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Abstract

The mechanisms by which different microbes colonize the healthy human gutversus other body sites, the gut in disease states, or other environments remainlargely unknown. Identifying microbial genes influencing fitness in the gut couldlead to new ways to engineer probiotics or disrupt pathogenesis. We approach thisproblem by measuring the statistical association between having a species having agene and the probability that the species is present in the gut microbiome. Thechallenge is that closely related species tend to be jointly present or absent in themicrobiome and also share many genes, only a subset of which are involved in gutadaptation. We show that this phylogenetic correlation indeed leads to many falsediscoveries and propose phylogenetic linear regression as a powerful solution. Toapply this method across the bacterial tree of life, where most species have notbeen experimentally phenotyped, we use metagenomes from hundreds of people toquantify each species’ prevalence in and specificity for the gut microbiome. Thisanalysis reveals thousands of genes potentially involved in adaptation to the gutacross species, including many novel candidates as well as processes known tocontribute to fitness of gut bacteria, such as acid tolerance in Bacteroidetes andsporulation in Firmicutes. We also find microbial genes associated with a preferencefor the gut over other body sites, which are significantly enriched for genes linkedto fitness in an in vivo competition experiment. Finally, we identify gene familiesassociated with higher prevalence in patients with Crohn’s disease, includingProteobacterial genes involved in conjugation and fimbria regulation, processespreviously linked to inflammation. These gene targets may represent new avenuesfor modulating host colonization and disease. Our strategy of combiningmetagenomics with phylogenetic modeling is general and can be used to identifygenes associated with adaptation to any environment.

Author Summary
Why do certain microbes and not others colonize our gut, and why do they differbetween healthy and sick people? One explanation is the genes in their genomes. If wecan find microbial genes involved in gut adaptation, we may be able to keep outpathogens and encourage the growth of beneficial microbes. One could look for genesthat were present more often in prevalent microbes, and less often in rare ones.However, this ignores that related species are more likely to share an environment andalso share many unrelated phenotypes simply because of common ancestry. To solvethis problem, we used a method from ecology that accounts for phylogenetic
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relatedness. We first calculated gut prevalence for thousands of species using acompendium of shotgun sequencing data, then tested for genes associated withprevalence, adjusting for phylogenetic relationships. We found genes that areassociated with overall gut prevalence, with a preference for the gut over other bodysites, and with the gut in Crohn’s disease versus health. Many of these findings havebiological plausibility based on existing literature. We also showed agreement with theresults of a previously published high-throughput screen of bacterial gene knockouts inmice. These results, and this type of analysis, may eventually lead to new strategies formaintaining gut health.
Short title

Phylogenetic modeling of gut colonization

1 Introduction
Microbes that colonize the human gastrointestinal (GI) tract have a wide variety ofeffects on their hosts, ranging from beneficial to harmful. Increasing evidence showsthat commensal gut microbes are responsible for training and modulating the immunesystem [1,2], protecting against inflammation [3] and pathogen invasion (reviewed inSassone-Corsi and Raffatellu [4]), affecting GI motility [5], maintaining the intestinalbarrier [6], and potentially even affecting mood [7]. In contrast, pathogens (andconditionally-pathogenic microbes, or “pathobionts”) can induce and worseninflammation [8,9], increase the risk of cancer in mouse models [10], and causepotentially life-threatening infections [11]. Additionally, the transplantation ofmicrobes from a healthy host (fecal microbiota transplant, or FMT) is also a highlyeffective therapy for some gut infections [12], although it is still an active area ofinvestigation why certain microbes from the donor persist long-term and others donot [13], and how pre-existing inflammatory disease affects FMT efficacy [14]. Whichmicrobes are able to persist in the GI tract, and why some persist instead of others, istherefore a question with consequences that directly impact human health.Because of this, we are interested in the specific mechanisms by which microbescolonize the gut, avoiding other potential fates such as being killed in the harshstomach environment, simply passing through the GI tract transiently, or beingoutcompeted by other gut microbes. Understanding these mechanisms could yieldopportunities to design better probiotics and to prevent invasion of the gut communityby pathogens. In particular, creating new therapies, whether those are drugs,engineered bacterial strains, or rationally designed communities, will likely require anunderstanding of gut colonization at the level of individual microbial genes. We alsoanticipate that these mechanisms may vary in health vs. disease, since, for example,different selective pressures are known to be present in inflamed versus healthyguts [15,16].One approach that has been used to link genetic features to a phenotype is tocorrelate the two using observational data. Most typically, this approach is applied inthe form of genome-wide association mapping, in which phenotypes are correlatedwith genetic markers across individuals in a population. While we are interested incomparing phenotypes and genetic features across, rather than within species, theapproach we take in this paper is conceptually similar. In order to perform associationmapping, it is necessary to account for population structure, that is, dependenciesresulting from common ancestry; otherwise, spurious discoveries can be made in
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genome-wide association studies [17]. Analogously, we expected it to be important tochoose a method that can account for the confounding effect of phylogeny whentesting for associations across species.There is increasing interest in using phylogenetic information to make betterinferences about associations between microbes and quantities of interest. Forexample, co-conservation patterns of genes (“correlogs”) have been used to assignfunctions to microbial genes [18], and genome-wide association studies have beenapplied within a genus of soil bacteria [19] as well as across strains of Neisseria
meningitidis [20]. Recent publications have also described techniques that useinformation from the taxonomic tree to more accurately link clades in compositionaltaxonomic data to covariates [21–23]. However, so far, only one study has attemptedto associate genes with a preference for the gut [24]. That study introduced a valuablemethod based on UniFrac and gene-count distances, which compares how well gut- vs.non-gut-associated microbes cluster on the species tree compared to a compositegene tree. This study also provides an important insight in the form of evidence ofconvergence of glycoside hydrolase and glycosyltransferase repertoires among gutbacteria, suggesting horizontal gene transfer within the gut community to deal with acommon evolutionary pressure. The method described in that study, though, requires abinary phenotype of gut presence vs. absence. Deciding which microbes are “gut” vs.“non-gut” requires manual curation and can be somewhat subjective, as microbes havea continuous range of prevalences and can appear in multiple environments; thisbinarization could also potentially decrease power by excluding microbes withintermediate phenotypes. The method also requires multiple sequence alignments andtrees to be built for every gene family under analysis, which are computationallyintensive to generate over a large set of genomes.We take a complementary approach and use a flexible technique, known asphylogenetic linear modeling, to detect associations between microbial genotype andphenotype while accounting for the fact that microbes are related to one another byvertical descent. Phylogenetic linear models have an extensive history in the ecologyliterature dating back to seminal works by Felsenstein [25] and Grafen [26]. However,despite their power, genome-scale applications of these models are still few innumber [27] and, with the exception of one recent study that applied phylogeneticlinear modeling to newly-sequenced isolate genomes from plant-associated microbialcommunities [28], have typically been used to relate traits of macroorganisms (e.g.,anole lizards [29]) to their genotypes. While there is a growing appreciation for theneed to explicitly account for phylogeny in microbial community analyses [27,30], webelieve ours is the first study to directly apply this class of methods to metagenomicdata.This approach to accounting for phylogenetic relationships is general and could beapplied to measure association of any quantitative phenotype with genotypes or otherbinary or quantitative characteristics. In this study, we focus on phenotypes related tothe ability of bacteria to colonize the human gut: 1. overall prevalence in the guts ofhosts from a specific population (e.g., post-industrialized countries), which we expectto capture ease of transmission, how cosmopolitan microbes are, and how efficientlythey colonize the gut; 2. a preference for the gut over other human body sites in thesame hosts, which we expect to capture gut colonization more specifically; and 3. apreference for the gut in disease (e.g., Crohn’s disease) versus health. We present anovel analytic pipeline in which we estimate these quantitative phenotypes forthousands of bacterial species directly from existing shotgun metagenomics data, bothobviating the need for us to draw a cutoff between “gut” and “non-gut” microbes, and

March 21, 2018 3/42

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


also giving us the necessary power to detect associations (Fig S2). Coupling thesephenotype estimates with phylogenetic linear models, we generate a compendium ofthousands of bacterial genes whose functions may be involved in colonizing the humangut.

2 Results
We present a phylogeny-aware method for modeling associations between thepresence of specific genes in bacterial genomes and quantitative phenotypes thatmeasure how common these species are in the human microbiome. To applyphylogenetic linear modeling to the microbiome, we needed to solve three problems.First, we had to show that these models controlled false positives and had reasonablepower on large bacterial phylogenies. Second, we needed to develop estimators thatcaptured meaningful phenotypes related to bacterial colonization of humans forthousands of diverse bacterial species, most of which have never been studied inisolation, much less experimentally assayed for their abilities to colonize a mammalianbody site. The third problem was to estimate genotypes (e.g., gene presence-absence)for each species. The analysis framework we describe is quite general and could beeasily extended to link other phenotypes to genotypes across the tree of life.
2.1 Phylogenetic linear models solve the problem of high false

positive rates when testing for associations on bacterial
phylogenies

To test for associations between quantitative phenotypes and binary genotypes acrossspecies, we use models with the following form:
~φx,E,D(A) = β0,g + β1,g~Ig + ~εg (1)

~φx,E,D(A) is a vector of quantitative phenotypes of interest, assessed in oneenvironment ex out of a set of possible environments E, normalizing out a set of studyeffects D, estimated from the dataset A. The elements of the vector ~φx,E,D(A) are
φm,x,E,D(A), the phenotype value for microbe m. β0,g is a baseline phenotype value,
β1,g is the effect of gene g on ~φ, ~Ig is a vector whose elements Im,g are 0 if gene g isabsent in species m and 1 if present, and ~εg is the remaining unmodeled variation in ~φ.We fit one model per gene g. The distribution of the residuals ~εg is the key differencebetween standard and phylogenetic linear models. In the standard model, the residualsare assumed to be independent and normally distributed. In the phylogenetic model,however, the residuals covary, with more closely-related species having greatercovariance (see Methods, 4.5 and 4.6; for a glossary of notation, see Methods, 4.17).To explore the potential pitfalls of failing to correct for phylogenetic structure incross-species association tests, we generated a species tree for thousands of bacteriawith genome sequences (see Methods, 4.3). In order to have a consistent operationaldefinition of a microbial species, we used a set of previously defined bacterialtaxonomic units with approximately 95% pairwise average nucleotide identity acrossthe entire genome [31]. The methods we describe can be applied to other taxonomiclevels or with other species definitions. Using this species tree, we performedsimulations (see Methods, 4.11) for each of the four major bacterial phyla in the humangut (Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria [32]). Specifically,we generated simulated phenotypes along the species tree, and then, for each
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phenotype, simulated a binary genotype for each species that covaried with thephenotype to varying degrees, including no association. We used levels of covariationspanning those we observed empirically between prevalence of species in gutmetagenomes and presence-absence of genes (see below). (An effect size of 0.5corresponds approximately to a 50% increase in prevalence, while an effect size of 1.0corresponds approximately to a 100% increase in prevalence: see Fig S8.) These binarygenotypes also had varying levels of overall phylogenetic signal (Ives-Garland α).We then fit phylogenetic and standard linear models to the simulated data andtested for a relationship between each binary genotype and its correspondingcontinuous phenotype. For both standard and phylogenetic linear models, separatemodels were fit for each of the four phyla. The results were used to estimate falsepositive rate (Type I error) and power (1 - Type II error) for the two methods acrossdifferent effect sizes.These analyses showed that standard linear models result in many false positiveassociations. When the binary genotype was specified to be wholly uncorrelated (i.e.,under the null), p-values from the linear model showed a strong anticonservative bias(Fig 1B, D) with many more significant p-values than expected under no correlation.While lower levels of phylogenetic signal (larger Ives-Garland α) did result in less bias inthe standard linear model, the false positive rate remained over 25% at p = 0.05. Incontrast, the phylogenetic linear model p-value distribution was flat and Type I errorwas controlled appropriately (Fig 1A, C). This means that at the same p-value threshold,linear models will identify many spurious relationships compared to phylogenetic linearmodels. Further, our simulations with non-zero associations showed that thephylogenetic model has high power when applied to gut bacterial phyla, even for smalleffect sizes (Fig 1E; see Methods 4.11). These results emphasize the importance ofusing models that account for phylogenetic relationships in cross-species associationtesting and demonstrate the feasibility of applying phylogenetic linear models to thehuman microbiome.
2.2 Estimating quantitative phenotypes from shotgun data
To apply phylogenetic linear modeling to the microbiome we sought to definemeaningful phenotypes for thousands of bacterial species, all of which have genomesequences but most of which have never been experimentally tested for, e.g., theirabilities to grow on particular substrates or to colonize a model mammalian gut. Wehypothesized that the prevalence and specificity of bacterial species in an environment,such as the human gut, should relate to their ability to colonize that environment andto how well adapted they are to persist there. These quantities can be thought of asphenotypes that can be estimated directly from shotgun metagenomics data. Theprecise taxonomic composition of a healthy gut microbiome can vary significantly fromperson to person [33], indicating that the ability of a microbe to colonize the gut isquantitative (and likely context-dependent, and stochastic). This phentoype can beconceptualized differently depending on which aspects of colonization one wishes tocapture. We present metagenome-based estimators for two different types ofcolonization phenotpyes. These are described in the context of our goal of studyingthe gut microbiome, but the approach is general and could be used to quantify howwell a given genotype discriminates species found in or specific to any environment.The first phenotype is the probability of observing a microbial species m in anenvironment ex , that is, its overall prevalence P (m|ex). Both genes relating to survival inthe GI tract and genes relating to survival, persistence, and dispersal in the outside
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environment are expected to correlate with overall prevalence. Prevalence can beestimated by the frequency with which the species is observed in a sample from theenvironment, for example, using a logit transform to enable linear modeling andpseudocounts to avoid estimates of 0 or 1 (see Methods, 4.8).The second type of quantitative phenotype is the environmental specificity of amicrobial species, which we define as the conditional probability that a sample isderived from one environment in a set of environments, given that the species ispresent in the sample. This parameter captures the power of a given microbe as amarker to discriminate between two or more different environments, such as differentbody sites or types of hosts (see Methods, 4.9). This is distinct from its overallprevalence in the environment.We developed an estimator for environmental specificity and applied it to twoseparate gut microbial phenotypes. First, we considered a phenotype defined as theconditional probability that a given body site is the gut and not another body site, giventhat a particular species is present. The physical distance between body sites is muchsmaller than the distance between hosts, and microbes from one body site are likely tobe transiently introduced to others. Hence, enrichment of a species in one body siteover others is stronger evidence for selection (versus dispersal) than is overallprevalence in that body site alone. We estimate this parameter with a body-site
specificity score that uses metagenomics data to measure how predictive a particularmicrobe is for the gut versus other body sites (e.g., skin, urogenital tract, oropharynx, orlung).The second type of environmental specificity we considered is the conditionalprobability that a host has a disease given that a particular species is present. This
disease-specific specificity score is estimated in a similar way to the body-site specificityscore (see Methods, 4.9). We focus on Crohn’s disease, a type of inflammatory boweldisease known to be associated with dramatic shifts in the gut microbiota and ingut-immune interactions [34]. Genes associated with this disease-specific prevalencecould illuminate differences in selective pressures between healthy vs. diseased gutenvironments. Both scores are based on maximum a posteriori (MAP) estimates of theconditional probability of a sample being from the gut given that a microbe is observedin the sample. To account for sampling noise, we use a shrunken estimate with aLaplace prior (see Methods, 4.9).
2.3 Genes associated with species prevalence in healthy human gut

metagenomes
We assembled a compendium of published DNA sequencing data from healthy humanstool microbiomes across five studies in North America, Europe, and China (433subjects total). Using the MIDAS database and pipeline [31], we mapped metagenomicsequencing reads from each run to a panel of phylogenetic marker genes, and fromthese, estimated species relative abundances. Multiple runs corresponding to the sameindividual were averaged. We then estimated the prevalence (probability of non-zeroabundance) of each species across these subjects, weighting each study equally andadding pseudocounts to avoid probabilities of exactly 0 or 1 (see Methods, 4.8). Finally,we determined whether genes (here, we take “genes” to mean members of a FIGfamprotein family, which are designed to approximate “isofunctional homologs” [35]) werepresent or absent in the pangenomes of each species, based on sequenced genomesincluded in the MIDAS database, such that any FIGfam annotated in at least onesequenced isolate was considered to be present in the pangenome. This approach to
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genotyping could be extended to additionally include single-amplified genomes andmetagenome-assembled genomes (see Discussion). Our analysis framework can alsobe applied to genotypes other than gene presence-absence (e.g., nucleotide or aminoacid changes). We note that while the FIGfam database does include manyhypothetical protein families of unknown function, many bacterial genes lack even thislevel of annotation, so a more comprehensive grouping of genes into orthologous orfunctionally homologous groups could reveal yet more novel associations.As expected, the most prevalent species overall included Bacteroides vulgatus,
Bacteroides ovatus, and Faecalibacterium prausnitzii, while the least prevalent includedhalophiles and thermophiles (Table S1). Gut prevalence had a strong phylogeneticsignal (Pagel’s λ = 0.97, likelihood-ratio p < 10−22), meaning that it was stronglycorrelated with the evolutionary relatedness of species. This emphasizes the need forphylogeny-aware modeling so that signal linking genes to prevalence will not bedrowned out by shared variation in gene content between closely-related species.To demonstrate the effect of phylogenetic correlation empirically, we fit both astandard linear model and a phylogenetic linear model for each of the four commongut phyla and all genes present in that phylum. These models relate logit-transformedestimates of the prevalence of different species in a phylum to a gene’spresence-absence in those species’ pangenomes. Recall that the residual variation inlogit-prevalence is independent and normally distributed in the standard linear model,but has a distribution encoding correlations proportional to species relatedness in thephylogenetic linear model (see Methods, 4.6). For both standard and phylogeneticlinear models, separate models were fit for each phylum. While this means that genesweakly-associated across the entire tree of life may have been missed by this approach,it has the advantage of both reducing the memory needed to store the genepresence-absence matrix and allowing for phylum-specific rates of evolution for ourphenotype of interest. We modeled associations for 144,651 genes total across thefour phyla, fitting 381,846 models total (since some genes are present in multiplephyla).We used the parameter estimates and their standard errors from fitted models totest null hypotheses of the form H0 : β1,g = 0, meaning gene g is not associated withgut prevalence of species in a particular phylum. The p-values were adjusted formultiple testing using the false discovery rate (FDR) (see Methods, 4.6). We found9,830 FIGfam gene families positively associated with logit-prevalence within at leastone phylum (FDR q ≤ 0.05) using phylogenetic linear models, 47% of which had noannotated function. We observed that 75% of the significant genes from these testshad effect sizes larger than (Bacteroidetes) 0.93, (Firmicutes) 1.03, (Proteobacteria)0.35, and (Actinobacteria) 2.04, which are within the range of effect sizes for whichphylogenetic linear models showed good performance in simulations (see above).With standard linear models our tests identified 25,185 genes associated with gutprevalence, substantially more than with phylogenetic linear models (17.4% versus6.8% of total). Based on our simulations, these likely included many false positives. Thetop results of phylogenetic versus standard linear models (Fig 2) illustrate the pitfalls ofnot correcting for phylogenetic correlation. Using the standard model, we recoverassociations such as those seen in Fig 2A-B: a subunit of dihydroorotatedehydrogenase in Bacteroidetes (Fig 2B) and in Firmicutes, a particular type ofglutamine synthetase (Fig 2A). While these associations might look reasonable at a firstglance, on closer inspection, they depend on the fact that these genes arenear-uniformly present in entire clades of bacteria. These clades are, in general, moreprevalent in the gut compared to the rest of the species in the tree. However, any finer
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structure relating to differences between close neighbors is lost. For example,dihydroorotate dehydrogenase (Fig 2B) is found not only in the human gut commensal
Bacteroides caccae, but also in its relative Bacteroides reticulotermitis, which was notonly low-prevalence in our samples but was indeed isolated from the gut of asubterranean termite [36].While this alone does not necessarily constitute evidence against these geneshaving adaptive functions in the human gut, we do expect that matched pheno- andgenotypic differences between close phylogenetic neighbors offer stronger evidencefor an association. An analogy can be drawn with genome-wide association mapping inhumans: models that do not account for correlations between sites caused bypopulation structure, as opposed to selective pressure, will tend to identify morespurious associations. In contrast, because the phylogenetic null model “expects”phenotypic correlations to scale with the evolutionary distance between species, thisapproach will tend to upweight cases where phylogenetically close relatives havedifferent phenotypes and where distant relatives have similar phenotypes. This leadsto the identification of candidate genes that capture more variation between closeneighbors (Fig 2C-D). Thus, phylogenetic linear models will identify genes whosepresence in genomes is more frequently changing between sister taxa in associationwith a phenotype.We provided further evidence that this trend is true in general by calculating thephylogenetic signal of the top hits from each model using Ives and Garland’s α [37].This statistic captures the rate of transitions between having and not having a binarytrait (here, a gene) across a tree; higher values therefore correspond to moredisagreement between closely related species and lower values correspond to moreagreement. Indeed, across all four phyla, the linear model identified gene families withsignificantly lower Ives-Garland α than the phylogenetic model (Fig 2E, linear model
p < 10−16), indicating that these genes’ presence versus absence tended to be drivenmore by clade-to-clade differences (i.e., shared evolution).These results suggest that standard linear models can identify genes that are trulyimportant for colonizing an environment, such as the healthy human gut, but inaddition will identify other genes that may simply be common in clades associated withthat environment. The latter set will likely include many false positive associationsfrom the perspective of understanding functions necessary for living in theenvironment. Phylogenetic linear models overcome this problem by adding theexpectation that closely-related species will have similar phenotypes anddistantly-related species will have less similar phenotypes, effectively upweightinginstances where this is not the case. These conclusions are supported by oursimulations and by an in vivo functional screen (see section 2.6).
2.4 Gene families associated with gut prevalence provide insight into

colonization biology
Several of the gene families that we observe to be associated with gut prevalence havepreviously been linked to gut colonization efficiency. For example, in Firmicutes, wenoticed that several top hits were annotated as sporulation proteins (e.g., “Stage 0sporulation two−component response regulator”, Fig 1C). Sporulation is known to be astrategy for surviving harsh environments (such as acid, alcohol, and oxygen exposure)that is used by many, but not all, members of Firmicutes. Resistance to oxygen(aerotolerance) is particularly important because many gut Firmicutes are strictanaerobes [38], sporulation is known to be an important mechanism of transmission
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and survival in the environment (reviewed in Swick et al. [39]), and sporulation abilityhas been linked to transmission patterns of gut microbes [31]. Our result associatingsporulation proteins to gut prevalence provides further evidence for sporulation as astrategy that is generally important for the propagation and fitness of gut microbes.In Bacteroidetes, we observed an association between gut prevalence and thepresence of a pair of gene families putatively assigned to the GAD operon, namely, theglutamate decarboxylase gadB and the glutamate/gamma-aminobutyric acid (GABA)antiporter gadC. These genes show a complex pattern of presence that is stronglycorrelated with gut prevalence (Fig 2D, Fig S5). Results from research in Proteobacteria,where these genes were first described, shows that their products participate in acidtolerance. L-glutamate must be protonated in order to be decarboxylated to GABA;export of GABA coupled to import of fresh L-glutamate therefore allows the net exportof protons, raising intracellular pH [40]. It was previously hypothesized that this acidtolerance mechanism allowed bacteria to survive the harshly acidic conditions in thestomach: indeed, if disrupted in the pathogen Edwardsiella tarda, gut colonization in afish model is impaired [41]. Listeria monocytogenes with disrupted Gad systems alsobecome sensitive to porcine gastric fluid [42]. However, while it has previously beenshown that gut Bacteroides do contain homologs for at least one of these genes [40],their functional importance has not yet been demonstrated in this phylum. Our resultsprovide preliminary evidence that this system may be important in Bacteroidetes aswell as in Proteobacteria.
2.5 Using body sites as a control allows us to differentiate general

dispersal from a specific gut advantage
The previous analyses have focused on modeling the phenotype of overall prevalencein the human gut. However, microbes could be prevalent in the gut for at least twomain reasons. First, they could be specifically well-adapted to the human gut; second,they could simply be very common in the environment (i.e., highly dispersed). Thepresence or absence of a gene family could enhance either of these properties. Somegenes might, for example, confer improved stress tolerance that was adaptive across arange of harsh conditions, while others might allow, for example, uptake andcatabolism of metabolic substrates that were more common in the human gut than inother environments.With this in mind, we analyzed the relative enrichment of microbes in the gut overother human body sites in 127 individuals from the Human Microbiome Project (HMP)study [33]. We chose other body sites as a control because the physical distancebetween sites within a host is much smaller than the distance between people, andmicrobes from one body site are likely to be commonly, if transiently, introduced toother body sites (e.g., skin to oral cavity). To find specifically gut-associated genes, weused the phylogenetic linear model to regress gene presence-absence on thelogit-transformed conditional probability P (eGut|m), i.e., the probability that a body sitewas the human gut given that a particular species m was observed, which weestimated using Laplace regularization (see Methods, 4.9). We identified 4,672 geneswhose presence in bacterial genomes was associated with those species being presentin the gut versus other body sites in at least one phylum (397 in Bacteroidetes, 1,572 inFirmicutes, 1,284 in Proteobacteria, and 1,507 in Actinobacteria).Overall, the effect sizes for genes learned from this body site-specific modelcorrelated only moderately with those learned from the “gut prevalence” models(median R2 = 0.06, range −0.06—0.24), indicating that these two quantitative
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phenotypes describe distinct phenomena. Additionally, the overlap between significant(q ≤ 0.05) hits for both models was small (median Jaccard index 0.054, range
0.011—0.089). These results are not surprising given that our regularized estimates ofgut specificity were only moderately correlated with overall gut prevalence(Spearman’s ρ = 0.33, Fig S1), even when prevalence was calculated only from HMPgut samples (Spearman’s ρ = −0.15). This may arise from different genes beinginvolved in dispersal or adaptation to many different environments versus thoseinvolved in adaptation specifically to the gut.Indeed, when we compare enrichments for genes significant in either the body siteor overall prevalence models alone (i.e., genes with q ≤ 0.05 in one model but q > 0.5and/or wrong sign of effect size in the other), we observe large functional shifts (Fig 3).For example, in the gut prevalence model, but not the body site-specific model,Firmicutes were strongly enriched for “dormancy and sporulation” (q = 8.7× 10−7).Because sporulation is likely useful in a wide range of environments beyond the gut,this result seems intuitive. Body site-specific results for Firmicutes were insteadenriched for genes involved in “phosphate metabolism” (q = 0.12) and in particular theterm “high affinity phosphate transporter and control of PHO regulon” (q = 0.05).We also observed biologically-justified individual gene families that were significantin the body site-specific model but not the overall gut prevalence model. In Firmicutes,for example, carnitine dehydratase and bile acid 7-alpha dehydratase were bothsignificant only in the body site-specific model, suggesting a specific role for thesegenes within the gut environment. Indeed, bile acids are metabolites of cholesterol thatare produced by vertebrates and thus unlikely to be encountered outside of the host.While the metabolite L-carnitine is made and used in organisms spanning the tree oflife, it is particularly concentrated in animal tissue and especially red meat, and cannotbe further catabolized by humans [43], making it available to intestinal microbes. Bileacid transformation by gut commensals is a well-established function of the gutmicrobiome, with complex influences on health (reviewed in Staley et al. [44]).In Bacteroidetes, we found that a homolog of the autoinducer 2 aldolase lsrF wassignificant only in the body site-specific model. Autoinducer 2 is a small signalingmolecule produced by a wide range of bacteria that is involved in interspecies quorumsensing. The protein lsrF, specifically, is part of an operon whose function in Escherichia
coli is to “quench” or destroy the AI-2 signal [45]. Further, an increase of the AI-2 signalhas been shown to decrease the Bacteroidetes/Firmicutes ratio in vivo in the intestinesof streptomycin-treated mice [46]. Degrading this molecule is therefore a plausiblegut-specific colonization strategy for gut Bacteroidetes. These discovered associationsmake the genes involved, including many genes without known functions or roles ingut biology, excellent candidates for understanding how bacteria adapt to the gutenvironment.
2.6 Deletion of gut-specific genes lowers fitness in the mouse

microbiome
Beyond finding evidence for the plausibility of individual genes based on the literature,we were interested in whether more high-throughput experimental evidencesupported the associations we found between gut colonization and gene presence. Tointerrogate this, we used results from an in vivo transposon-insertion screen of fourstrains of Bacteroides. This screen identified many genes whose disruption caused acompetitive disadvantage in gnotobiotic mice, as revealed by time-coursehigh-throughput sequencing; 79 gene families significantly affected microbial fitness
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across all four strains tested [47]. Determining agreement with this screen is somewhatcomplicated by the fact that we associated gene presence to gut specificity across allmembers of the phylum Bacteroidetes, and not only within the Bacteroides genus.Significance of overlap therefore depends on what we take as the null “background”set, the cutoff used for significance, and the set of results from the screen we chooseas true positives (Table S3).Despite these complications, this analysis clearly showed that the 79 genes whosedisruption led to lower fitness in the murine gut across all four Bacteroides specieswere over-represented among our predictions for gut-specific genes (odds ratio = 4.39,
q = 8.3× 10−3), and remained so if we only considered the gene families that werepresent in all Bacteroides species (odds ratio= 7.02, q = 3.0× 10−3) (Table 1).Interestingly, we observed the opposite pattern for the overall prevalence model: theprevalence-associated genes we identified were actually depleted for genes found tobe important in vivo (odds ratio = 0.18, q = 7.7× 10−3). We believe that this is becausethe body-site-specific model, like the experiment, focused specifically on colonizationefficiency, while the overall gut prevalence model would have included genes involvedin persistence and dispersal in the environment and transfer between hosts. Thisexperimental evidence supports the idea that environment-specific phylogenetic linearmodels truly identify genes that are important for bacteria to colonize an environment.
2.7 We identify Proteobacterial gene families associated with

microbes that are more prevalent in Crohn’s disease
The above analyses were performed with respect to the gut of healthy individuals fromthe mainly post-industrial populations of North America, Europe and China. However,we also know that taxonomic shifts are common between healthy guts versus the gutsof individuals from the same population with diseases such as type 2 diabetes,colorectal cancer, rheumatoid arthritis, and inflammatory bowel disease (reviewed inWang et al. [48]). One explanation for these results is that sick hosts select for specificmicrobial taxa, as with the links previously observed between Proteobacteria and theinflammation that accompanies many disease states [49]. Since gut microbes have alsobeen implicated in altering disease progression (reviewed in Lynch and Pedersen [50]),identifying genes associated with colonizing diseased individuals may afford us newopportunities for intervention.To identify microbiome functions that could be involved in disease-specificadaptation to the gut, we looked for genes that were present more often in microbesthat discriminated case from control subjects. Specifically, we compared n = 38 healthycontrols from the MetaHIT consortium to n = 13 individuals with Crohn’sdisease [51,52]. Similar to our analysis of gut versus other body sites, we used theconditional probability that a subject had Crohn’s disease given that we observed aparticular microbe in their gut microbiome P (eCD|M) (see Methods). We identified1,904 genes whose presence in bacterial genomes is associated with Crohn’s aftercorrecting for phylogenetic relationships in at least one phylum (800 in Bacteroidetes,272 in Firmicutes, 529 in Proteobacteria, and 319 in Actinobacteria).Three of our top Proteobacterial associations were annotated as fimbrial proteins,including one predicted to be involved specifically in the regulation of type 1 fimbriae,or pili (FimE, association q = 4.0× 10−6), cell surface structures involved in attachmentand invasion. Crohn’s pathology has been linked to an immune response to invasivebacteria, and adherent-invasive E. coli (AIEC) appear to be overrepresented in ilealCrohn’s [53]. In an AIEC E. coli strain isolated from the ileum of a Crohn’s patient, type 1
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pili were required for this adherent-invasive phenotype [54]. Chronic infection by AIECstrains was also observed to lead to chronic inflammation, and to an increase in Th17cells and a decrease in CD8+ T cells similar to that observed in Crohn’s patients [55].An additional striking feature of the results was the number of Proteobacterialproteins associated with greater risk of Crohn’s that were annotated as being involvedin the the type III, IV, VI, and ESAT secretion systems (Fisher’s test q = 0.13). Onfurther investigation, we found that these proteins were actually all predicted to beinvolved in conjugative transfer, a process by which gram-negative bacteria in directphysical contact share genetic material. More specifically, many of these genes werehomologs of those involved in an “F-type” conjugal system for transferring IncFplasmids, which can be classified as a variety of type IV secretion system [56].Previously, in a mouse model, gut inflammation was shown to stimulate efficienthorizontal gene transfer in Proteobacteria by promoting blooms of Enterobacteriaceaeand thus facilitating cell-to-cell contact [57]. Future work will be required to determinewhether this increased conjugation is a neutral consequence of inflammation, acausative factor, or provides a selective advantage in the inflamed gut.

3 Discussion
The present analyses represent a first look into what can be learned by combiningshotgun metagenomics with phylogenetically-aware models. Several extensions to ourwork could be made in the future. First, in addition to modeling prevalence, forinstance, we could model abundance using a phylogenetic linear model with randomeffects [58], potentially allowing us to learn what controls the steady-state abundanceof species in the gut. Additionally, we could also use these models to screen forepistatic interactions, which would be near-intractable even in systems withwell-characterized genetic tools, but for which a subset of hypotheses could bevalidated by, e.g., comparing the fitness of wild-type microbes with double knockouts.While controlling the total number of tests would still be important to preserve power,an automated, computational approach to detecting gene interactions would still offerimportant savings in time and expense over developing a genome-wide experimentallibrary of multiple knockouts per organism under investigation.Currently, these analyses estimate species abundance and gene presence-absencefrom available sequenced isolate genomes. However, it has been estimated that onaverage 51% of genomes in the gut are from novel species [31]. Especially forcase/control comparisons, using information from metagenomic assemblies couldenable quantification of species with no sequenced representatives, and would yield amore accurate estimate of the complement of genes in the pangenome for species thatdo have sequenced representatives. This would be particularly helpful in gutcommunities from individuals in non-industrialized societies that are enriched for novelmicrobial species [31]. In fact, genes then could be treated as quantitative variables(e.g., coverage or prevalence) rather than binary, which is possible for covariates inphylogenetic linear models and simply changes the interpretation of the associationcoefficient β1,g .Another potential extension would be to model prevalence andenvironment-specific prevalence for taxa other than the species clusters analyzed inthis study. We focused on four prevalent and abundant phyla of bacteria, but ourmethods could be applied more broadly as long as quantitative phenotypes andgenotypes could be accurately estimated. Phylogenetic linear modeling could also beapplied directly to genera or higher taxonomic groups, although both phenotypes and
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genotypes would be averages over more diverse sets of genomes, which could result inassociations with different signs canceling out. As more genome and metagenome datais generated for microbial populations over time, extensions of phylogenetic linearmodeling (e.g., with random effects [58]) may also be useful for studying associationsbetween phenotypes and evolving gene copy number and single nucleotide variants atthe strain level. This application would require accurate trees with strains as leaves,each with estimates of a phenotype and genotype. Additionally, our current definitionof species approximates a 95% average nucleotide identity (ANI) cutoff; while thisapproach is a standard bioinformatic approach [59], and appears to be a “naturalboundary” in analyses of genome compendia [60], the precise definition of a bacterialspecies remains a matter of active debate, and in the future may include phenotypicinformation [61] or information about gene flow [62]. Beyond prevalence, otherphenotypes will also be interesting to investigate, especially experimentally measuredphenotypes from high throughput screens and other techniques that complementgenomics.In summary, using phylogenetic linear models, we were able to discover thousandsof specific gene families associated with quantitative phenotypes calculated directlyfrom data: overall gut prevalence, a specificity score for the gut over other body sites,and a specificity score for the gut in Crohn’s disease versus health. Importantly, wehave shown through simulation and real examples that standard linear models areinadequate for this task because of an unacceptably high false-positive rate underrealistic conditions. Furthermore, many of the results we found also have biologicalplausibility, both from the literature on specific microbial pathways and from ahigh-throughput in vivo screen directly measuring colonization efficiency. In addition tothese expected discoveries, we also found thousands of novel candidates forunderstanding and potentially manipulating gut colonization. These results illustratethe potential of integrating phylogeny with shotgun metagenomic data to deepen ourunderstanding of the factors determining which microbes come to constitute our gutmicrobiota in health and disease.

4 Methods
A graphical overview of our statistical methods can be found in Fig S2.
4.1 Species definition
We utilized the previously published clustering of 31,007 high-quality bacterialgenomes into 5,952 species from the MIDAS 1.0 database [31](http://lighthouse.ucsf.edu/MIDAS/midas_db_v1.0.tar.gz). These speciesclusters are sets of genomes with high pairwise sequence similarity across a panel of30 universal, single-copy genes. The genomes in each species clustering haveapproximately 95% average genome-wide nucleotide identity, a common“gold-standard” definition of bacterial and archaeal species [63]. These species-leveltaxonomic units are similar to, but can differ from, operational taxonomic units (OTUs)defined solely on the basis of the 16S rRNA gene.Taxonomic annotations for each species were drawn from the MIDAS 1.0 database.Some taxonomic annotations of species in the MIDAS database were incomplete;these were fixed by searching the NCBI Taxonomy database using their web API viathe rentrez package [64] and retrieving the full set of taxonomic annotations.
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4.2 Pangenomes
Pangenomes for all species used in this study were downloaded from the MIDAS 1.0database. As previously described [31], pangenomes were constructed by clusteringthe DNA sequences of the genes found across all strains of each species at 95%sequence identity using UCLUST [65]. Pangenomes were functionally annotated basedon the FIGfams [35] which were included in the MIDAS databases and originallyobtained from the PATRIC [66] database. Thus, each pangenome represents the set ofknown, non-redundant genes from each bacterial species with at least one sequencedisolate.
4.3 Phylogenetic tree construction
The tree used for phylogenetic analyses was based on the tree from Nayfach et al. [31]based on an approximate maximum likelihood using FastTree 2 [67] on a concatenatedalignment (using MUSCLE [68]) of thirty universal genes. Thus, each tip in the treerepresents the phylogenetic placement for one bacterial species. For the currentanalyses, the tree was rooted using the cyanobacterium Prochlorococcus marinus as anoutgroup, and the tree was then divided by phylum, retaining the four most prevalentphyla in the human gut (Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria).One Actinobacterial species cluster, the radiation-resistant bacterium Kineococcus
radiotolerans SRS30126, was dropped from the tree because it had an extremely longbranch length, indicating an unusual degree of divergence. Finally, phylum-specifictrees were made ultrametric using the chronos function in the R package ape [69],assuming the default “correlated rates” model of substitution rate variation. Weperformed this step because first, our taxa were contemporaneously sampled, andsecond, we assumed that our phenotypes of interest varied with divergence time, asopposed to the number of substitutions per site separating marker genesequences [70].
4.4 Estimating species abundance across human associated

metagenomes
Metagenome samples were drawn from subjects in the Human Microbiome Project(HMP) [33], the MetaHIT consortium [51,52], a study of glucose control [71], and astudy of type 2 diabetes [72]. Accession numbers were identified using the aid ofSRAdb [73] and downloaded from the Sequence Read Archive (SRA) [74]. The relativeabundance of bacterial species in the metagenomes was estimated using MIDASv1.0 [31], which maps reads to a panel of 15 phylogenetic marker genes. Speciesrelative abundances are computed as previously described [31] (“Species abundanceestimation”): essentially, they are normalized counts of reads mapping to bacterialspecies, with non-uniquely mapped reads assigned probabilistically.Accession IDs used can be found in Table S4. For prevalence estimates, we usedhealthy subjects from all four cohorts; for body site comparisons, we used only healthysubjects from HMP [33], and for the Crohn’s case-control comparison, we used onlysubjects from the MetaHIT consortium [51,52].
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4.5 Modeling gene-phenotype associations
The basic design is the same for all models that we fit: we model the effect of acategorical variable, gene (specifically, FIGfam family) presence vs. absence, on aparticular phenotype estimated for many microbes from data.Here, let ~φx,E[,D](A) refer to a vector whose elements φm,x,E[,D](A) refer to anestimate of the phenotype φ for a microbe m, in an environment ex from a set of kenvironments E = {e1, . . . ek}, optionally also adjusting for potential dataset effects D,based on a matrix of microbial presence-absence data A. We then model the effect onthis phenotype of having vs. lacking each particular gene g, fitting one model per gene:

~φx,E[,D](A) = β0 + β1,g~Ig + ~εg

where β0 is a baseline intercept value, β1,g is the effect size of gene g, ~Ig is a binaryvector whose elements Ig,m are 1 when microbe m’s pangenome contains the gene gand 0 otherwise, and ~εg are the residuals. We then test the null hypothesis
H0 : β1,g = 0, yielding one p-value per gene; the resulting genewise p-values are finallycorrected for multiple testing using an adaptive false discovery rate approach (q-valueestimation).The differences in the models we fit concern only how we obtain phenotypeestimates ~φx,E[,D](A), and our assumptions about how the residuals ~εg are distributed.
4.6 Fitting linear vs. phylogenetic models
The phylogenetic and standard linear models are very similar, except for theassumptions about the distribution of the residuals. In the standard linear model, theresiduals are assumed to be independently and identically distributed as a normaldistribution, i.e., εg,m ∼ N(0, σ2) or using multivariate notation ~εg ∼ N(0, σ2I). In thephylogenetic model, in contrast, the residuals are not independent: rather, they arecorrelated based on the phylogenetic relatedness of the species. They are thereforedistributed ε ∼ N(0,Σ), with the following covariance matrix:

Σ =


σ2 σ1,2 · · · σ1,n
σ2,1 σ2... . . .
σn,1 σ2


where i is the number of species, σ2 is the overall variance, and σ1,2 is the covariancebetween species 1 and species 2. Under the assumption of the phylogenetic model(evolution of a continuous phenotype according to Brownian motion), this covariance isproportional to the distance between the last common ancestor of species 1 and 2 andthe root of the tree. Thus, very closely-related species have a common ancestor that isfar from the root, while the last common ancestor of two unrelated species is the rootnode itself. This method was first described in Grafen [26]; for this study, we use theimplementation in the phylolm R package [75].

β1 parameters were tested for a significant difference from 0 and the resulting
p-values were converted to q-values using Storey and Tibshirani’s FDR correctionprocedure [76,77].
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4.7 Metagenomic presence-absence data
We use binary presence-absence data to calculate the phenotypes of interest. Moreformally, we conceptualize the metagenomic data as a matrix A of microbialpresence-absence with dimensions i × j , where i is the number of microbes and j is thenumber of samples, and am,n is 1 if the relative abundance of microbe m (calculatedusing MIDAS’s taxonomic profiling [31]) is greater than 0, and 0 otherwise:

A =


a1,1 a1,2 · · · a1,j
a2,1 a2,2 a2,j... . . . ...
ai ,1 ai ,2 · · · ai ,j


We conceptualize each e1, e2, . . . , ek ∈ E as a set of indices, referring to samplescollected from that environment, e.g., the oropharynx in healthy subjects, or the gut insubjects with Crohn’s disease, such that for all ex ∈ E, ex ⊆ {1, 2, . . . , j}. Because oneenvironment may be tested in multiple studies, for our prevalence estimates, we alsodefine a similar mapping of samples to datasets d1, d2, . . . , dl ∈ D such that for all

dy ∈ D, dy ⊆ {1, 2, . . . , j}. (For calculating environmental specificity scores, to avoidhaving to correct for unbalanced designs, we only use single datasets that measured allenvironments to be compared.) We also assume that E and D are partitions of
{1, 2, . . . , j}, such that every sample is covered and no sample belongs to multiple ex or
dy .
4.8 Estimating the prevalence phenotype
The first phenotype we consider is prevalence, p. Prevalence is usually defined as thefraction of samples in which a particular taxon is observed. Using the formulationabove, the prevalence of microbe m in environment ex and study dy would be equal to:∑

n∈N(am,n)

||N|| , N = {ex ∩ dy}

where we denote the quantity∑n∈{ex∩dy}(1), yielding the number of samples inenvironment ex , as ||N||.We now take a slightly more general definition, such that a particular taxon’s trueprevalence pm,N is the probability of observing a particular microbe m in a set ofsamples N , P (m|N). Because N = ex ∩ dy , we can also write this as P (m|ex , dy ). Morespecifically, we can say that pm,N is the probability parameter of the binomial randomvariable am,N , which one can think of as generating the samples am,n such that n ∈ N inour matrix A:
am,N ∼ Binom(||N||, pm,N)

pm,N = P (m|ex , dy )

The maximum likelihood estimator of pm,N given the data matrix A is then, as above,the fraction of subjects in N in which microbe m was observed:
p̂MLE
m,N (A) =

∑
n∈N(am,n)

||N||

Because p is a proportion or probability, it is bounded between 0 and 1. Thedistribution of p is therefore highly non-normal, potentially violating assumptions ofour regression model. We will therefore uselogit(p) as our phenotype. However, this
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now introduces a problem because p̂MLE
m,N can take the values 0 and 1, leading to infiniteestimates of logit(p̂m,N) . We therefore instead use a shrunken estimate of p̂m,N .Shrinkage estimators reduce the variance in the estimate of a parameter bycombining it with prior information. These priors can be estimated from data (as inempirical Bayes approaches), estimated from independent information about thedistribution of the parameter, or selected to be uninformative. Here, we use anuninformative prior, in this case a uniform distribution:

am,N ∼ Binom(||N||, pm,N)

pm,N ∼ Beta(1, 1)

Mechanistically, this is equivalent to performing additive smoothing, which effectivelyadds one pseudocount to the numbers of absences and presences:
p̂ADDm,N (A) =

1 +
∑
n∈N am,n

2 + ||N||

Finally, we note that this estimate of prevalence is only valid within a single study
dy ⊇ N. However, what we really want is an estimator of prevalence that depends onlyon the environment ex . We therefore marginalize out the effect of dy :

P (m|ex) =
∑
y

P (m|ex , dy )P (dy ) =
∑
y

P (m|N)P (dy ), N = {ex ∩ dy}

where we let the prior probability P (dy ) simply be the probability of choosing a samplebelonging to a dataset dy out of all samples in environment ex , or:
P (dy ) =

||N||
||ex ||

=
||ex ∩ dy ||
||ex ||

Effectively, this weights each dataset inverse-proportionally to the number of samples,so that the study with the largest number of samples does not dominate our estimatesof prevalence. To avoid effects from additive smoothing dominating our estimates (asmight happen if the same smoothing were applied to samples with different numbersof samples), we first obtain a marginalized version of the maximum-likelihoodestimator, then perform additive smoothing on these marginalized estimates:
p̂ADDWm,x,E,D(A) =

(∑
y p̂

ML
m,{ex∩dy}

||ex∩dy ||
||ex ||

) (∑
y ||ex ∩ dy ||

)
+ 1(∑

y ||ex ∩ dy ||
)

+ 2

Finally, we use the logit of this estimate, i.e., logit(p̂ADDWm,x,E,D(A)), as the elements
φPrevm,x,E,D(A) of our first phenotype ~φPrevx,E,D(A):

φPrevm,x,E,D(A) = logit

(∑

y p̂
ML
m,{ex∩dy}

||ex∩dy ||
||ex ||

) (∑
y ||ex ∩ dy ||

)
+ 1(∑

y ||ex ∩ dy ||
)

+ 2


To recapitulate, we use a logit-transformed, shrunken estimate of prevalence in agiven environment, weighted so that each study contributes equally.

4.9 Estimating environmental specificity scores
4.9.1 Formulating the specificity score

Prevalence gives us information about how commonly a microbe is seen in a particularenvironment. While useful, this concept does not address the difference between
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microbes that are specific for a given environment and those that have a cosmopolitandistribution. We therefore wanted to design a statistic capturing this environmentalspecificity. We define this statistic in terms of how predictive a particular microbe is forone out of a set of possible environments. (For simplicity, we only consider cases inwhich all environments were measured within a single study, and therefore drop Dfrom these equations. This estimator could be extended in the future to account forstudy effects as above.)Recall that prevalence can be defined as the probability P (m|ex), i.e., the probabilityof observing microbe m in environment ex . To avoid potential sources of confoundingerror, we only consider environments both measured within the same study. Wetherefore let the environmental specificity score sm,x,E equal the probability ofobserving a particular environment ex out of a set of k environments
E = {e1, e2, . . . , ek}, given that we observe microbe m:

sm,x,E = P (ex |m)

which, by application of Bayes’ rule and then marginalization, becomes:
P (ex |m) =

P (m|ex)P (ex)

P (m)
=

P (m|ex)P (ex)∑k
y=1 P (m|ey )P (ey )

=
pm,exP (ex)∑k
y=1 pm,eyP (ey )

where P (m|ex) is the prevalence pm,ex of microbe m in environment ex ∈ E, and P (ex)is the prior probability of observing environment ex . The priors P (e) can beuninformative, in which case P (ex) = 1/k for all x , meaning that all environments areequally likely. This is the approach we take for body site comparisons. Alternatively, fora disease state, it could be drawn from actual epidemiological data about the frequencyof that disease in the population of interest. This is the approach we take for theCrohn’s disease comparisons, taking P (eCD) = 0.002 [78], since in a Crohn’scase-control study, the fraction of individuals with Crohn’s will be much higher thanthe true prevalence of this disease in the population. In either case, the P (ex) values donot depend on the values in the dataset A. An intriguing third possibility that woulddepend on A would be to estimate the priors P (ex) based on the average observed
α-diversity within environment ex , such that more diverse environments would bemodeled as a priorimore likely to contain any particular microbe.
4.9.2 Motivating a shrunken estimator of sm,x,E(A)

One simple way to estimate ŝm,x,E(A) would be to simply plug in our estimates of
p̂ADDm,ex (A), yielding:

ŝADDm,x,E(A) =
p̂ADDm,ex (A) · P (ex)∑k
y=1 p̂

ADD
m,ey (A) · P (ey )

However, for cases in which the number of total observations of a microbe∑n∈ey am,nis low (imagine, e.g., a microbe that is observed once in environment e1 and zero timesin e2), even the shrunken estimate p̂ADDm,ex (A) will have relatively high variance. This isparticularly problematic here because both the numerator and denominator of
ŝADDm,x,E(A) depend on p̂ADDm,x,E(A), so as pm,1,E → 0, the standard error of ŝADDm,x,E(A) willtend to increase. This means that the microbes with the least-confidently estimatedprevalences will tend to have high leverages in the regression, distorting the results.The confounding between the magnitude of ŝADDm,x,E(A) and its standard error also leadsto heteroskedasticity, or unequal variance across the residuals, violating one of themain linear model assumptions.
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To account for these issues, we construct a more aggressively-shrunk estimator of
sm,x,E . We assume that most microbes do not differ substantially betweenenvironments, and therefore shrink estimates of sm,x,E = P (ex |m) towards the priorprobability P (ex), indicating that that this microbe is uninformative about theenvironment. To accomplish this, we use a maximum a posteriori (MAP) estimator,
ŝMAP
m,x,E(A), with a Laplace prior centered on P (ex). Laplace priors are also used in theBayesian lasso to make parameter estimates more sparse, by shrinking them to zero.However, critically, we are not using the Laplace prior to perform model selection,since the exact same model is fit as in equation (1); we are only using it to reduce thevariance in estimating ŝm,x,E ; unlike the Bayesian lasso, we therefore use noinformation about the independent variable (gene presence-absence) in obtainingestimates of ŝm,x,E .
4.9.3 An estimator of sm,x,E using Laplace shrinkage

Before introducing this estimator, we briefly define the “environment-weightedprevalence” of a microbe m as its prevalence in each environment ey ∈ E weighted bythe prior probability of that environment P (ey ). Similarly to our previously-definedstudy-weighted prevalence estimator, this can be thought of as the overall probabilityof encountering a microbe, marginalized over environments:
p̂EnvWm,E (A) =

∑
y

(p̂ML
m,y,E,A)(P (ey ))

Since we are not taking the logit of this estimate, we can use the ML estimator. Theenvironmental specificity score can then be modeled in this way:
am,ex ∼ Binom(Ne , p̂

Posterior
m,x,E (A))

p̂Posteriorm,x,E (A) =
(ŝMAP
m,x,E(A))(p̂EnvWm,E (A))

P (ex)

logit(ŝMAP
m,x,E(A)) ∼ Laplace(P (ex), b)

where b is a hyperparameter giving the width of the Laplace distribution, orequivalently the amount of shrinkage. Here, we are attempting to estimate ŝMAP. TheMAP estimate takes the following form:
ŝMAP
m,x,E(A; b) = argmaxŝMAP

m,x,E(A;b)
L (A|logit(ŝ))× f (A|b) (2)

where ŝ is the parameter being estimated, A represents our data matrix, L representsthe likelihood function of the distribution from which the data is assumed to be drawn,
f represents the density function of the prior distribution (without which the estimatorreduces to the maximum-likelihood estimator), and b is the hyperparameter as above.We can expand this to give the final maximization:

ŝMAP
m,x,E(A; b) = argmaxŝMAP

m,x,E(A;b)

[((
||ex ||
nobs

)(
p̂Posteriorm,x,E (A)

)nobs (
1− p̂Posteriorm,x,E (A)

)
||ex ||−nobs

)
×(

1

2b
exp(−

|logit(ŝMAP
m,x,E(A; b))− logit(P (ex)))

b

)]
(3)

where we let nobs =
∑
n∈ex am,n, i.e., the number of times microbe m was observedin environment ex .
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4.9.4 Choosing the Laplace width parameter

To choose appropriate, dataset-specific values of b, which controls how much
ŝMAP
m,x,E(A; b) is shrunk back to the prior, we performed simulations. We chose asimulation-based approach instead of, for example, cross-validation because we lackedlabeled examples of microbes that truly differed between environments. Instead, weconstructed datasets A′ with elements a′m,n where we “knew” that some microbes(m ∈ M0) were not informative about the environment and others (m /∈ M0) had “true”differences, by simulating data with the following model:

a′m,ey ∼ Binom(Ne , pm,y,E)

pm,y,E =

{
qm (y 6= x)

logistic(logit(qm + zm)) (y = x)

zm ∼

{
z · (2 · (Bernoulli(r))− 1) (m /∈ M0)
0 (m ∈ M0)

qm ∼ Beta(a, b)

In other words, for each species m in different environments ey ∈ E,presence-absence a′m,ey was modeled as a binomial random variable. The successparameter from this binomial was drawn from a Beta distribution with parameters aand b, which were fit from a single environment in the corresponding real dataset usingmaximum-likelihood, thus ensuring that the simulated species had similar baselineprevalences as real species. In species with no difference between environments
m ∈ M0, the true prevalence pm,x,E was set to be equal between the environment ofinterest ex and all other environments; in species with true differences betweenenvironments (m /∈ M0), in contrast, the effect size z was either added or subtractedfrom the logit-prevalence (with the parameter r controlling the proportion of positivetrue effects). The number of null species ||M0|| was set to 25% of the total number ofsimulated species ||M||, which was matched to the real dataset.For a given simulated dataset and value of b, the false positive rate (FPRb) and thetrue positive rates for F > 0 and F < 0 (TPRpos and TPRneg , respectively) werecalculated:

FPRb = #(|P (ex)|m ∈ M0)− P (ex)| > ε)/||M0||

TPRposb = #(P (ex |(zm > 0))− P (ex) > ε)/#(zm > 0)

TPRnegb = #(P (ex)− P (ex |(zm < 0)) > ε)/#(zm < 0)

Since we are using numerical optimization, posterior probabilities are not alwaysshrunk exactly to the prior; we therefore use a tolerance parameter δ set at
P (ex) · 0.005 to account for numerical error. The tuning parameter b was thenoptimized according to the following piecewise continuous function, which increasesfrom 0 to 1 until the false positive rate drops to 0.05 or lower (in order to guide theoptimizer), and then increases above 1 in proportion to the average (geometric mean)of the positive and negative effect true positive rates:

boptim = argmaxb
{

1− FPRb FPRb > 0.05

1 +
√
TPRposb × TPRnegb FPRb ≤ 0.05

Given z = 2 and r = 0.5, for Crohn’s disease, boptim was estimated at b = 0.14 andfor the body site specificity, boptim was estimated at b = 0.19. (Changing z to 1 or 0.5,
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or changing r to 0.1 or 0.9, resulted in very similar estimates of boptim. Additionally,
boptim estimates were consistent across several orders of magnitude of ε; see Fig S4.)
4.9.5 Worked example

An example showing the effect of this procedure on real data can be seen in Fig S3.The microbe Bacillus subtilis is detected once in the healthy cohort and once in theCrohn’s cohort, while Bacteroides fragilis is present in 24/38 healthy subjects but 13/13Crohn’s subjects (Fig S3A). The maximum-likelihood values of p̂m,CD,E(A) and
ŝm,CD,E(A) are therefore much higher for B. subtilis than for B. fragilis, even though theevidence for a difference across environments in the prevalence of B. subtilis is muchweaker (Fig S3B-C). In contrast, the Laplace prior (Fig S3D) successfully shrinks theestimate of the B. subtilis specificity score back to the baseline (P (eCD) = 0.002), whilethe evidence for B. fragilis overcomes this prior and yields an estimate close to themaximum-likelihood value (0.0031; Fig S3E).
4.10 Alternatives to shrinkage estimation of environmental specificity

scores
An alternative to using the Laplace shrinkage estimator would be to allow all taxa tocontribute to the regression, but to downweight taxa with less-confidently measuredphenotypes. In generalized least squares (GLS), this is typically accomplished by scalingthe variance-covariance matrix of the residuals by the variances of the estimators. Thisin effect says that the residuals are expected to be more dispersed around theregression line when the variance of the estimator is high: equivalently, this procedureweights each point in least-squares by the inverse of the estimator’s variance. Werepresent these variances as vm ≡ (SE(ŝm,x,E(A)))2 . The covariance matrix is then:

ΣWLS =


σ1v1 σ1,2

√
v1v2 · · · σ1,m

√
v1vm

σ2,1
√
v2v1 σ2v2... . . .

σm,1
√
vmv1 σmvm


where σ values are as above. (Off-diagonal elements are weighted by the geometricmean of the variances, thus giving the same correlation structure as before.)Because we have the data matrix A from which ŝADDm,x,E was estimated, we canestimate the variances of these estimates by bootstrapping. Denoting the ŝ estimatesderived from bootstrap sample c as ŝcm,x,E , where c ∈ {1, C} and C is the number ofbootstraps, and letting the mean across bootstrap samples be s̄m,x,E , then
vm = ( 1

C−1
∑C
c=1(ŝ

c
m,x,E − s̄m,x,E)2)2.Both approaches (Laplace shrinkage estimation and WLS) account for variability inthe accuracy of estimating sm,x,E , but in different ways. We would expect them toagree more when sm,x,E values were more confidently estimated (meaning theevidence for difference from the prior would be stronger and the extent ofdownweighting would be lower), and when more of the sm,x,E values divergedsubstantially from the prior (leading to less sparsity in ŝLaplacem,x,E ). Indeed, when comparingbody site specificities, which are based on higher numbers of samples and involvecomparisons across highly divergent environments, both approaches yield more similarestimates, and become more concordant when the effect sizes are calculated only oversignificantly-different gene families. In contrast, for the Crohn’s disease comparison, in
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which the environments (healthy vs. diseased gut) are more closely related and thenumber of samples is smaller, the two methods tend to disagree more, especially inphyla where most taxa are shrunk back to the prior (Table S2). These results reflect thedifferent underlying assumptions of each estimator: Laplace shrinkage assumes thattaxa are not truly varying across environments without strong evidence, while WLSuses information from all taxa but downweights less-confidently-observed species. Forthe purposes of this manuscript, we focused on the results based on Laplace shrinkageestimation, since we believe the assumption that most taxa do not change isappropriate when comparing the same body site in health and disease. However, eitherapproach may be preferable depending on the precise scenario being studied. It couldalso be possible to combine the two approaches by, for example, using the fullposterior distribution of ŝm,x,E to derive weights.
4.11 Power analysis
To test the power and false positive rate of our method, we used parametricsimulations, either under the null hypothesis in which a gene had no effect on thephenotype, or under the alternative hypothesis in which it had a defined effect. Theseinvolved generating one binary genotype and one continuous phenotype persimulation. These were parameterized as follows:

• The continuous phenotype ~φSim is simulated according to a Brownian motionmodel with parameters β0 corresponding to the ancestral state of the phenotypeand σ2 corresponding to the phenotype’s overall variance (i.e., the diagonal of Σin the phylogenetic model).
• The binary genotype ~ISim is generated from a Markov process as in Ives andGarland, with parameters α and β1. α gives the sum of the transition probabilitiesgoing from 0 to 1 and from 1 to 0. β1 gives the effect size: that is, how much thesimulated phenotype influences the binary genotype (in logit space).

We perform the following process, given a choice of α and β1, for each phylum h:
1. Estimate the parameters β̂Prev0 and σ̂2 by fitting the following intercept-onlyphylogenetic model to the real prevalence phenotype:

~φPrevx,E (A) = βPrev0 + ~ε

where ε ∼ N(0,Σ) and Diag(Σ) = σ2

2. For each of B simulations:
(a) Generate a continuous phenotype ~φSim according to a Brownian motion

process, evolving along the tree of phylum h, with parameters β̂Prev0 and σ̂2.
(b) Generate a binary genotype ~ISim according to an Ives-Garland Markovprocess with parameters α and β1 and a covariate ~φSimx,E .(c) Fit the following regression equation:

~φSim = βTest0 + βTest1
~ISim + ε

using either a standard linear model or the phylogenetic model (as specifiedin Methods 4.6).
(d) Return the p-value for the test of the null hypothesis βTest1 = 0.
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3. The fraction of p-values ≤ 0.05 yields the power (when given β1 > 0) or the falsepositive rate (when given β1 = 0) of the test.
The binary genotype effect size β1 is not a linear function of the effect of the gene onprevalence. A more intuitive description of the effect size might be the (average)fold-change in prevalence associated with a gene’s presence. Because the parameters
βTest are on a logit scale, this quantity would be equal to:

F =
logistic (βTest1 + βTest0

)
logistic(βTest0

)
This quantity will depend on the amount of phylogenetic signal in the binary genotype
α, the tree along which genotypes and phenotypes are simulated, and the “input”effect size β1. Accordingly, we simulated sets of 50 binary genotypes with given effectsizes β1 ∈ {0, 0.5 , 0.75 , 1.0 , 1.25} and values of α ∈ {0, 25, 50}. While there issubstantial variation, in general an “input” effect size (i.e., β1) of 1.0 approximatelycorresponds to F ≈ 2, a two-fold difference in prevalence, and an “input” effect size of0.5 corresponds to F ≈ 1.5, a 50% increase (Fig S8).
4.12 Assessing the potential impact of sampling with left-censoring
One potential pitfall with applying linear methods occurs when the distribution of theresponse variable (here, our phenotype) has a minimum value. This arises because,within a particular dataset, the lowest possible value of p̂ADDm,x,E(A) is equal to ||ex ||−1,where ||ex || is the number of samples in environment ex . This phenomenon is referredto as “left-censoring.” (Some may have encountered the term “left-censoring” in thecontext of participants who join a study having already experienced an event ofinterest. The time they experienced this event is therefore lower by an unknownamount than the lowest-possible measured value. While the domain and applicationare different, the statistical phenomenon is the same.) Left-censoring can result ininaccurate p-values because the variance is mis-estimated for the data points belowthe limit of detection. We therefore empirically assessed the impact of left-censoringin simulation, and also created extensions of the method to be used when its impact isnoticeable.Empirically, our prevalence phenotype ~φPrevx,E (A) displays substantial left-censoring(Fig S6A). The distribution of this phenotype fits well to a normal with left-censoring atthe limit of detection, in this case approximately −0.50 standard deviations below themean (AIC using truncated normal and censoring: 20844.82; AIC using standard normal:
21833.38).We therefore repeated the simulation process above, but after using our continuousphenotype to generate the binary genotype in step 2.b, we truncated the continuousphenotype ~φSim artificially at a specified number of standard deviations K below themean, yielding ~φCens. We then replaced ~φSim with ~φCens in the regression in step 2.c.Using this simulation framework, we benchmarked three different ways to test thesignificance of βTest1 in the phylogenetic model. We computed p-values in one of thefollowing three ways:

1. t-statistic: Return the p-value of a t-test of the null hypothesis that βTest1 = 0, asin Methods 4.5.
2. Parametric Bootstrap: Simulate a number C of null binary genotypes ~Ic with
β1 = 0, where c ∈ {1, . . . , C′} , and collect the estimates β̂c1 based on the
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following phylogenetic linear model:
~φSim = βc0 + βc1~Ic + ε

Then compute the fraction that are at least as extreme as the test statistic β̂Test1and return this as a p-value:
1

C

C∑
c=1

{
1 ((β̂c1 − β̄C1 )2) ≥ ((β̂Test1 − β̄C1 ))2

0 ((β̂c1 − β̄C1 )2) < ((β̂Test1 − β̄C1 ))2

where β̄C1 is the mean of βc1 values. To save computation time on high p-values,we use early stopping: after every 25 such simulations, if the resulting p-valuewould already be guaranteed to exceed 0.05, we stop and return the p-valuebased on the current number of simulations.
3. Mock-Uncensored Bootstrap: As #2, simulate a number C of additional binarygenotypes with β1 = 0. Instead of calculating p-values as in #2, however:

(a) Simulate the same number C of “uncensored” versions of the continuousphenotype ~φUncc , in effect “filling in” or imputing the censored values withrandom values from the predicted tail of the distribution (see Fig S6 B-C foran illustration):
i. First, fit a left-truncated normal distribution to the part of ~φCens that isabove the lowest value (assumed to be the limit of detection) bymaximum likelihood (using fitdistcens in R package fitdistrplus),yielding mean µTrunc, standard deviation σ2Trunc , and lower truncationpoint min(φCensm ) statistics (e.g., Fig S6B).
ii. Next, for c ∈ {1, . . . , C}, generate a vector ~T c whose elements T cm arerealizations of the random variable T ∼ NRTrunc(µTrunc, σ2Trunc ,min(φCensm )).Here, NRTrunc represents a right-truncated normal distribution, havingmean µTrunc, variance σ2Trunc , and upper truncation point min(φCensm ). Thengenerate the “uncensored” vector ~φUncc with elements φUnccm as follows:

φUnccm =

{
φCensm φCensm > min(φCensm )

Tm φCensm = min(φCensm )

(An example can be seen in Fig S6C).
(b) For each c ∈ {1, . . . , C}:

i. estimate a test statistic β̂Testc1 by fitting the following phylogenetic linearmodel:
~φUncc = βTestc0 + βTestc1

~ISim + ε

ii. estimate a null test statistic β̂c1 by fitting the following phylogeneticlinear model:
~φUncc = βTestc0 + βc1~I

c + ε

(c) Calculate p-values as follows:
1

C

C∑
c=1

{
1 ((β̂c1 − β̄C1 )2) ≥ ((β̄TestC1 − β̄C1 ))2

0 ((β̂c1 − β̄C1 )2) < ((β̄TestC1 − β̄C1 ))2

where β̄C1 is the mean of the βc1 values and β̄C1 is the mean of the βc1 values.
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Intuitively, the second method generates a null distribution via simulation, while thethird method additionally reduces the impact of data points at the limit of detection, byrandomly imputing them from the best-fit normal distribution. We then calculatedpower and FPR for each of these three methods, varying the amount of censoring Kand the effect size β1 (see Fig S7). Interestingly, for the level of censoring in our data(K = −0.50), the false-positive rate in all three methods remained well-controlled,although power dropped. The mock-uncensored bootstrap had lower power overalland became more conservative, especially in the case where the phylogenetic signalwas highest (α = 0) and where the level of censorship K was highest.Another common approach to this problem is the tobit model: the true value of theresponse variable is treated as a hidden variable, and expectation-maximization is usedto fit the regression parameters based on the observed censored values. Given that thedegree of censoring we observed did not appear to inflate the false positive rate in anyof the methods we tested, we opted not to construct a phylogenetic tobit model;however, this could be an interesting area of future research.
4.13 Assessing the impact of compositionality
Because relative abundances are compositional (i.e., sum to 1.00), changes in highlyabundant taxa combined with read sampling can lead to skewed estimates of relativeabundance. For example, if a very abundant microbe exhibits large changes in relativeabundance across samples, other microbes will appear to become less abundant simplybecause they make up a smaller proportion of the total reads, regardless of whethertheir level actually changes. This necessitates the use of compositional data analysismethods such as fitting intrinsically compositional distributions to the data (e.g.,multinomial) or transforming it such that it is no longer compositional (e.g., theclr-transform [79]). However, the impact of these factors on prevalence was a prioriless clear, because while prevalences are based on presence-absence, which could beaffected by sampling, prevalences themselves do not have to sum to 1.Let R be an i ′ × j matrix of read counts whose elements rm,n correspond to thenumber of reads mapping to the single-copy marker genes for microbial species m insample n, where i ′ is the number of microbes with at least one read in one of the jsamples.We resampled R using Dirichlet-multinomial sampling as follows. We firstdetermined the set of microbesMY that have at least one read across our j samplesbut are not among the Y -most abundant microbes (soM100 would exclude the 100most-abundant species). We then constructed a Dirichlet distribution un from each ~rnsuch that:

un ∼ Dirichlet(rMY1 ,n + ι, rMY2 ,n + ι, . . . , rMY
i ′−Y ,n

+ ι)

where ι is a pseudocount corresponding to the average number of reads for theaverage microbe:
ι = mediani ′m=1

(
j∑
n=1

rm,n
j

)
We then drew a multinomial distribution υn from each un, then based on thismultinomial distribution, drew a count vector ~r ′Y·,n with total number of counts∑m rm,n.These count vectors constituted the columns of a resampled dataset R′Y , with elementsobtained by Dirichlet-multinomial sampling from the original dataset R, after excludingthe Y most prevalent microbes.
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First, we examined how increasing Y impacted estimates of relative abundance,that is, how much relative abundance profiles were distorted by the effects of samplingin the presence of species with large read counts. We transformed the resampled “readcount” dataset R′Y to a matrix of relative abundances Q′Y by dividing each column
~r ′Y·,nby

∑
~r ′Y·,n to yield normalized relative abundances ~q′Y·,n . We then applied theclr-transform to correct for compositionality effects, yielding a matrix of transformedabundances C′Y with columns:

~c ′Y·,n = log

(
~q′Y·,n + q0

(
∏i
x(~q′Yx,n + q0))1/i

)

where q0 is the minimum non-zero value of Q′Y , i.e., q0 = argmaxq∈Q′Y (q > 0).After applying the clr-transform to compensate for compositionality artifacts, wetested the correlation of the row vectors ~c0m,· with the corresponding ~cYm,· . As expected,the median correlation was low (for Y=10, rMedian=0.21) and continued to decrease as Yincreased from 10 to 100 (rMedian=0.16) (Fig S9).In comparison, we next examined how increasing Y impacted prevalence. We firsttransformed each the resampled read matrix R′Y into a binary presence-absence matrix
A′Y , then calculated p̂ADDWx,E,D (A′Y ) for each value of Y . Finally, we calculated thecorrelation of p̂ADDWx,E,D (A′0) to each p̂ADDWx,E,D (A′Y ), Y ∈ {10, 20, 50, 100}. Strikingly, wefound that prevalences were highly correlated even out to Y = 100, where r = 0.91(Fig S9).These analyses suggest that unlike relative abundance profiles, our estimates ofprevalence were robust to sampling and compositionality effects S9.
4.14 Enrichment analysis
Enrichment analysis was performed using SEED subsystem annotations forFIGfams [35,80]. Each subsystem was tested for a significant overlap with significanthits from the linear models (q ≤ 0.05), given the set of FIGfams tested, by Fisher’s exacttest. For each gene set, a 2× 2 contingency table was constructed with the followingform: [

||{subsys ∩ signif} ∩ BG|| ||{subsys\signif} ∩ BG||
||{signif\subsys} ∩ BG|| ||BG\{subsys ∪ signif}||

]
where “subsys” is the set of FIGfams in a given SEED subsystem, “signif” is the set ofFIGfams in a particular phylum that were significant hits, and “BG” is the set of allFIGfams tested in that phylum. Two-tailed p-values were corrected using theBenjamini-Hochberg procedure [81] and an FDR of 25% was set for detectingsignificant enrichment and depletion (only enrichment is reported). We used thissignificance threshold in accordance with accepted practice for gene set enrichmentanalysis [82]. We used the Benjamini-Hochberg procedure since unlike the q-valuemethod it does not require the estimation of the proportion of true nulls, which is moredifficult with small numbers of tests.
4.15 Overlap with in vivo results
Results of the screen were obtained from the Supplemental Material of Wu et al.(downloaded on 2017 May 3) [47]. Genes were mapped to FIGfams by matchingidentifiers in the Supplemental Material to genome annotations from PATRIC [66].Significance of overlap between these genes and the results for the Bacteroidetes
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phylum from the body-site-specific or overall models was determined by Fisher’s exacttest.This test depends both on how we determine which genes from the in vivo screencount as true positives, and on the choice of the “background set,” i.e., which geneswould be possible to find in the in vivo study. Rather than committing to one method ofpicking the “true positive” and “background” sets, we instead enumerated severalpossibilities, performed all possible combinations (Table S3), and corrected for multiplecomparisons. The options we tested for true positive sets were 1. genes in the screenthat were significantly associated with fitness in all four Bacteroides strains tested, 2.
Bacteroides thetaiotaomicron genes significantly associated with diet-independentfitness effects, and 3. B. theta genes associated with either diet-dependent or-independent effects. The background sets we tested were 1. all gene families forwhich a phylogenetic model was fit, 2. all gene families appearing at least once in a
Bacteroides genome cluster pangenome, 3. all gene families present in all Bacteroidespangenomes, 4. gene families present in some but not all Bacteroides pangenomes, and5. gene families present in Bacteroides thetaiotaomicron. Similarly to our approach togene set enrichment analysis, for each test we assembled a 2x2 contingency table asfollows: [

||{pos ∩ signif} ∩ BG|| ||{pos\signif} ∩ BG||
||{signif\pos} ∩ BG|| ||BG\{pos ∪ signif}||

]
where “pos” refers to the true positive FIGfam set, “signif” refers to the set ofsignificant FIGfam hits from the phylogenetic model, and “BG” refers to thebackground FIGfam set. The full results are depicted in Table SS3, with the results fortrue positive set #1 excerpted from this full comparison in Table 1.
4.16 Codebase
The code used to perform these analyses is available at
http://www.bitbucket.com/pbradz/plr in the form of an Rmarkdown notebook.
4.17 Glossary of notation

• Data and metadata
– A: i × j binary matrix of microbial presence-absence, where i is the numberof microbes, j is the number of samples, and am,n is 1 when microbe m isobserved in sample n and 0 otherwise
– am,N : a vector of presence-absences for microbe m in samples n ∈ N
– ex , dy : environment x or study population y , each corresponding to a set ofsamples
– E = {e1, . . . , ek}: the set of environments being studied or compared (e.g.,body sites; health vs. disease)
– D = {d1, ..., dl}: the set of study populations

• Linear models
– ~φx,E[,D](A): phenotype vector, calculated for environment ex ∈ E andpotentially adjusting for dataset effects D, based on microbialpresence-absence matrix A, with elements corresponding to phenotypeestimates for individual microbes
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– ~φPrevx,E,D(A): prevalence phenotype estimates (based on logit(p̂ADDWm,N,D (A)); seebelow).
– ~φSpecx,E (A): environmental specificity score phenotype estimates (based on

logit( ˆŝMAP
m,x,E(A; b)); see below).

– β0,g : in the linear model for gene g, intercept term used to model theaverage value of a given phenotype ~φx,E(A)

– β1,g : in the linear model for gene g, the effect of having vs. not having gene
g on a given phenotype ~φx,E(A)

– ~Ig : the binary vector of gene presence-absence whose elements are Ig,m,equal to 0 if the gene g is absent in microbe m and 1 if it is present
• Phenotype estimation

– pm,N : prevalence, the probability of observing a microbe m in a set ofsamples N P (m|N)

– p̂MLE
m,N (A): the maximum-likelihood estimate of prevalence, based on thepresence-absence matrix A

– p̂ADDm,N (A): an estimate of prevalence based on the presence-absence matrix
A using additive smoothing

– p̂ADDWm,N,D (A): an estimate of prevalence based on the presence-absence matrix
A using additive smoothing, and additionally weighting by the inversenumber of samples per dataset in D

– p̂EnvWm,E (A): an estimate of the prevalence across environments, weighted bytheir probability (i.e., P (m) obtained by marginalizing P (m|ex))
– sm,x,E : environment specificity, the probability of being in a particularenvironment ex given that microbe m was observed P (ex |m)

– ŝm,x,E(A): an estimate of environment specificity based onpresence-absence matrix A
– b: a hyperparameter controlling the width of the Laplace prior on ŝm,x,E(A)(i.e., the amount of shrinkage in the estimate)
– boptim: a value of b optimized for sensitivity and specificity in parametricsimulations
– P (ex): the prior probability of encountering environment ex ; we use eitheran uninformative uniform prior (for bodysites), or take this prior fromepidemiological data (for disease comparisons)
– ŝMAP

m,x,E(A; b): a maximum a posteriori (MAP) estimate of environmentspecificity score for environment ex based on presence-absence matrix Aand the shrinkage hyperparameter b; in this paper we calculateenvironmental specificity scores for x = CD (Crohn’s disease specificity) and
x = Gut (healthy gut specificity)

• Simulation and censoring analysis
– ~φSim: a simulated continuous phenotype
– ~ISim: a simulated binary genotype (gene presence-absence)
– α: Ives-Garland α, the sum of the transition probabilities from 0 to 1 andfrom 1 to 0 in a Markov model of binary trait evolution across a tree (i.e., ameasure of phylogenetic signal in a binary trait)
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– β0: assigned parameter giving the ancestral state of the simulated genotype
~φSim

– β1: assigned parameter giving the degree to which the continuousphenotype ~φSimaffects the binary genotype ~ISim; a measure of effect size of
phenotype on gene

– β̂Prev0 : the estimated ancestral state of our prevalence phenotype ~φPrevx,E,D(A),using a Brownian motion model of trait evolution
– σ̂2: the estimated (non-phylogenetic) variance of our prevalence phenotype
~φPrevx,E,D(A)

– β̂Test1 : estimated value of effect of gene on phenotype from the phylogeneticlinear model
– F : ratio of prevalences, comparing taxa with a given gene (numerator) totaxa without (denominator); an alternative measure of effect size of gene on

phenotype
– β̂c1 : when using a bootstrap null, estimated value of effect of null gene on

phenotype from the phylogenetic linear model
– ~φUncc : a version of the phenotype ~φ where values at the certain limit ofdetection have been imputed based on a truncated normal
– ~T c : a vector the same length as ~φ whose elements have been randomlydrawn from a truncated normal distribution
– β̂Testc1 : an estimated value of effect of gene on the mock-uncensored

phenotype ~φUncc
– K: the value at which left-censoring starts for a phenotype ~φ, expressed asstandard deviations below the mean

• Compositionality with resampling analysis
– R: an i ′ × j matrix with elements rm,n corresponding to the number of readsmapping to microbe m in sample n
– MY : a set of microbes with at least one read in R, excluding the top X-mostabundant microbes
– ι: pseudocount used in constructing Dirichlet distributions of microbialrelative abundance
– un: a Dirichlet distribution fit to sample n
– υn: a particular draw from a Dirichlet distribution representing a multinomialdistribution, from which resampled read counts are drawn
– R′Y : a matrix of resampled read counts with dimensions (i ′ − ||Y ||)× j ,where read counts are drawn from vn

– Q′Y : a matrix of resampled relative abundances derived from R′Y such thatevery column adds up to 1
– C′Y : a matrix of clr-transformed relative abundances derived from Q′Y

– q0: a pseudocount used in the clr-transformation
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Figure legends

Figure 1. Failing to account for tree structure results in an elevated false positive rate.Continuous phenotypes and binary genotypes were simulated across the trees for thefour phyla under consideration. A-B show results for the null of no truephenotype-genotype correlation. A) Histogram of p-values for simulated phenotypesand genotypes on the Bacteroidetes tree, using phylogenetic (left) or standard (right)linear models. The phylogenetic model distribution was similar to a uniformdistribution, while the standard model was very anticonservative, having an excess ofsmall p-values. B) False positive rate (Type I error rate) at p = 0.05 for the phylogeneticand standard models. C) Traits with varying levels of “true” association spanning valueswe observed in real data were simulated, and power was computed using phylogeneticlinear models.

Figure 2. Examples of hits from standard linear (blue highlights) and phylogenetic
(orange highlights) models. In each panel, the tree on the left is colored by speciesprevalence (black to orange), while the tree on the right is colored by genepresence-absence (blue to black). Selected species are displayed in the middle; lineslink species with the leaves to which they refer. The color of the line matches the colorof the leaf. A-B) The standard model recovered hits that matched large clades butwithout recapitulating fine structure. C-D) The phylogenetic model recoveredassociations for which more of the fine structure was mirrored between the left-handand right-hand trees, as exemplified by the species labeled in the middle. E) Violin plotsof Ives-Garland α, a summary of the rate of gain and loss of a binary trait across a tree,for genes significantly associated with prevalence in the standard (left, blue) andphylogenetic (right, orange) linear models. Horizontal lines mark the median of thedistributions. The phylogenetic (orange) and standard linear (blue) models weresignificantly different for each phylum (Wilcox test for Bacteroidetes: 4× 10−6;Firmicutes: 7× 10−11; Proteobacteria: 2× 10−22; Actinobacteria: 2× 10−22).

Figure 3. Comparison of results from the overall prevalence and body-site specific
models for Firmicutes. FDR-corrected significance (as − log10(q)) of the overall modelis plotted on the horizontal axis, whereas the same quantity for the body-site-specificmodel is plotted on the vertical axis. All FIGfams significant (q ≤ 0.05) in at least one ofthe two models are plotted as contour lines: FIGfams significant in the overallprevalence model (and possibly also the gut specific model) are plotted in orange, whileFIGfams significant in the gut specific model (and possibly also the overall prevalencemodel) are plotted in blue. Selected SEED subsystems are displayed as colored points(legend), and selected individual genes are plotted as black points.
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Figure 4. Genes involved in conjugative transfer are associated with Crohn’s
disease-enriched species. The conjugation transcriptional regulator traR is plotted asan example. The left-hand tree is colored by each species’ disease specificity score, i.e.,the conditional probability of Crohn’s given the observation of a given species (grey,which represents the prior, to orange, which represents a higher conditionalprobability). The right-hand tree is colored by gene presence-absence (grey, meaningabsent, or blue, meaning present). The mirrored patterns drive thephylogeny-corrected correlation.

Table 1. Assessment of agreement between the in vivo results fromWu et al. [47] and
gut-specific (“bodysite”) vs. gut prevalence (“overall”) phylogenetic models. Thebackground sets for enrichment tests were defined as follows: “all tested” (all genefamilies for which a phylogenetic model was fit), “Bacteroides (core or variable)” (allgene families with at least one representative in Bacteroides genome clusterpangenomes), “Bacteroides (core only)” (gene families that were present in all
Bacteroides genome cluster pangenomes), “Bacteroides (variable only)” (gene familiespresent in some but not all Bacteroides genomes clusters), and “Bacteroidesthetaiotaomicron only” (only gene families present in Bacteroides thetaiotaomicron). The
p-values are from Fisher’s exact tests. These comparisons have been excerpted fromthe full set, which can be seen in Additional Table S3; q-values were calculated basedon this full set of tests using the Benjamini-Hochberg method [81].

Background set FDR MODEL p-value odds ratio q-value significant
All tested (overall) 5% overall 3.19× 10−3 0.18 7.65× 10−3 TRUE

Bacteroides (core or variable) 5% overall 2.46× 10−12 0.05 2.46× 10−11 TRUE
Bacteroides (core only) 5% overall 1.00 0.00 1.00 FALSE

Bacteroides (variable only) 5% overall 7.20× 10−4 0.13 2.06× 10−3 TRUE
Bacteroides thetaiotaomicron only 5% overall 2.96× 10−6 0.09 1.48× 10−5 TRUE

All tested (overall) 25% overall 1.65× 10−2 0.37 3.41× 10−2 TRUE
Bacteroides (core or variable) 25% overall 1.98× 10−13 0.10 2.37× 10−12 TRUE

Bacteroides (core only) 25% overall 1.00 0.80 1.00 FALSE
Bacteroides (variable only) 25% overall 4.12× 10−4 0.18 1.45× 10−3 TRUE

Bacteroides thetaiotaomicron only 25% overall 6.04× 10−7 0.18 3.63× 10−6 TRUE
All tested (body site) 5% bodysite 3.58× 10−3 4.39 8.27× 10−3 TRUE

Bacteroides (core or variable) 5% bodysite 1.34× 10−1 2.00 2.44× 10−1 FALSE
Bacteroides (core only) 5% bodysite 1.14× 10−3 7.02 2.98× 10−3 TRUE

Bacteroides (variable only) 5% bodysite 6.25× 10−1 0.00 7.62× 10−1 FALSE
Bacteroides thetaiotaomicron only 5% bodysite 2.77× 10−1 1.64 4.49× 10−1 FALSE

All tested (body site) 25% bodysite 6.09× 10−4 3.86 1.86× 10−3 TRUE
Bacteroides (core or variable) 25% bodysite 8.88× 10−2 1.78 1.72× 10−1 FALSE

Bacteroides (core only) 25% bodysite 1.09× 10−2 3.47 2.33× 10−2 TRUE
Bacteroides (variable only) 25% bodysite 4.51× 10−1 1.55 6.15× 10−1 FALSE

Bacteroides thetaiotaomicron only 25% bodysite 4.38× 10−1 1.34 6.12× 10−1 FALSE
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Table S2. Concordance of β1,g estimates for weighted least squares vs. Laplace
shrinkage procedures. Pearson’s correlation coefficient r comparing estimates of β1,gfor the weighted phylogenetic least squares procedure with the unweightedphylogenetic least squares using Laplace-shrunken estimates of specificity scores werecomputed across: all tested genes (all), all genes significant in either the weighted orshrunken phylogenetic model (one significant), or all genes significant in both models(both significant). Comparisons were performed for both body site environmentalspecificity scores (bodysite) and Crohn’s disease (Crohn’s). Additionally, the number oftaxa not shrunk back to the prior by Laplace shrinkage for each environmentalspecificity score are given (non-shrunk).

r Bacteroidetes Firmicutes Proteobacteria Actinobacteria
r non-shrunk r non-shrunk r non-shrunk r non-shrunkbodysite (all) 0.50 122 0.40 325 0.35 102 0.43 99bodysite (one significant) 0.65 0.64 0.39 0.35bodysite (both significant) 0.83 0.64 0.73 0.72Crohn’s (all) 0.19 25 0.11 64 -0.40 7 0.46 14Crohn’s (one significant) 0.63 0.19 -0.47 0.12Crohn’s (both significant) 0.54 -0.29 -0.68 0.77

Supporting Information

Table S1. Species prevalences, gut specificities, and Crohn’s disease specificities for all
genome clusters (species) tested. logit.Prevalence, logit.BodySite, and logit.Crohnscolumn titles refer to our estimates of ~φPrevx,E,D(A), ~φSpecGut,E(A), and ~φSpecCD,E(A), respectively.Row labels (5-digit numbers) correspond to MIDAS taxon IDs.

Table S3. Full assessment of whether genes linked to microbial fitness in an in vivo
experiment [47] were enriched for significant hits of the body site-specific and overall
gut prevalence models. The different sets of true positives were defined as:“Bacteroides” (genes in the screen significantly associated with fitness in all fourstrains), “BthetaDietIndep” (genes present in Bacteroides thetaiotaomicron that haddiet-independent fitness effects in the screen), and “BthetaAny” (same, but fordiet-dependent as well as -independent effects). The “background sets” were definedas follows: “all tested” (all gene families for which a phylogenetic model was fit),“Bacteroides (core or variable)” (all gene families with at least one representative in
Bacteroides genome cluster pangenomes), “Bacteroides (core only)” (gene families thatwere present in all Bacteroides genome cluster pangenomes), “Bacteroides (variableonly)” (gene families present in some but not all Bacteroides genomes clusters), and“Bacteroides thetaiotaomicron only” (only gene families present in Bacteroides
thetaiotaomicron). Two false discovery rates for each model were tested (5% and 25%).Fisher tests yielded p-values that were then converted to q-values using theBenjamini-Hochberg approach [81].

Table S4. SRA accession IDs used to estimate prevalence and environmental
specificity scores.
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Figure S1. Estimates of logit-gut prevalence (x-axis) vs. logit-gut environmental
specificity score (y-axis), showing only modest correlation.

Figure S2. Method overview. Using MIDAS, we calculate species relative abundancesfrom shotgun sequencing data. These are binarized to yield a matrix of microbialpresence/absence, with rows corresponding to microbes and columns correspondingto samples. Samples are organized into environments (i.e., the environments fromwhich the sample was collected) and into datasets (corresponding to samples collectedas part of the same project). Using the presence/absence matrix together with thesemetadata, we estimate phenotype vectors φ̂(A), whose elements are estimates ofmicrobial phenotypes. These phenotypes fall into two groups: prevalence (φ̂Prevx,E,D(A))
and environmental specificity scores (φ̂Specx,E (A)). Separately, we use the whole genomesincorporated into the MIDAS database to assemble a matrix of gene presence/absencein the pangenome of microbes, and to construct a phylogenetic species tree based onpreviously-validated single-copy marker genes. We subset this tree to yield fourphylum-specific trees. The inputs to our phylogenetic models are a phenotype vector, agene presence-absence vector, and a phylogenetic tree. Based on these models, weestimate p-values for a non-zero effect of the gene on the phenotype, then convertthese p-values into q-values to obtain predicted gene-phenotype interactions at agiven false discovery rate (here, 5%).

Figure S3. Laplacian regularization reduces noise in estimating ŝm,CD,E(A). Twospecies are compared, one that was infrequently observed in both Crohn’s diseasecases and controls (Bacillus subtilis, left) and one with a significant bias for Crohn’sdisease cases (Bacteroides fragilis, right). A) Total counts across subjects for Bacillus
subtilis and Bacteroides fragilis. B) Likelihood function for ŝm,CD,E(A), or prevalence inCrohn’s disease. The maximum-likelihood value is given in the inset. C) Unregularizedlikelihood for logit(ŝm,CD,E(A)), or the environmental specificity of the microbe. Notethat the maximum-likelihood value (inset) was actually almost twice as large for Bacillus
subtilis as for Bacteroides fragilis despite the relative paucity of data for B. subtilis(compare Y-axes, which show that the distribution for B. subtilis is flatter). D) Laplaceprior around P (eCD) = 0.002 with width parameter b = 0.15 (optimized usingsimulation). E) Log-likelihood plot for the posterior P (eCD|m) = ŝMAP

m,CD,E(A), obtained bytaking the product of the prior distribution and the unregularized distribution. Themaximum a posteriori (MAP) estimates are the modes of these distributions (inset).

Figure S4. Sensitivity plot for ε tolerance parameter in Laplace shrinkage. Y-axis givesthe best boptim value obtained given a particular log10(ε) selected when performingLaplace shrinkage of ŝMAP
m,CD,E(A) estimates. The value of ε used in the manuscript(0.005) is highlighted with a vertical dashed line.

Figure S5. Illustration showing logit-prevalence vs. the pattern of glutamate-GABA
decarboxylase (gadB) inheritance in Bacteroidetes. As in Fig 2, the tree on the left iscolored by species prevalence (black to orange), while the tree on the right is coloredby gene presence-absence (blue to black), with selected species called out in themiddle, and lines linking species labels to leaves that match leaf color.
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Figure S6. Distribution of estimated logit-prevalence ~φPrevx,E,D(A), showing impact of
censoring. A) Density of estimated logit-prevalence distribution, ~φPrevx,E,D(A), showingpile-up of values at the limit of detection K. B) Density of a normal distribution withmean and standard deviation obtained from best-fit of truncated normal to ~φPrevx,E,D(A).
C) “Uncensored” version of ~φPrevx,E,D(A). Data points at or below K have been replaced byrandom sampling from a truncated normal, with mean and standard deviation as in Band with K as upper truncation point.

Figure S7. Impact of left-censoring on the false positive rate and power of
phylogenetic tests. Bars give replicate measurements of false positive rate (left, effectsize of 0) and power (right, effect size of 0.75) across the different phyla (colors), basedon simulating binary genotypes and continuous phenotypes as in Methods 4.11, withvarying levels of left-censoring (“censoring point”), and obtaining p-values with thethree methods described in Methods 4.12. Horizontal dashed lines give a rate of 0.05.Binary genotypes had varying levels of Ives-Garland α (0, 25, 50), representing high tolow phylogenetic signal.

Figure S8. Simulations showing the prevalence ratios F corresponding to various
effect sizes. To give a more intuitive sense of scale for simulated effect sizes,simulations were performed as in Methods 4.11, with effect sizes β1 ranging from 0 to1.25. After fitting phylogenetic models to the simulated phenotypes and genotypes,the average prevalences with the simulated gene, logistic(β1,g + β0,g), and without,logistic(β0,g), were computed, and their ratio F was taken. log2(F ) is plotted here, suchthat a value of 1 means the gene conferred (on average) a 2-fold change in prevalence.Violin plots were made of 50 simulations.

Figure S9. Effect of resampling after dropping abundant taxa on prevalence and
abundance. Dirichlet-Multinomial sampling was performed on read counts either as-isor first dropping the 10, 20, 50, or 100 most-abundant taxa (X-axis). Relativeabundances and prevalences were computed from all resampled datasets. The Y-axisrepresents Pearson’s correlation of prevalences (teal) or abundances (orange). Microbialprevalences with dropped taxa were compared to prevalence calculated withoutdropping taxa, yielding one correlation per sampling. For relative abundance profiles,the same microbe’s profile was compared between the as-is sampling and the samplingthat dropped taxa, yielding a distribution of correlations (orange box-and-whiskerplots). Each correlation coefficient is an average calculated from 100 resamplings.
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Fig S3.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


●

●

●

●
● ● ● ●

●

●
●

● ●

−6 −5 −4 −3 −2 −1 0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

log10(ϵ)

b o
p�

m
 (C

ro
hn

's
)

ϵ = 0.005

Fig S4.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


Butyricimonas virosa

Odoribacter laneus

Porphyromonas canoris

Porphyromonas sp. 31_2
Parabacteroides merdae

Tannerella forsythia

Bacteroides uniformis

Bacteroides helcogenes

Bacteroidetes oral taxon 272
Bacteroides vulgatus

Paludibacter propionicigenes

−4 −3 −2

logit-prevalence

0.00 0.25 0.50 0.75 1.00

Glutamate/gamma−aminobutyrate antiporter (FIG01387141)

Tannerella sp. 6_1_58FAA_CT1

gene

Fig S5.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


es�mated best fit uncensored

−10 −5 0 5 −10 −5 0 5 −10 −5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

logit-prevalence

de
ns

ity

type
es�mated
best fit
uncensored

K

Fig S6.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


−1 −0.5 0 0.5 −1 −0.5 0 0.5

pr
op

or
�

on
 o

f p
os

i�
ve

s

phylum
Ac�nobacteria
Bacteroidetes
Firmicutes
Proteobacteria

effect size: 0 effect size: 0.75
Censoring

point

0
25

50

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0
25

50

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

mock-
uncensored
bootstrap

0
25

50

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

parametric
bootstrap

likelihood
ra�o
test

Fig S7.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


Bacteroidetes Firmicutes Proteobacteria Ac�nobacteria

0 25 50 0 25 50 0 25 50 0 25 50

0

1

2

3

Ives-Garland α

lo
g 2

(F
)

input effect
size (β1)

0.00
0.50
0.75
1.00
1.25

Fig S8.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/


Fig S9.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/189795doi: bioRxiv preprint 

https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Phylogenetic linear models solve the problem of high false positive rates when testing for associations on bacterial phylogenies
	Estimating quantitative phenotypes from shotgun data
	Genes associated with species prevalence in healthy human gut metagenomes
	Gene families associated with gut prevalence provide insight into colonization biology
	Using body sites as a control allows us to differentiate general dispersal from a specific gut advantage
	Deletion of gut-specific genes lowers fitness in the mouse microbiome
	We identify Proteobacterial gene families associated with microbes that are more prevalent in Crohn's disease

	Discussion
	Methods
	Species definition
	Pangenomes
	Phylogenetic tree construction
	Estimating species abundance across human associated metagenomes
	Modeling gene-phenotype associations
	Fitting linear vs. phylogenetic models
	Metagenomic presence-absence data
	Estimating the prevalence phenotype
	Estimating environmental specificity scores
	Formulating the specificity score
	Motivating a shrunken estimator of sm,x,E(A)
	An estimator of sm,x,E using Laplace shrinkage
	Choosing the Laplace width parameter
	Worked example

	Alternatives to shrinkage estimation of environmental specificity scores
	Power analysis
	Assessing the potential impact of sampling with left-censoring
	Assessing the impact of compositionality
	Enrichment analysis
	Overlap with in vivo results
	Codebase
	Glossary of notation

	Author contributions
	Funding statement
	Acknowledgements

