etiological significance13, genetic risk factors temporally precede 78 

earliest stages of brain development, aging, and neurodegeneration, and are expected to inform 79 

on causal disease pathways. The genetic architecture of common sporadic AD is highly complex, 80 

and a number of susceptibility loci have been identified by genome-wide association studies 81 

(GWAS) in large elderly populations. These novel genetic factors provide unbiased insight into 82 

molecular and cellular mechanisms of AD14-19 but their mechanistic interpretation has been under 83 

powerful influence of the amyloid cascade theory so far. 84 

This report servers to provide an evidence-based framework for compiling pathways of AD 85 

predisposition from an Aβ-independent point of view. The rest of this manuscript is organized as 86 

follows; in the first section, we aim to revisit the role of AD risk genes in pathways of normal 87 

cell physiology. We show that 27 disease-related genes strongly converge to common pathways 88 

of cell-extracellular adhesion signaling and brain circuit development. In the second section, we 89 

will try to explain interaction of aging as the strongest risk factor of senile dementias with the 90 

genetic landscape of AD. Finally, several testable predictions are provided for assessment of our 91 

new disease model. 92 

1.1 The APP family proteins are highly-conserved cell adhesion molecules 93 

Derailed catabolism of the APP protein and generation of an aggregation-prone Aβ species 94 

abstract a significant proportion of molecular investigations in AD, leading to efforts to block 95 

this cascade by means of Aβ immunotherapies or design of secretase inhibitors5. In contrast, 96 
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three decades after successful cloning of the APP gene20 the physiological role of its protein 97 

product remains less investigated and may be the real key to understanding disease mechanisms. 98 

APP codes for a transmembrane protein and is highly expressed in the developing brain at the 99 

site of neuronal growth cones, structures that form motile tips of outgrowing axons and 100 

dendrites21. The Aβ peptide enhances interaction of developing neurites with extracellular 101 

adhesion molecules and promotes outgrowth of neuronal projections22,23. The full-length and 102 

membrane-tethered form of APP also interacts with extracellular laminin, heparan sulfate, 103 

fibronectin and collagen24-26, molecules which form the backbone of extra-cellular matrix and 104 

moderate contact-guidance of growth cones in synaptic circuit formation. 105 

Interaction of APP with heparan sulfate27 and laminin24 stimulates assembly of hippocampal 106 

connections and promote neurite outgrowth28. In the other hand, antisense-downregulation of 107 

APP inhibits extension of axons and dendrites29. APP demonstrates a dose effect in growth cone 108 

guidance30 and its increased dosage in Down syndrome results in emergence of faster advancing 109 

growth cones with promoted adhesive properties and larger sizes31. In contrast, knockdown of 110 

the APP gene in zebrafish disrupts outgrowth of developing neurites32. Intriguingly, although 111 

wild-type human APP can rescue this defective phenotype, the mutated APP of familial AD fails 112 

to substitute for normal function of animal gene32. 113 

Several cellular pathways are speculated to mediate the neurite-promoting effects of APP in 114 

neurodevelopment. The netrin pathway of neurite guidance incorporates APP as a co-receptor33, 115 

and inactivation of APP disrupts netrin signaling and diminishes axonal outgrowth34. APP also 116 

binds reelin, which is a large extracellular adhesion molecule for guidance and migration of 117 

neurons35. In this context, interaction of reelin with APP promotes outgrowth of hippocampal 118 

neurites35. Functional interaction of APP and reelin requires presence of a third cell adhesion 119 

molecule, α3β1-integrin, as well35. Integrins are the main component of focal adhesions and 120 

known to co-localize with the APP protein36,37 at dynamic neuronal adhesion sites38. Intriguingly, 121 

integrin modulates neurite outgrowth by interacting with APP39. Similarly, integrin also acts as 122 

an accessory reelin receptor for cell adhesion regulation and neuronal migration40-42. Therefore, 123 

APP, integrin, reelin (and its counterpart APOE receptors) may take part in surface adhesion 124 

ligand/receptor complexes for transduction of coherent signals. 125 

In addition to growth cone navigating, APP also moderates spatial migration of neurons in 126 

neurodevelopment43. Triple-knockout of the APP family genes results in neuronal migration 127 

defects similar to human lissencephaly44 and two candidate ligands for APP, including pancortin 128 

and lingo1, orchestrate migration of neural precursor cells45-47. From a cellular and molecular 129 

point of view, pathways of growth cone navigation and cell migration are highly similar, as both 130 

of these events rely on specialized membrane protrusions, namely filopodia and lamellipodia for 131 

cell reshaping and anchorage. These plastic cell organizations sense the directional gradients of 132 

extracellular contact-guidance cues by means of surface adhesion receptors including integrins. 133 

Intracellularly, filopodial adhesion receptors affect rearrangement of the actin cytoskeleton for 134 

changing cell polarity and recycling focal adhesion turnover towards the protruding end and 135 

powering cell movement48. 136 
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Mounting evidence indicates that the cytoskeletal system is an important point of convergence in 137 

signaling through the APP protein. Transmembrane APP is selectively localized to the 138 

cytoskeletal-rich regions of neuronal growth cones at dynamic adhesion sites38,49, and the APP 139 

intracellular domain (AICD) which is released after γ-secretase-mediated cleavage affects 140 

rearrangement of the cellular actin cytoskeleton50. The AICD cleavage fragment of APP interacts 141 

with a number of intracellular signal transducers, including Fe65, Tip60, KAI1, DISC1, Dab1, 142 

X11, and Grb2 that have been identified to date51-53. Intriguingly, all of these transducers 143 

influence pathways of cytoskeletal rearrangement and affect cell movement: 144 

 Fe65 and Tip60 affect the cytoskeletal system and moderate cancer cell migration54. 145 

 KAI1 suppresses cancer cell migration by affecting cytoskeletal assembly55,56. 146 

 DISC1 coordinates remodeling of the actin cytoskeleton in migrating neurons and growth 147 

cone-like protrusions57. This protein rescues neuronal migration defects caused by loss of 148 

APP51. 149 

 Dab1 is a mandatory adaptor of the APOE receptors in the reelin pathway and controls 150 

cytoskeletal remodeling in neuronal migration58. 151 

 X11 is a recently-discovered modulator of the reelin pathway and affects cell 152 

movement59. 153 

 Grb2 is an adaptor molecule that links various receptors including integrin with 154 

intracellular pathways of cytoskeletal plasticity and regulates cancer cell migration60,61. 155 

In accordance with the common function of these putative signal transducers, The APP family 156 

genes similarly affect migration and invasion of various cancer cells by affecting the cytoskeletal 157 

pathway62,63. Interestingly, the key cytoskeletal regulator Rac1 controls expression of the APP 158 

gene by a feedback-like mechanism in primary hippocampal neurons64. 159 

Since the early stages of nervous system evolution, the APP paralogue of Drosophila (APPL) has 160 

promoted neuronal migration65.  Phylogenetic evolution of the APP family genes reveals that cell 161 

adhesion is the most consistent biological function of this family66. From an evolutionary point 162 

of view, the cytoplasmic tail of APP is probably of utmost importance, as it comprises a super-163 

conserved NPxY amino acid motif in the form of 682YENPTY687 that has remained unchanged 164 

from roundworms to humans for more than 900 million years of evolution67. This consensus 165 

motif is known to mediate endocytic sorting of receptors and, perhaps more importantly, their 166 

interaction with tyrosine-phosphorylated intracellular signal transducers68. Two intracellular 167 

adaptors of APP with established signaling roles, including Dab1 and Fe65, interact with this 168 

APP motif in a phosphorylation-dependent manner69,70. The 682Tyr residue of this APP motif 169 

undergoes phosphorylation and is essential to induction of synaptogenesis71. Of note, the 170 

consensus NPxY motif is also present in the cytoplasmic tail of all APOE receptors and activates 171 

the mandatory Dab1 adaptor of reelin pathway72. 172 

In addition to playing physiological roles in neurodevelopment, the APP protein is evidenced to 173 

maintain its function in mature neurons. Mouse hippocampal neurons express the APP protein 174 

under physiological conditions73, and APP is present in close association with NMDA glutamate 175 

receptors that are central to memory-formation. In this context, APP maintains NMDA receptors 176 

at postsynaptic membrane and promotes neurotransmission74,75. Through its conserved NPxY 177 
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motif, APP also interacts with the postsynaptic scaffold protein AIDA-176, which is a protein for 178 

regulating hippocampal synaptic transmission and palsticity77. Loss of the APP family genes 179 

disrupts synaptic function78, memory formation79, and causes an aging-related synaptic loss in 180 

mice80,81. Further  supporting physiological roles in synaptic adhesion, the three APP family 181 

members (APP, APLP1, APLP2) form trans-synaptic adhesive dimers82, and cleavage of the 182 

APP protein changes synaptic adhesion and assembly83. Lastly, APP mutations are shown to 183 

disrupt this regulatory effect84. An exhaustive review of the APP protein in pathways of normal 184 

cell physiology is beyond the scope of this manuscript and the interested reader is referred to 185 

recent publications85-87. 186 

1.2 The γ-secretase complex is a membrane-tethered enzyme for signaling of cell 187 

adhesion receptors 188 

PSEN1 and PSEN2 genes code for catalytic subunits of the transmembrane γ-secretase enzyme 189 

and various mutations in these genes cause autosomal-dominant AD. Since cleavage of the APP 190 

protein by γ-secretase is a mandatory step for Aβ generation, accelerated catabolism of APP in 191 

the amyloidogenic pathway is considered the mechanism of AD development in individuals with 192 

mutated PSEN genes, a hypothesis which has been extrapolated to common sporadic AD as well. 193 

Unexpectedly, PSEN mutations of familial AD were recently found to cause an almost complete 194 

loss of γ-secretase function88 and reduce generation of the putatively-neurotoxic Aβ40, Aβ42 and 195 

Aβ43 species occasionally to undetectable levels89,90. In further contradiction, knock-in mice 196 

harboring the mutated PSEN1 gene of familial AD are phenotypically similar to knockout strains 197 

which lack γ-secretase function, and both of these strains demonstrate impaired hippocampal 198 

plasticity91. This line of evidence suggests a loss-of-function mechanism for PSEN mutations of 199 

familial AD, and potentially explain the paradoxical worsening of cognitive function and 200 

accelerated brain atrophy in γ-secretase inhibitor trials of AD92,93. 201 

In contrast to the narrow focus on derailed pathways of APP catabolism, unbiased proteomic 202 

profiling has revealed that the γ-secretase complex has a broad spectrum of substrate specificity 203 

for cell surface receptors with signaling roles94,95. For instance, the γ-secretase enzyme cleaves 204 

the APOE/reelin receptors96, as well as DSG2, TREM2 and ephrin receptors which are all coded 205 

by AD risk genes94,97,98. A candidate gene of familial AD, Notch399, is mandatorily cleaved by γ-206 

secretase prior to signaling100. Loss of γ-secretase results in erroneous axonal pathfinding due to 207 

derailed netrin signaling101, and has also been shown to disrupt cell adhesion force generation102. 208 

While it is difficult to pinpoint a particular signaling path that mediates detrimental effects of γ-209 

secretase dysfunction in familial AD, it is tempting to speculate pathways of synaptic adhesion 210 

and contact-guidance in its etiopathogenesis. 211 

Recent nanoscale microscopy reveals that expression of the γ-secretase complex is selectively 212 

enriched in postsynaptic compartments during normal synaptic maturation103. A 213 

neurophysiological role for γ-secretase is further supported by observing that this enzyme 214 

interacts with a number of synaptic adhesion molecules including δ-catenin and N-cadherin, as 215 

well as glutamate receptors103,104. Cleavage activity of γ-secretase modulates synaptic 216 
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transmission and adhesive properties104 and this neuromodulatory effect is disrupted by familial 217 

AD mutations105. 218 

1.3 The APOE/Lipoprotein receptor pathway coordinates contact-guidance of 219 

neurites 220 

APOE4 is the strongest genetic risk factor of sporadic AD and explains ~6 percent of the risk of 221 

disease development106. In contrast, the only observed correlation of the APP locus with sporadic 222 

AD has been recently reported in a large Icelandic cohort, showing that a rare protective variant, 223 

A673T, explains less than 0.6 percent of the risk of sporadic AD107. This variant does not 224 

contribute to the risk of AD in the North American population108, and its statistical significance 225 

(p=4.8×10-7) would not have survived a similarly-powered genome-wide scan. Curiously, 226 

mechanistic interpretation of the APOE4 risk isoform still mostly borrows from putative 227 

influences on APP catabolism and Aβ clearance, and normal function of the APOE protein has 228 

received less attention. 229 

The APOE molecule moderates transport of lipoprotein particles in various organs by binding to 230 

the family of lipoprotein receptors. Although lipoprotein receptors aid in uptake and metabolism 231 

of lipid particles, they are not simple cargo transporters, and can activate a comprehensive nexus 232 

of intracellular second messengers with specialized signaling roles109. In this context, lipoprotein 233 

receptors including APOEr2 and VLDLr are well established regulators of brain development in 234 

reelin signaling. Activation of these two receptors by reelin triggers phosphorylation of the 235 

intracellular Dab1 adaptor. This pathway affects various aspects of cell physiology, among 236 

which cytoskeletal remodeling and neuronal migration are mainstay110. The reelin pathway 237 

guides extension of hippocampal neurites111 and coordinates outgrowth of the perforant path 238 

which represents the major input to hippocampal formation112. 239 

The APOE molecule shares its lipoprotein receptors with reelin113, and mounting evidence 240 

indicates that APOE undertakes a similar role in guiding outgrowth of developing neurites113-117. 241 

Moreover, the neurite promoting effect of APOE is isoform-dependent, with the APOE3 isoform 242 

being a more potent inducer of neuritic outgrowth than APOE4115,117. 243 

Intracellular transducers of the APOE molecule remain less investigated in neurons, but have 244 

been explored in other cells. In macrophages, APOE activates major transducers of the reelin 245 

pathway including Dab1 and PI3K118. In vascular pericytes, the APOE molecule affects 246 

rearrangement of the actin cytoskeleton and its knockdown deranges normal cell migration119. 247 

Similar to vascular cells, the APOE isoforms also affect the proteomic signature of cytoskeletal 248 

regulators in peripheral nerves120. Taken together, this body of evidence suggests that APOE 249 

may signal through a reelin-like pathway and influence cytoskeletal assembly, neurite outgrowth 250 

and cell movement. 251 

In addition to the APOE risk locus and the reelin gene which is correlated with AD 252 

neuropathology in postmortem human brains121, three novel AD susceptibility loci further 253 

implicate lipoprotein receptors and a reelin-like signaling pathway in this disease; F-spondin 254 

(Spon1) is correlated with rate of cognitive decline in AD and also modulates white matter 255 
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microstructure in healthy humans122,123. This gene codes for a reelin domain-containing cell 256 

adhesion molecule and its ortholog localizes to integrin adhesion sites in C. elegans124. F-spondin 257 

also binds APOEr2125 and guides extension of hippocampal neurites126. Moreover, F-spondin 258 

interacts with the APP protein127, and this interaction serves to activate signaling of the reelin 259 

adaptor Dab1 in ganglion cells128. Two other AD risk loci including Sorl1129,130 and CLU 260 

respectively code for a lipoprotein receptor and a lipoprotein receptor ligand. Sorl1 regulates cell 261 

migration130,131 and CLU activates reelin transducers including Dab1 and PI3K/Akt in 262 

neurons132. 263 

Perhaps unrelated to their roles in lipid metabolism, lipoprotein receptors take part in the 264 

architecture of postsynaptic structures by interacting with the major synaptic scaffold protein 265 

PSD95133-135 as well as neurotransmitter receptors133,135. Expression of lipoprotein receptors 266 

affect synaptic density in hippocampal and cortical neurons136, and their activation by reelin 267 

promotes synaptic plasticity137-139. Intriguingly, lipoprotein receptors share several intercellular 268 

transducers with the APP protein, including X11, Dab1, Fe65136,140 and also control 269 

transcriptional activation of the APP gene in the cell nucleus141. 270 

1.4 AD susceptibility loci strongly converge to cell adhesion pathways 271 

Familial AD which is caused by APP or PSEN mutations constitutes less than one percent of AD 272 
cases. In contrast, the true polygenic landscape of common sporadic AD has been partly 273 
uncovered by recent genome-wide association studies14-19. Remarkably, the majority of novel 274 
AD risk genes engage in pathways of cell adhesion, migration and contact-guidance: 275 

 DSG2 (Desmoglein-2, rs8093731) is a component of cell adhesion complexes. DSG2 276 

gene product serves focal adhesion roles and regulates cytoskeletal assembly by 277 

interacting with β8-integrin in endothelial cells142. DSG2 also controls cell motility and 278 

its depletion affects migration of malignant melanoma cells143. 279 

 EPHA1 (rs11771145) codes for a member of the ephrin-A receptor family that controls 280 

neurite adhesion and guidance. EPHA1 also moderates cell migration through integrin-281 

linked kinase and the cytoskeletal remodeling pathway144,145, and affects invasion and 282 

metastasis of colorectal cancer cells146. 283 

 FRMD4A147 and FERMT2 (Kindlin-2, rs17125944) code for two members of the 284 

FERM domain family linking integrin and focal adhesion kinase (FAK) with the 285 

intracellular actin cytoskeleton148,149. FERMT2 transduces cell adhesion signals and is 286 

engaged in malignant cell invasion150. 287 

 GAB2 (rs2373115), one of the earliest AD susceptibility genes to be discovered by 288 

GWAS14,151, encodes a scaffolding protein acting downstream to the integrin signaling 289 

pathway. GAB2 regulates adhesion and migration of hematopoietic cells152 and also 290 

controls cytoskeletal remodeling for migration of malignant breast cancer cells153. 291 

 CASS4 (Hepl, rs7274581) controls focal cell adhesion154 and the CAS family members 292 

take part in axon guidance by interacting with integrin155. CASS4 also affects 293 

reorganization of the cytoskeleton and moderates cancer cell invasion154,156. 294 
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 CD2AP (rs10948363) codes for an actin cytoskeleton binding protein157. CD2AP 295 

regulates focal adhesion of kidney podocytes at contact sites by linking membrane 296 

adhesion complexes with the intracellular actin cytoskeleton158. 297 

 PTK2B (Pyk2, rs28834970) is a focal adhesion signal transducer and affects the cellular 298 

cytoskeleton159,160. PTK2B controls integrin-dependent migration of T-cells161 and 299 

promotes invasion of malignant glioma cells162. 300 

 PICALM (rs10792832) is a Clathrin adaptor protein and engages in membrane receptor 301 

trafficking163. Clathrin regulates endocytosis of synaptic vesicles and moderates 302 

trafficking of the glutamate receptors164. Unbiased gene-gene interaction analysis in AD 303 

has revealed that the PICALM locus interacts with DOCK1165, which is an actin 304 

cytoskeleton regulator and affects cell movement166. 305 

 INPP5D (SHIP-1, rs35349669) is a key modulator of the PI3K pathway. This protein 306 

regulates platelet adhesion by modulating integrin signaling167 and also coordinates 307 

movement of neutrophils in response to focal contact and adhesion168. 308 

 NYAP1 (rs1476679) codes for a signal transducer of the PI3K pathway. NYAP1 acts 309 

downstream to Contactin5 synaptic adhesion molecule and controls cytoskeletal 310 

remodeling in neurite outgrowth169. Of note, Contactin5 binds amyloid precursor-like 311 

protein 1170. 312 

 Amphysin II (BIN1, rs6733839) codes for a protein that binds the cytoplasmic tail of 313 

integrin171 and neuronal focal adhesion kinase172 and is therefore probably involved in 314 

integrin-dependent cell adhesion. Moreover, Amphysin I which has a high level of 315 

sequence similarity (71%) with this gene product regulates outgrowth of hippocampal 316 

neurites173 and links endocytosis mechanisms to pathways of actin cytoskeleton 317 

remodeling174. 318 

 UNC5C175 (rs137875858) codes for a receptor of the netrin pathway of axon guidance176. 319 

In addition to the noted interaction of netrin1 with the APP protein, the netrin pathway 320 

also incorporates α3β1-integrin and Down Syndrome Cell Adhesion Molecule (DSCAM) 321 

in neuronal migration and neurite outgrowth, respectively177,178. 322 

 TPBG, a recently discovered AD risk gene19, modulates cell adhesion and 323 

movement179,180. TPBG localizes at focal adhesion sites in kidney podocytes and affects 324 

formation of actin stress fibers for cell remodeling181. Deletion of TPBG disrupts 325 

cadherin-dependent cell adhesion and suppresses cell migration182.  326 

 HBEGF19 (rs11168036) encodes a protein that promotes integrin-dependent cell 327 

adhesion183. HBEGF also regulates focal adhesion kinase and moderates cell migration 328 

by affecting the actin cytoskeleton184. 329 

 USP6NL19 (RNTRE, rs7920721) modulates integrin signaling and controls focal 330 

adhesion turnover, thereby acting as a "brake" in cell migration185. 331 

 TREM2 (rs75932628), a novel AD locus identified by next-generation sequecing186, is 332 

known to interact with the plexin-A1 adhesion molecule187 which is a receptor of axon 333 

guidance. The TREM and plexin-A1 interaction is suggested to moderate cell adhesion 334 

and movement through the cytoskeletal pathway188. The Plexin pathway also opposes 335 

integrin signal and inhibits cell movement189. 336 
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 TTC3, a novel familial late-onset AD locus, maps to the Down syndrome critical 337 

region190. TTC3 modulates β1-integrin signaling in cancer cells191 and its increased level 338 

affects assembly of the actin cytoskeleton and disrupts neurite extension192.  339 

 PLCG2193 (rs72824905) encodes a phospholipase enzyme which is activated by integrin 340 

and moderates cell migration194. PLCG2 activation controls adhesion of leukocytes and 341 

takes place downstream to integrin signaling195. 342 

 ABI3193 (rs616338) affects the cytoskeletal pathway and participates in formation of 343 

membrane protrusions for cell motility196. Its binding partner, the ABI3 binding protein, 344 

interacts with integrin at focal adhesion sites and suppresses malignant cell 345 

migration197,198. 346 

Taken together, the genetic architecture of AD strongly implicates various cell adhesion 347 

receptors which coordinate pathways of cytoskeletal plasticity and cell reshaping. Further aiding 348 

in formulation of a unified disease model, many of these gene products cross-talk with the 349 

integrin pathway, and this convergence spotlights the Aβ-independent roles of APP and γ-350 

secretase in cell adhesion signaling and synapse formation. 351 

2 The hypothesis 352 

Our model builds on the unbiased genetic architecture of AD and puts the cell adhesion signaling 353 

pathway at the center of disease nexus. Various cell adhesion regulators including integrins 354 

coordinate cell migration, neurite elongation, and assembly of synaptic circuits in brain 355 

development, and also undertake pivotal roles in maintaining synaptic integrity and homeostasis 356 

after completion of brain development199. Specifically, cell adhesion molecules form a dense 357 

scaffold at the postsynaptic density (PSD) sites and connect neurotransmitter receptors and 358 

synaptic ion channels with the actin cytoskeleton as well as the extracellular matrix. In addition 359 

to such mechanical support, synaptic adhesion molecules also act as biochemical sensors for 360 

modulation of postsynaptic plasticity, dendritic spine reshaping, and recycling of transmitter 361 

receptors200. For instance, it has been shown that enhancing signaling of synaptic integrin by 362 

application of its agonist peptide modulates neurotransmission201 in a dose-dependent manner202. 363 

In this context, integrin promotes budding of filopodia which serve to strengthen synaptic 364 

connections by cytoskeletal plasticity mechanisms203, i.e. the same mechanism by which 365 

integrins control axonal adhesion and pathfinding during brain development204. Remarkably, 366 

many of the intracellular transducers recruited by focal adhesion cascades also act as molecular 367 

switches of synaptic plasticity, including various tyrosine kinases (SFK, PI3K and Akt) as well 368 

as the calcium signaling pathway205. 369 

The post-developmental roles of cell adhesion pathways in synaptic function and plasticity, 370 

which is not limited to integrins (Fig. 1), may enlighten pathways of AD from an Aβ-371 

independent perspective. We propose that the heritable component of AD is defined by several 372 

genetic factors that coordinate robust adhesion and assembly of synaptic circuits in brain 373 

development. This genetic landscape also defines the level of synaptic adhesion, integrity and 374 

circuit resilience in the post-developmental period, and individuals with a vulnerable genetic 375 
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background may suffer disassembly of neural circuits due to loss of synaptic adhesion pathways 376 

in late life. 377 
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 380 

 381 

 382 

Figure 1. Top: Biological adhesion pathways transfer microenvironmental signals across the cell 383 
membrane, and affect cell polarity, movement and survival. Bottom: Various pathways of 384 

extracellular adhesion coordinate rearrangement of the actin cytoskeleton and thereby control 385 
reshaping of membrane protrusions for movement. FAK: focal adhesion kinase; LRP: lipoprotein 386 

receptor; Shh: Sonic hedgehog. 387 

Cell 
adhesion 
pathways

Neurite 
guidance

Cell 
migration

Synaptic 
adhesion

Endothelial 
guidance

Cancer 
cell 

invasion

Epidermal-
mesenchymal 

transition

Anoikis

Neuronal 
fate 

decision

Cell 
adhesion 
pathways

integrin/FAK

ephrin

Notch

Slit/ROBO

netrin/DCC

Plexin

Cadherin

APOE/LRP

Shh

Wnt/β-
catenin

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/189712doi: bioRxiv preprint 

https://doi.org/10.1101/189712
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Aging and the Alzheimer’s disease 388 

Human aging is the strongest risk factor for dementia, but etiology of its correlation with AD 389 

remains elusive. One possibility is that AD may represent a continuation of global aging process, 390 

and cellular disruptions which happen in “normal” aging may give rise to dementia when 391 

accelerated7. An elegant work has recently revealed that frontal cortex cells of healthy humans 392 

accumulate ~37 new point mutations each year206. In line with the DNA damage hypothesis of 393 

aging, loss of genomic integrity has been previously implicated in AD predisposition12,207,208. 394 

From a statistical point of view, even if a purely-random and stochastic process causes 37 annual 395 

mutations in aging neurons, larger genes are expected to be disproportionately affected in late 396 

life. Considering the low rate of somatic mutations estimated in aging frontal cortex cells 397 

(5.7×10-9 mutations/bp.year206), only near one percent of the copies of a median-sized human 398 

gene will be affected by at least one somatic mutation in a 65-year individual. However, in sharp 399 

contrast, the largest known human gene, CNTNAP2, which is more than 80x larger than a 400 

median-sized protein-coding locus and codes for a synaptic adhesion molecule, is expected to be 401 

highly vulnerable to somatic mutations, and only 42 percent of its copies are estimated to remain 402 

intact at the same age (Fig. 3). This high variability is due to the characteristic distribution of 403 

human gene size parameter, which spans three-orders of magnitude with a long tail 404 

encompassing a subset of extremely large genes (Fig. 2). Intriguingly, many of the largest known 405 

human genes map to chromosomal fragile sites209. 406 
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 409 

 410 

 411 

Figure 2. Top: Human gene length distribution has a long tail that extends towards a group of 412 
extremely-large genes in the megabase pair range. The arrow points to the giant APOE receptor, 413 
Lrp1b. Bottom: Human gene size parameter closely follows a log-normal distribution with 414 
parameters μ=ln(26.9kbp) and σ=1.4. The outlier bin near 1kbp represents the large family of 415 
olfactory receptors which have gone through extreme evolutionary expansion. Scattered circles 416 

(top) and grey bars (bottom) show the subset of large genes used in functional enrichment 417 

analyses (>500kbp). 418 
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 419 

Figure 3. A binomial model in which somatic mutations take place at a fixed rate across the 420 
whole span of human genome has wildly different impacts on genes of various sizes. According 421 
to this model, a median-sized human gene mostly survives the mutational burden of aging, with 422 
only ~1 percent of its copies affected by any somatic mutation in late life. However, larger genes 423 
possess significantly shorter half-lives due to somatic mutations. Many of these large genes 424 

regulate synaptic function and integrity and are also known to act as tumor suppressors. 425 

 426 

These clues compelled us to objectively investigate whether the largest human genes non-427 

randomly take part in certain cellular mechanisms. We size-sorted all of the protein-coding 428 

human genes (n=18,181 genes with UniProt accession). Thereafter, a minimum gene length 429 

threshold of >500kb was considered, a cut-off filter that resulted in inclusion of 234 genes 430 

representing the top 1.3 percent of largest protein-coding loci. Functional annotation and tissue 431 

expression profile of this gene set of interest were investigated using Database for Annotation, 432 

Visualization and Integrated Discovery (DAVID) and standard statistical tests of gene set 433 

enrichment210,211. 434 

The most overrepresented organ for expression of this gene set was brain (p=2.1×10-17), followed 435 

by amygdala (p=1.9×10-4) and hippocampus (p=8.5×10-4). Showing strong enrichment statistics, 436 

cell adhesion (GO:0007155) was the most representative biological process related to this gene 437 

set (p=8.0×10-13, Table 1) and the most overrepresented cellular component was synapse 438 

(GO:0045202: p=2.4×10-14). Other significant gene ontology terms further implicated pathways 439 

of nervous system development and function, including neuron differentiation, axon 440 

morphogenesis, axon guidance, cell motion, and synaptic transmission (Table 2). 441 

The strongly nonrandom selectivity of large human genes to brain, synapse and cell adhesion is a 442 

potentially enlightening observation. We suspect that these genes may have fostered adhesion 443 

and assembly of complex synaptic circuits in cognitive evolution. As an evolutionary bottleneck, 444 
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extremely large genes may also be inherently costlier to be maintained in late life, and may put 445 

individuals at a neurobiological disadvantage when the burden of somatic mutations passes a 446 

critical threshold in aging. Remarkably, potential downside of large genes in late life aging has 447 

only been weakly corrected by evolutionary forces, since average human life expectancy passed 448 

the 40-year milestone only two centuries ago212. In this regard, AD may have unmasked a DNA 449 

maintenance and repair bottleneck in the elderly brain of modern humans due to the rapid 450 

expansion of life expectancy. 451 

While somatic mutations provide a simple explanation for synaptic adhesion failure in aging, it is 452 

worth noting that extracellular adhesion pathways also form a surveillance system for continuous 453 

checking of cell anchorage in solid organs. Abnormal loss of cell adhesion robustly activates a 454 

specialized apoptosis program known as anoikis213, with a number of AD risk loci controlling 455 

such anoikis pathways including the reelin pathway which regulates anoikis of mesodermal 456 

cells214 and the ephrin cascade of axon guidance which moderates anoikis in cancer215. Integrin is 457 

also a well-characterized regulator of anoikis cell death (e.g. see216 and reviews217,218). The 458 

interrelationship between pathways of neurite adhesion and cell survival is at a level that they 459 

occasionally rely on dual-functioning dependence receptors, as has been determined for netrin 460 

and ephrin cascades of axon guidance219,220. 461 
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Table 1. Enrichment of large human genes (>500kbp) in Gene ontology: biological process 463 

annotation. p-values are corrected for multiple comparisons. 464 

GO term: biological process Gene count Pvalue 

GO:0007155~cell adhesion 41 8.0×10-13 

GO:0022610~biological adhesion 41 4.0×10-13 

GO:0016337~cell-cell adhesion 23 3.0×10-9 

GO:0019226~transmission of nerve impulse 23 1.8×10-7 

GO:0007268~synaptic transmission 21 2.8×10-7 

GO:0030182~neuron differentiation 25 3.9×10-7 

GO:0048666~neuron development 22 3.8×10-7 

GO:0030030~cell projection organization 22 1.6×10-6 

GO:0007156~homophilic cell adhesion 14 1.6×10-6 

GO:0048812~neuron projection morphogenesis 17 1.7×10-6 

GO:0031175~neuron projection development 18 3.4×10-6 

GO:0048667~cell morphogenesis involved in neuron 
differentiation 

16 7.4×10-6 

GO:0048858~cell projection morphogenesis 17 9.3×10-6 

GO:0032990~cell part morphogenesis 17 1.6×10-5 

GO:0007409~axonogenesis 15 1.5×10-5 

GO:0000904~cell morphogenesis involved in differentiation 16 4.2×10-5 

GO:0007267~cell-cell signaling 24 1.8×10-4 

GO:0000902~cell morphogenesis 18 2.2×10-4 

GO:0007411~axon guidance 10 6.3×10-4 

GO:0050808~synapse organization 8 8.0×10-4 

GO:0032989~cellular component morphogenesis 18 7.6×10-4 

GO:0050877~neurological system process 31 0.011 

GO:0006928~cell motion 17 0.021 

GO:0006887~exocytosis 8 0.036 

 465 
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Table 2. Enrichment of large human genes (>500kbp) in Gene ontology: cellular component 467 

annotation. p-values are corrected for multiple comparisons. 468 

GO term: cellular component Gene count Pvalue 

GO:0045202~synapse 33 2.4×10-14 

GO:0044456~synapse part 24 1.5×10-10 

GO:0030054~cell junction 31 7.8×10-9 

GO:0005886~plasma membrane 97 1.1×10-8 

GO:0045211~postsynaptic membrane 15 4.3×10-7 

GO:0044459~plasma membrane part 63 3.8×10-6 

GO:0043005~neuron projection 21 3.8×10-6 

GO:0014069~postsynaptic density 10 2.2×10-5 

GO:0042995~cell projection 29 2.3×10-5 

GO:0042734~presynaptic membrane 7 7.0×10-5 

GO:0031224~intrinsic to membrane 110 1.1×10-4 

GO:0016021~integral to membrane 103 1.5×10-3 

GO:0044463~cell projection part 13 2.7×10-3 

GO:0031225~anchored to membrane 12 5.8×10-3 

GO:0019898~extrinsic to membrane 18 0.016 

GO:0030424~axon 9 0.03 

GO:0030425~dendrite 9 0.03 

 469 
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4 Predictions 471 

AD patients may suffer faster accumulation of DNA damage and somatic mutations in their 472 

aging neurons due to a combination of heritable factors and environmental exposures. This insult 473 

eventually disrupts cellular pathways controlled by unstable genes of synaptic maintenance and 474 

neuronal survival. Derailed signaling of the APOE-lipoprotein receptor axis may be a prototypic 475 

feature of cellular dysfunction in sporadic AD (Fig. 4). 476 

 477 

 478 

Figure 4. A simplified cascade of sporadic AD pathogenesis based on APOE signaling 479 

disruption. FAK: focal adhesion kinase; SFK: Src-family kinase. 480 

 481 

We predict that mutational instability of the Lrp1b gene in human aging potentially explains the 482 

APOE4 risk factor of AD: 483 

 Lrp1b is the largest member of the lipoprotein receptor family and represents the 8th 484 

largest human gene overall. Lrp1b is also one of the most frequently deleted genes in 485 

3,131 cancer specimens and maps to a common chromosomal fragile site223. 486 

 Coding variants within Lrp1b are correlated with cognitive stability in aging and 487 

AD224,225. 488 

 Lrp1b controls focal adhesion, cytoskeletal remodeling and cell migration226, pathways 489 

that functionally align with the genetic architecture of AD. Lrp1b has affinity to APOE 490 

particles and also interacts with APP at cell membranes, possibly acting as a co-receptor 491 

complex for cell signal transduction227,228. 492 

Alzheimer's disease

Anoikis and survival imbalance (NF-ΚB? BCL2? Mitochondrial apoptosis?)

Cytoskeletal disassembly, neurotransmitter receptor mistrafficking, and synaptic 
dysfunction

FAK, SFK, PI3K/Akt, N-WASP, Rho GTPases

adhesion-regulated tyrosine kinases/phosphatases

Integrin, lipoprotein receptors (Lrp1b), and other cell adhesion molecules

Extracellular matrix ligands (APOE, F-spondin, reelin, laminin)
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 Lrp1b interacts with two postsynaptic proteins including PSD95134 and PICK1229. PSD95 493 

is the major synaptic scaffold protein and connects glutamate receptors with the synaptic 494 

actin cytoskeleton. PICK1 regulates postsynaptic function and glutamate receptor 495 

function230. 496 

 Unlike other APOE receptors that are generally expressed in various organs, Lrp1b 497 

demonstrates a restrictive pattern of brain expression227, and hippocampal CA1 neurons 498 

and amygdala show the highest Lrp1b transcription levels in the Allen human brain 499 

atlas231 (Fig. 5). 500 

 501 

 502 

Figure 5. Top: Correlation of genetic polymorphisms of the Lrp1b locus with several MRI 503 

measures of brain volume in ENIGMA-2 meta-analysis232,233 (https://www.enigma-504 
brain.org/enigmavis/visualizer/visualizer). Bottom: Spatial expression of Lrp1b in different 505 
human brain regions in six postmortem brain samples, Allen human brain atlas 506 

(http://human.brain-map.org). 507 

 508 
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We predict that AD-type cognitive decline is correlated with somatic mutations in certain large 509 

synaptic genes including Lrp1b. Although previous models have already implicated oxidative 510 

stress and DNA damage in AD12,207,208,234, high-throughput results do not support an oxidative 511 

etiology for somatic mutations in various organs, since oxidative stress typically causes 512 

G:C→T:A transversions235,236, whereas aging cells demonstrate a clock-like signature of somatic 513 

mutations with enrichment of C:G→T:A transitions237,238. Intriguingly, the C:G→T:A fingerprint 514 

was recently observed as the dominant type of somatic mutations in neurons236,239,240. We predict 515 

that the most frequent type of genomic instability in AD may also be similar to that of “normal” 516 

aging in neurons and cancer cells. The reason for this preponderance of C:G→T:A transitions is 517 

currently unknown, and might reflect transcriptional stress, spontaneous cytosine deamination, or 518 

DNA repair failure236,241. 519 

It is noteworthy that Lrp1b only serves to provide one example of vulnerable genes in brain 520 

aging, and the true genetic landscape of sporadic AD and senile neurodegenerations in general is 521 

not reducible to the APOE pathway (Fig. 6). In a manner that may be similar to engagement of 522 

various tumor suppressor genes in different cancers, brain-wide expression of several unstable 523 

synaptic genes may cause heterogeneity of dementia syndromes. For instance, the genetic 524 

architecture of Parkinson’s disease implicates many genes of the synaptic vesicular trafficking 525 

system including the extremely large tumor suppressor PARK2242, and the vulnerable 526 

dopaminergic neurons selectively express two known tumor-suppressor cell adhesion genes, 527 

including DCC243 and AJAP1244. 528 

 529 

 530 

Figure 6. The proposed mechanisms of synaptic loss and neuronal death in AD. The extracellular 531 
matrix and its cell adhesion molecules (A) modulate neuronal adhesion receptors (B). Cell 532 
adhesion pathways affect remodeling of synaptic cytoskeleton as well as other modulators of 533 
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plasticity and neuronal survival, e.g. various SH3 domain containing proteins (C). The 534 
postsynaptic density scaffold is anchored with the synaptic actin cytoskeleton through linking 535 
proteins, e.g. PDZ domain containing proteins (D). Function and trafficking of the 536 
neurotransmitter receptors are controlled by cytoskeletal pathways (E) as well as cell adhesion 537 
molecules (F). Disruption of cell adhesion pathways in AD impairs synaptic stability and causes 538 
dendritic spine loss (G), and may eventually lead to neuronal survival imbalance by triggering 539 
anoikis-like mechanisms (H). Selective vulnerability of large genes in aging may be the cause of 540 

cell adhesion disruption in AD (I). 541 

 542 

5 Future perspectives 543 

Conditional knockout of Lrp1b as well as other modulators of the APOE signaling axis (F-544 

spondin, reelin, Dab1) after completion of brain development may aid in modeling cognitive 545 

aspects of AD in laboratory animals. Intriguingly, conditional knockout of the Lrp1 gene which 546 

is closely related to Lrp1b, but lacks its brain-specific expression profile, results in 547 

neurodegenerative changes after 12 months of animal aging245. The single study of Lrp1b 548 

knockout mice did not follow the course of abnormal phenotypes past this age134. Lrp1 and 549 

Lrp1b may also be functionally redundant and partially compensate for loss of gene function in 550 

single knock-out models. 551 

Since even the most aggressive forms of AD remain clinically-silent for decades, the short 552 

lifespan of laboratory animals may not permit effective interaction of genetic factors and 553 

environmental exposures to take place similar to human dementias. Therefore, accelerating the 554 

aging process by crossing AD animal models with DNA-repair defective strains246 or exposure 555 

of models to genotoxic UV irradiation may prove informative, but usefulness of these 556 

gene×environment models relies on validation of DNA damage accumulation in aging human 557 

brain and its characteristics. 558 

Our hypothesis is not based on any form of etiological relevance for Aβ species or 559 

neurofibrillary tangles in the disease cascade, and redefines these neuropathological features as 560 

bystander epiphenomena downstream to other causal factors. For AD drug design, enhancing 561 

function of the integrin-lipoprotein receptor signaling axis and their downstream second 562 

messengers including adhesion-regulated tyrosine kinases (FAK/SFK, PI3K→Akt, and Erk) or 563 

regulators of cytoskeletal actin (e.g. Rho GTPases, cofilin, and WAVE) as well as blocking 564 

anoikis pathways may prove useful. Nevertheless, even the strongest AD risk locus, APOE, fails 565 

to explain ~94 percent of the disease variance alone, and single pathway therapeutic approaches 566 

may provide limited benefit in clinical trials. As a potentially more effective method, our model 567 

warrants engineering of novel gene delivery vehicles for restoring neuronal expression of 568 

unstable genes before somatic mutations reach a level that results in clinical presentation of 569 

dementia. 570 

In conclusion, our proposal, the large gene instability hypothesis, implicates mutational 571 

vulnerability of the complex genes of synaptic adhesion and homeostasis as the primary etiology 572 
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of AD, and suggests a shift of paradigm from the protein aggregation process to DNA damage 573 

mechanisms for disease prevention and drug design. 574 
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