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indicated fragments cloned into the 3’ UTR; nuclear/cytoplasmic ratios are shown. (E) Imaging flow 

cytometry of AcGFP and MALAT1 mRNA, the fraction of the signal overlapping with DAPI signal out of 

the total signal intensity is displayed. Asterisks denote P<0.02 (Wilcoxon test). (F) Correlation between 

the effects of individual tiles on expression levels (x-axis, WCE is whole cell extract) and 

nuclear/cytoplasmic ratios (y-axis). SIRLOIN-containing elements are in circles. (G) 

Nuclear/cytoplasmic expression ratios for RNAs containing the indicated number of SIRLOIN elements 

or SIRLOIN reverse complement (antisense) in MCF7 cells ENCODE data. P-values are for 

comparisons between the RNAs with the indicated number of SIRLOINs in the sense vs. antisense 

orientation. (H) Nuclear/cytoplasmic ratios in each of ten ENCODE cell lines, comparing transcripts 

without SIRLOIN elements to those with at least two elements and to those with at least one element in 

an internal exon. Asterisks indicate P<0.01 (Wilcoxon test) when comparing the indicated group to 

transcripts without SIRLOIN elements. 
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Figure 2 

 
(A) Effects of the tiles in RNF207 mRNA on nuclear/cytoplasmic expression ratios when cloned into the 

3’UTR of AcGFP. Tiles overlapping repetitive elements are in black, tiles overlapping the SIRLOIN 

element are in orange, and other tiles are in gray. (B) Correlation between similarity to a SIRLOIN 

element (number of perfectly matching bases, without allowing indels) and Nuc/Cyto ratios in NucLibB. 

(C) Correlation between the position of the SIRLOIN element within the tile and the effect of the tile on 

localization (left) and expression levels (right). Spearman’s correlation coefficients and p-values are 
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indicated. (D) Box plots show effects on Nuc/Cyto ratio of ten shuffled, dinucleotide-preserving 

sequences of the indicated tiles in each of two replicates. Horizontal lines show the effects of the WT 

sequence of the tile as well as sequences containing 3 core parts of the SIRLOIN element (underlined 

in Figure 1C). (E) Effects of 109 nt sequences containing repeats of the indicated 6- or 10-mers from 

JPX#9 tile separated by AT dinucleotides on localization (top) and expression levels (bottom). 

Horizontal lines show the effects of the WT JPX#9 sequence. 
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Figure 3:  

 
(A) Nuclear/cytoplasmic ratios (top) and expression levels (bottom) for sequence variants that are all 

identical to JPX#9 except for the indicated base change. Horizontal gray line indicates the 

corresponding level for the wild type JPX#9 sequence. WT sequence is shown between the two plots. 

(B) Nuclear cytoplasmic ratios for sequences where the indicated number of bases were scrambled 

with C↔G and A↔T changes. The position of the point indicates the first base of the region that was 

scrambled.  
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Figure 4. HNRNPK drives nuclear localization of SIRLOIN-containing transcripts.(A) Enrichment 

of HNRNPK in binding to the SIRLOIN element within Alu repeats (see Methods). (B) Sequence (top) 

and structure (bottom) logo of the motif enriched in HNRNPK eCLIP clusters (HepG2 cells, first 
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replicate), as identified by GraphProt. Structural annotation: stems (S), external regions (E), hairpins 

(H), internal loops (I), multiloops (M) and bulges (B). (C) Enrichments of the AcGFP RNA with the 

indicated inserts following immunoprecipitation (IP) using an HNRNPK antibody, normalized to the 

GAPDH antibody. (D) Ratios of expression levels in the nucleus/cytoplasm for transcripts with the 

indicated number of eCLIP clusters for HNRNPK and PCBP2 in HepG2 cells. Asterisks indicate 

significant difference between the genes with the indicated number of clusters and genes without eCLIP 

clusters (Wilcoxon test). (E) Change in the nuclear / cytoplasmic ratio following HNRNPK knockdown 

for transcripts with the indicated number of HNRPNK eCLIP clusters (left) or the indicated number of 

SIRLOIN elements (right). (F) Changes in expression following HNRNPK knockdown in the indicated 

sample, comparing transcripts with either >2 or <2 eCLIP clusters. P-values computed using Wilcoxon 

test. (G) Changes in the indicated ratios for NucLibB fragments following HNRNPK knockdown. Each 

plot shows the difference between the ratio following HNRNPK siRNA transfection (average of two 

replicates) and non-targeting control siRNA transfection. (H) HNRNPK binding and the MLXIPL gene. 

Gene structure for a representative splicing isoform and SINE/LINE repeat annotations are from the 

UCSC genome browser. eCLIP reads/clusters are from HepG2 cells (replicate 1) from the ENCODE 

data portal. Expression levels in nucleus and cytoplasm in HepG2 and MCF7 cells from ENCODE and 

this study were normalized separately and HepG2 nuclear levels were capped to allow visual 

comparison. The exon enriched with HNRNPK binding is shaded. 
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