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Abstract

The mechanisms by which different microbes colonize the healthy human gut
versus other body sites, the gut in disease states, or other environments remain
largely unknown. Identifying microbial genes influencing fitness in the gut could
lead to new ways to engineer probiotics or disrupt pathogenesis. We approach this
problem by measuring the statistical association between having a species having a
gene and the probability that the species is present in the gut microbiome. The
challenge is that closely related species tend to be jointly present or absent in the
microbiome and also share many genes, only a subset of which are involved in gut
adaptation. We show that this phylogenetic correlation indeed leads to many false
discoveries and propose phylogenetic linear regression as a powerful solution. To
apply this method across the bacterial tree of life, where most species have not
been experimentally phenotyped, we use metagenomes from hundreds of people to
quantify each species’ prevalence in and specificity for the gut microbiome. This
analysis reveals thousands of genes potentially involved in adaptation to the gut
across species, including many novel candidates as well as processes known to
contribute to fitness of gut bacteria, such as acid tolerance in Bacteroidetes and
sporulation in Firmicutes. We also find microbial genes associated with a preference
for the gut over other body sites, which are significantly enriched for genes linked
to fitness in an in vivo competition experiment. Finally, we identify gene families
associated with higher prevalence in patients with Crohn’s disease, including
Proteobacterial genes involved in conjugation and fimbria regulation, processes
previously linked to inflammation. These gene targets may represent new avenues
for modulating host colonization and disease. Our strategy of combining
metagenomics with phylogenetic modeling is general and can be used to identify
genes associated with adaptation to any environment.

Author Summary

Why do certain microbes and not others colonize our gut, and why do they differ
between healthy and sick people? One explanation is the genes in their genomes. If we
can find microbial genes involved in gut adaptation, we may be able to keep out
pathogens and encourage the growth of beneficial microbes. One could look for genes
that were present more often in prevalent microbes, and less often in rare ones.
However, this ignores that related species are more likely to share an environment and
also share many unrelated phenotypes simply because of common ancestry. To solve
this problem, we used a method from ecology that accounts for phylogenetic
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relatedness. We first calculated gut prevalence for thousands of species using a
compendium of shotgun sequencing data, then tested for genes associated with
prevalence, adjusting for phylogenetic relationships. We found genes that are
associated with overall gut prevalence, with a preference for the gut over other body
sites, and with the gut in Crohn’s disease versus health. Many of these findings have
biological plausibility based on existing literature. We also showed agreement with the
results of a previously published high-throughput screen of bacterial gene knockouts in
mice. These results, and this type of analysis, may eventually lead to new strategies for
maintaining gut health.

Short title

Phylogenetic modeling of gut colonization

1 Introduction

Microbes that colonize the human gastrointestinal (Gl) tract have a wide variety of
effects on their hosts, ranging from beneficial to harmful. Increasing evidence shows
that commensal gut microbes are responsible for training and modulating the immune
system [1}[2], protecting against inflammation [3] and pathogen invasion (reviewed in
Sassone-Corsi and Raffatellu [4]), affecting Gl motility [5], maintaining the intestinal
barrier [6], and potentially even affecting mood [7]. In contrast, pathogens (and
conditionally-pathogenic microbes, or “pathobionts”) can induce and worsen
inflammation [8l|9], increase the risk of cancer in mouse models [10], and cause
potentially life-threatening infections [11]. Additionally, the transplantation of
microbes from a healthy host (fecal microbiota transplant, or FMT) is also a highly
effective therapy for some gut infections [12], although it is still an active area of
investigation why certain microbes from the donor persist long-term and others do
not [13], and how pre-existing inflammatory disease affects FMT efficacy [14]. Which
microbes are able to persist in the Gl tract, and why some persist instead of others, is
therefore a question with consequences that directly impact human health.

Because of this, we are interested in the specific mechanisms by which microbes
colonize the gut, avoiding other potential fates such as being killed in the harsh
stomach environment, simply passing through the Gl tract transiently, or being
outcompeted by other gut microbes. Understanding these mechanisms could yield
opportunities to design better probiotics and to prevent invasion of the gut community
by pathogens. In particular, creating new therapies, whether those are drugs,
engineered bacterial strains, or rationally designed communities, will likely require an
understanding of gut colonization at the level of individual microbial genes. We also
anticipate that these mechanisms may vary in health vs. disease, since, for example,
different selective pressures are known to be present in inflamed versus healthy
guts [15l/16].

One approach that has been used to link genetic features to a phenotype is to
correlate the two using observational data. Most typically, this approach is applied in
the form of genome-wide association mapping, in which phenotypes are correlated
with genetic markers across individuals in a population. While we are interested in
comparing phenotypes and genetic features across, rather than within species, the
approach we take in this paper is conceptually similar. In order to perform association
mapping, it is necessary to account for population structure, that is, dependencies
resulting from common ancestry; otherwise, spurious discoveries can be made in
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genome-wide association studies [17]. Analogously, we expected it to be important to
choose a method that can account for the confounding effect of phylogeny when
testing for associations across species.

There is increasing interest in using phylogenetic information to make better
inferences about associations between microbes and quantities of interest. For
example, co-conservation patterns of genes (“correlogs”) have been used to assign
functions to microbial genes [18], and genome-wide association studies have been
applied within a genus of soil bacteria [19] as well as across strains of Neisseria
meningitidis [20]. Recent publications have also described techniques that use
information from the taxonomic tree to more accurately link clades in compositional
taxonomic data to covariates [21-23]. However, so far, only one study has attempted
to associate genes with a preference for the gut [24]. That study introduced a valuable
method based on UniFrac and gene-count distances, which compares how well gut- vs.
non-gut-associated microbes cluster on the species tree compared to a composite
gene tree. This study also provides an important insight in the form of evidence of
convergence of glycoside hydrolase and glycosyltransferase repertoires among gut
bacteria, suggesting horizontal gene transfer within the gut community to deal with a
common evolutionary pressure. The method described in that study, though, requires a
binary phenotype of gut presence vs. absence. Deciding which microbes are “gut” vs.
“non-gut” requires manual curation and can be somewhat subjective, as microbes have
a continuous range of prevalences and can appear in multiple environments; this
binarization could also potentially decrease power by excluding microbes with
intermediate phenotypes. The method also requires multiple sequence alignments and
trees to be built for every gene family under analysis, which are computationally
intensive to generate over a large set of genomes.

We take a complementary approach and use a flexible technique, known as
phylogenetic linear modeling, to detect associations between microbial genotype and
phenotype while accounting for the fact that microbes are related to one another by
vertical descent. Phylogenetic linear models have an extensive history in the ecology
literature dating back to seminal works by Felsenstein [25]] and Grafen [26]. However,
despite their power, genome-scale applications of these models are still few in
number [27] and, with the exception of one recent study that applied phylogenetic
linear modeling to newly-sequenced isolate genomes from plant-associated microbial
communities [28], have typically been used to relate traits of macroorganisms (e.g.,
anole lizards [29]) to their genotypes. While there is a growing appreciation for the
need to explicitly account for phylogeny in microbial community analyses [27,30], we
believe ours is the first study to directly apply this class of methods to metagenomic
data.

This approach to accounting for phylogenetic relationships is general and could be
applied to measure association of any quantitative phenotype with genotypes or other
binary or quantitative characteristics. In this study, we focus on phenotypes related to
the ability of bacteria to colonize the human gut: 1. overall prevalence in the guts of
hosts from a specific population (e.g., post-industrialized countries), which we expect
to capture ease of transmission, how cosmopolitan microbes are, and how efficiently
they colonize the gut; 2. a preference for the gut over other human body sites in the
same hosts, which we expect to capture gut colonization more specifically; and 3. a
preference for the gut in disease (e.g., Crohn’s disease) versus health. We present a
novel analytic pipeline in which we estimate these quantitative phenotypes for
thousands of bacterial species directly from existing shotgun metagenomics data, both
obviating the need for us to draw a cutoff between “gut” and “non-gut” microbes, and
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also giving us the necessary power to detect associations (Fig[52). Coupling these
phenotype estimates with phylogenetic linear models, we generate a compendium of
thousands of bacterial genes whose functions may be involved in colonizing the human
gut.

2 Results

We present a phylogeny-aware method for modeling associations between the
presence of specific genes in bacterial genomes and quantitative phenotypes that
measure how common these species are in the human microbiome. To apply
phylogenetic linear modeling to the microbiome, we needed to solve three problems.
First, we had to show that these models controlled false positives and had reasonable
power on large bacterial phylogenies. Second, we needed to develop estimators that
captured meaningful phenotypes related to bacterial colonization of humans for
thousands of diverse bacterial species, most of which have never been studied in
isolation, much less experimentally assayed for their abilities to colonize a mammalian
body site. The third problem was to estimate genotypes (e.g., gene presence-absence)
for each species. The analysis framework we describe is quite general and could be
easily extended to link other phenotypes to genotypes across the tree of life.

2.1 Phylogenetic linear models solve the problem of high false
positive rates when testing for associations on bacterial
phylogenies

To test for associations between quantitative phenotypes and binary genotypes across
species, we use models with the following form:

(5><,E,D(A) :ﬁO,g +,61,g/__;]+€g (1)

<1_>'X,E,D(A) is a vector of quantitative phenotypes of interest, assessed in one
environment e, out of a set of possible environments £, normalizing out a set of study
effects D, estimated from the dataset A. The elements of the vector CBX ep(A) are
®mx.e,0(A), the phenotype value for microbe m. 3, 4 is a baseline phenotype value,
(1, is the effect of gene g on b, / is a vector whose elements /, ; are O if gene g is
absent in species m and 1 if present, and € is the remaining unmodeled variation in .
We fit one model per gene g. The distribution of the residuals € is the key difference
between standard and phylogenetic linear models. In the standard model, the residuals
are assumed to be independent and normally distributed. In the phylogenetic model,
however, the residuals covary, with more closely-related species having greater
covariance (see Methods, [4.5|and[4.6} for a glossary of notation, see Methods, [4
To explore the potential pitfalls of failing to correct for phylogenetic structure in
cross-species association tests, we generated a species tree for thousands of bacteria
with genome sequences (see Methods, [4.3). In order to have a consistent operational
definition of a microbial species, we used a set of previously defined bacterial
taxonomic units with approximately 95% pairwise average nucleotide identity across
the entire genome [31]. The methods we describe can be applied to other taxonomic
levels or with other species definitions. Using this species tree, we performed
simulations (see Methods, [4.11) for each of the four major bacterial phyla in the human
gut (Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria [32]). Specifically,
we generated simulated phenotypes along the species tree, and then, for each
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phenotype, simulated a binary genotype for each species that covaried with the
phenotype to varying degrees, including no association. We used levels of covariation
spanning those we observed empirically between prevalence of species in gut
metagenomes and presence-absence of genes (see below). (An effect size of 0.5
corresponds approximately to a 50% increase in prevalence, while an effect size of 1.0
corresponds approximately to a 100% increase in prevalence: see Fig[S8]) These binary
genotypes also had varying levels of overall phylogenetic signal (Ives-Garland ).

We then fit phylogenetic and standard linear models to the simulated data and
tested for a relationship between each binary genotype and its corresponding
continuous phenotype. For both standard and phylogenetic linear models, separate
models were fit for each of the four phyla. The results were used to estimate false
positive rate (Type | error) and power (1 - Type Il error) for the two methods across
different effect sizes.

These analyses showed that standard linear models result in many false positive
associations. When the binary genotype was specified to be wholly uncorrelated (i.e.,
under the null), p-values from the linear model showed a strong anticonservative bias
(Fig[1B, D) with many more significant p-values than expected under no correlation.
While lower levels of phylogenetic signal (larger Ives-Garland «) did result in less bias in
the standard linear model, the false positive rate remained over 25% at p = 0.05. In
contrast, the phylogenetic linear model p-value distribution was flat and Type | error
was controlled appropriately (Fig[1JA, C). This means that at the same p-value threshold,
linear models will identify many spurious relationships compared to phylogenetic linear
models. Further, our simulations with non-zero associations showed that the
phylogenetic model has high power when applied to gut bacterial phyla, even for small
effect sizes (Fig[1E; see Methods[4.17). These results emphasize the importance of
using models that account for phylogenetic relationships in cross-species association
testing and demonstrate the feasibility of applying phylogenetic linear models to the
human microbiome.

2.2 Estimating quantitative phenotypes from shotgun data

To apply phylogenetic linear modeling to the microbiome we sought to define
meaningful phenotypes for thousands of bacterial species, all of which have genome
sequences but most of which have never been experimentally tested for, e.g., their
abilities to grow on particular substrates or to colonize a model mammalian gut. We
hypothesized that the prevalence and specificity of bacterial species in an environment,
such as the human gut, should relate to their ability to colonize that environment and
to how well adapted they are to persist there. These quantities can be thought of as
phenotypes that can be estimated directly from shotgun metagenomics data. The
precise taxonomic composition of a healthy gut microbiome can vary significantly from
person to person [33], indicating that the ability of a microbe to colonize the gut is
quantitative (and likely context-dependent, and stochastic). This phentoype can be
conceptualized differently depending on which aspects of colonization one wishes to
capture. We present metagenome-based estimators for two different types of
colonization phenotpyes. These are described in the context of our goal of studying
the gut microbiome, but the approach is general and could be used to quantify how
well a given genotype discriminates species found in or specific to any environment.

The first phenotype is the probability of observing a microbial species m in an
environment e,, that is, its overall prevalence P(m|e,). Both genes relating to survival in
the Gl tract and genes relating to survival, persistence, and dispersal in the outside
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environment are expected to correlate with overall prevalence. Prevalence can be
estimated by the frequency with which the species is observed in a sample from the
environment, for example, using a logit transform to enable linear modeling and
pseudocounts to avoid estimates of O or 1 (see Methods, [4.8).

The second type of quantitative phenotype is the environmental specificity of a
microbial species, which we define as the conditional probability that a sample is
derived from one environment in a set of environments, given that the species is
present in the sample. This parameter captures the power of a given microbe as a
marker to discriminate between two or more different environments, such as different
body sites or types of hosts (see Methods, [4.9). This is distinct from its overall
prevalence in the environment.

We developed an estimator for environmental specificity and applied it to two
separate gut microbial phenotypes. First, we considered a phenotype defined as the
conditional probability that a given body site is the gut and not another body site, given
that a particular species is present. The physical distance between body sites is much
smaller than the distance between hosts, and microbes from one body site are likely to
be transiently introduced to others. Hence, enrichment of a species in one body site
over others is stronger evidence for selection (versus dispersal) than is overall
prevalence in that body site alone. We estimate this parameter with a body-site
specificity score that uses metagenomics data to measure how predictive a particular
microbe is for the gut versus other body sites (e.g., skin, urogenital tract, oropharynx, or
lung).

The second type of environmental specificity we considered is the conditional
probability that a host has a disease given that a particular species is present. This
disease-specific specificity score is estimated in a similar way to the body-site specificity
score (see Methods,[4.9). We focus on Crohn'’s disease, a type of inflammatory bowel
disease known to be associated with dramatic shifts in the gut microbiota and in
gut-immune interactions [34]. Genes associated with this disease-specific prevalence
could illuminate differences in selective pressures between healthy vs. diseased gut
environments. Both scores are based on maximum a posteriori (MAP) estimates of the
conditional probability of a sample being from the gut given that a microbe is observed
in the sample. To account for sampling noise, we use a shrunken estimate with a
Laplace prior (see Methods, [4.9).

2.3 Genes associated with species prevalence in healthy human gut
metagenomes

We assembled a compendium of published DNA sequencing data from healthy human
stool microbiomes across five studies in North America, Europe, and China (433
subjects total). Using the MIDAS database and pipeline [31], we mapped metagenomic
sequencing reads from each run to a panel of phylogenetic marker genes, and from
these, estimated species relative abundances. Multiple runs corresponding to the same
individual were averaged. We then estimated the prevalence (probability of non-zero
abundance) of each species across these subjects, weighting each study equally and
adding pseudocounts to avoid probabilities of exactly O or 1 (see Methods, [4.8). Finally,
we determined whether genes (here, we take “genes” to mean members of a FIGfam
protein family, which are designed to approximate “isofunctional homologs” [35]) were
present or absent in the pangenomes of each species, based on sequenced genomes
included in the MIDAS database, such that any FIGfam annotated in at least one
sequenced isolate was considered to be present in the pangenome. This approach to
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genotyping could be extended to additionally include single-amplified genomes and
metagenome-assembled genomes (see Discussion). Our analysis framework can also
be applied to genotypes other than gene presence-absence (e.g., nucleotide or amino
acid changes). We note that while the FIGfam database does include many
hypothetical protein families of unknown function, many bacterial genes lack even this
level of annotation, so a more comprehensive grouping of genes into orthologous or
functionally homologous groups could reveal yet more novel associations.

As expected, the most prevalent species overall included Bacteroides vulgatus,
Bacteroides ovatus, and Faecalibacterium prausnitzii, while the least prevalent included
halophiles and thermophiles (Table[S1). Gut prevalence had a strong phylogenetic
signal (Pagel’s A = 0.97, likelihood-ratio p < 10722), meaning that it was strongly
correlated with the evolutionary relatedness of species. This emphasizes the need for
phylogeny-aware modeling so that signal linking genes to prevalence will not be
drowned out by shared variation in gene content between closely-related species.

To demonstrate the effect of phylogenetic correlation empirically, we fit both a
standard linear model and a phylogenetic linear model for each of the four common
gut phyla and all genes present in that phylum. These models relate logit-transformed
estimates of the prevalence of different species in a phylum to a gene’s
presence-absence in those species’ pangenomes. Recall that the residual variation in
logit-prevalence is independent and normally distributed in the standard linear model,
but has a distribution encoding correlations proportional to species relatedness in the
phylogenetic linear model (see Methods, [4.6). For both standard and phylogenetic
linear models, separate models were fit for each phylum. While this means that genes
weakly-associated across the entire tree of life may have been missed by this approach,
it has the advantage of both reducing the memory needed to store the gene
presence-absence matrix and allowing for phylum-specific rates of evolution for our
phenotype of interest. We modeled associations for 144,651 genes total across the
four phyla, fitting 381,846 models total (since some genes are present in multiple
phyla).

We used the parameter estimates and their standard errors from fitted models to
test null hypotheses of the form Hy : 51,4 = 0, meaning gene g is not associated with
gut prevalence of species in a particular phylum. The p-values were adjusted for
multiple testing using the false discovery rate (FDR) (see Methods, [4.6). We found
9,830 FIGfam gene families positively associated with logit-prevalence within at least
one phylum (FDR ¢ < 0.05) using phylogenetic linear models, 47% of which had no
annotated function. We observed that 75% of the significant genes from these tests
had effect sizes larger than (Bacteroidetes) 0.93, (Firmicutes) 1.03, (Proteobacteria)
0.35, and (Actinobacteria) 2.04, which are within the range of effect sizes for which
phylogenetic linear models showed good performance in simulations (see above).

With standard linear models our tests identified 25,185 genes associated with gut
prevalence, substantially more than with phylogenetic linear models (17.4% versus
6.8% of total). Based on our simulations, these likely included many false positives. The
top results of phylogenetic versus standard linear models (Fig[2) illustrate the pitfalls of
not correcting for phylogenetic correlation. Using the standard model, we recover
associations such as those seen in Fig[2A-B: a subunit of dihydroorotate
dehydrogenase in Bacteroidetes (Fig[2B) and in Firmicutes, a particular type of
glutamine synthetase (Fig[2JA). While these associations might look reasonable at a first
glance, on closer inspection, they depend on the fact that these genes are
near-uniformly present in entire clades of bacteria. These clades are, in general, more
prevalent in the gut compared to the rest of the species in the tree. However, any finer
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structure relating to differences between close neighbors is lost. For example,
dihydroorotate dehydrogenase (Fig[2B) is found not only in the human gut commensal
Bacteroides caccae, but also in its relative Bacteroides reticulotermitis, which was not
only low-prevalence in our samples but was indeed isolated from the gut of a
subterranean termite [36].

While this alone does not necessarily constitute evidence against these genes
having adaptive functions in the human gut, we do expect that matched pheno- and
genotypic differences between close phylogenetic neighbors offer stronger evidence
for an association. An analogy can be drawn with genome-wide association mapping in
humans: models that do not account for correlations between sites caused by
population structure, as opposed to selective pressure, will tend to identify more
spurious associations. In contrast, because the phylogenetic null model “expects”
phenotypic correlations to scale with the evolutionary distance between species, this
approach will tend to upweight cases where phylogenetically close relatives have
different phenotypes and where distant relatives have similar phenotypes. This leads
to the identification of candidate genes that capture more variation between close
neighbors (Fig[2C-D). Thus, phylogenetic linear models will identify genes whose
presence in genomes is more frequently changing between sister taxa in association
with a phenotype.

We provided further evidence that this trend is true in general by calculating the
phylogenetic signal of the top hits from each model using Ives and Garland’s o [37].
This statistic captures the rate of transitions between having and not having a binary
trait (here, a gene) across a tree; higher values therefore correspond to more
disagreement between closely related species and lower values correspond to more
agreement. Indeed, across all four phyla, the linear model identified gene families with
significantly lower Ives-Garland a than the phylogenetic model (Fig[2E, linear model
p < 10719), indicating that these genes’ presence versus absence tended to be driven
more by clade-to-clade differences (i.e., shared evolution).

These results suggest that standard linear models can identify genes that are truly
important for colonizing an environment, such as the healthy human gut, but in
addition will identify other genes that may simply be common in clades associated with
that environment. The latter set will likely include many false positive associations
from the perspective of understanding functions necessary for living in the
environment. Phylogenetic linear models overcome this problem by adding the
expectation that closely-related species will have similar phenotypes and
distantly-related species will have less similar phenotypes, effectively upweighting
instances where this is not the case. These conclusions are supported by our
simulations and by an in vivo functional screen (see section [2.6).

2.4 Gene families associated with gut prevalence provide insight into
colonization biology

Several of the gene families that we observe to be associated with gut prevalence have
previously been linked to gut colonization efficiency. For example, in Firmicutes, we
noticed that several top hits were annotated as sporulation proteins (e.g., “Stage O
sporulation two-component response regulator”, Fig[1[C). Sporulation is known to be a
strategy for surviving harsh environments (such as acid, alcohol, and oxygen exposure)
that is used by many, but not all, members of Firmicutes. Resistance to oxygen
(aerotolerance) is particularly important because many gut Firmicutes are strict
anaerobes [38], sporulation is known to be an important mechanism of transmission
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and survival in the environment (reviewed in Swick et al. [39]), and sporulation ability
has been linked to transmission patterns of gut microbes [31]. Our result associating
sporulation proteins to gut prevalence provides further evidence for sporulation as a
strategy that is generally important for the propagation and fitness of gut microbes.

In Bacteroidetes, we observed an association between gut prevalence and the
presence of a pair of gene families putatively assigned to the GAD operon, namely, the
glutamate decarboxylase gadB and the glutamate/gamma-aminobutyric acid (GABA)
antiporter gadC. These genes show a complex pattern of presence that is strongly
correlated with gut prevalence (Fig[2D, Fig[S5). Results from research in Proteobacteria,
where these genes were first described, shows that their products participate in acid
tolerance. L-glutamate must be protonated in order to be decarboxylated to GABA;
export of GABA coupled to import of fresh L-glutamate therefore allows the net export
of protons, raising intracellular pH [40]. It was previously hypothesized that this acid
tolerance mechanism allowed bacteria to survive the harshly acidic conditions in the
stomach: indeed, if disrupted in the pathogen Edwardsiella tarda, gut colonization in a
fish model is impaired [41]. Listeria monocytogenes with disrupted Gad systems also
become sensitive to porcine gastric fluid [42]. However, while it has previously been
shown that gut Bacteroides do contain homologs for at least one of these genes [40],
their functional importance has not yet been demonstrated in this phylum. Our results
provide preliminary evidence that this system may be important in Bacteroidetes as
well as in Proteobacteria.

2.5 Using body sites as a control allows us to differentiate general
dispersal from a specific gut advantage

The previous analyses have focused on modeling the phenotype of overall prevalence
in the human gut. However, microbes could be prevalent in the gut for at least two
main reasons. First, they could be specifically well-adapted to the human gut; second,
they could simply be very common in the environment (i.e., highly dispersed). The
presence or absence of a gene family could enhance either of these properties. Some
genes might, for example, confer improved stress tolerance that was adaptive across a
range of harsh conditions, while others might allow, for example, uptake and
catabolism of metabolic substrates that were more common in the human gut than in
other environments.

With this in mind, we analyzed the relative enrichment of microbes in the gut over
other human body sites in 127 individuals from the Human Microbiome Project (HMP)
study [33]. We chose other body sites as a control because the physical distance
between sites within a host is much smaller than the distance between people, and
microbes from one body site are likely to be commonly, if transiently, introduced to
other body sites (e.g., skin to oral cavity). To find specifically gut-associated genes, we
used the phylogenetic linear model to regress gene presence-absence on the
logit-transformed conditional probability P(egut|m), i.e., the probability that a body site
was the human gut given that a particular species m was observed, which we
estimated using Laplace regularization (see Methods, [4.9). We identified 4,672 genes
whose presence in bacterial genomes was associated with those species being present
in the gut versus other body sites in at least one phylum (397 in Bacteroidetes, 1,572 in
Firmicutes, 1,284 in Proteobacteria, and 1,507 in Actinobacteria).

Overall, the effect sizes for genes learned from this body site-specific model
correlated only moderately with those learned from the “gut prevalence” models
(median R? = 0.06, range —0.06—0.24), indicating that these two quantitative
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phenotypes describe distinct phenomena. Additionally, the overlap between significant
(g < 0.05) hits for both models was small (median Jaccard index 0.054, range
0.011—0.089). These results are not surprising given that our regularized estimates of
gut specificity were only moderately correlated with overall gut prevalence
(Spearman’s p = 0.33, Fig[S1), even when prevalence was calculated only from HMP
gut samples (Spearman’s p = —0.15). This may arise from different genes being
involved in dispersal or adaptation to many different environments versus those
involved in adaptation specifically to the gut.

Indeed, when we compare enrichments for genes significant in either the body site
or overall prevalence models alone (i.e., genes with g < 0.05 in one model but g > 0.5
and/or wrong sign of effect size in the other), we observe large functional shifts (Fig[3).
For example, in the gut prevalence model, but not the body site-specific model,
Firmicutes were strongly enriched for “dormancy and sporulation” (¢ = 8.7 x 1077).
Because sporulation is likely useful in a wide range of environments beyond the gut,
this result seems intuitive. Body site-specific results for Firmicutes were instead
enriched for genes involved in “phosphate metabolism” (¢ = 0.12) and in particular the
term “high affinity phosphate transporter and control of PHO regulon” (g = 0.05).

We also observed biologically-justified individual gene families that were significant
in the body site-specific model but not the overall gut prevalence model. In Firmicutes,
for example, carnitine dehydratase and bile acid 7-alpha dehydratase were both
significant only in the body site-specific model, suggesting a specific role for these
genes within the gut environment. Indeed, bile acids are metabolites of cholesterol that
are produced by vertebrates and thus unlikely to be encountered outside of the host.
While the metabolite L-carnitine is made and used in organisms spanning the tree of
life, it is particularly concentrated in animal tissue and especially red meat, and cannot
be further catabolized by humans [43], making it available to intestinal microbes. Bile
acid transformation by gut commensals is a well-established function of the gut
microbiome, with complex influences on health (reviewed in Staley et al. [44]).

In Bacteroidetes, we found that a homolog of the autoinducer 2 aldolase IsrF was
significant only in the body site-specific model. Autoinducer 2 is a small signaling
molecule produced by a wide range of bacteria that is involved in interspecies quorum
sensing. The protein IsrF, specifically, is part of an operon whose function in Escherichia
coliis to “quench” or destroy the Al-2 signal [45]. Further, an increase of the Al-2 signal
has been shown to decrease the Bacteroidetes/Firmicutes ratio in vivo in the intestines
of streptomycin-treated mice [46]. Degrading this molecule is therefore a plausible
gut-specific colonization strategy for gut Bacteroidetes. These discovered associations
make the genes involved, including many genes without known functions or roles in
gut biology, excellent candidates for understanding how bacteria adapt to the gut
environment.

2.6 Deletion of gut-specific genes lowers fitness in the mouse
microbiome

Beyond finding evidence for the plausibility of individual genes based on the literature,
we were interested in whether more high-throughput experimental evidence
supported the associations we found between gut colonization and gene presence. To
interrogate this, we used results from an in vivo transposon-insertion screen of four
strains of Bacteroides. This screen identified many genes whose disruption caused a
competitive disadvantage in gnotobiotic mice, as revealed by time-course
high-throughput sequencing; 79 gene families significantly affected microbial fitness
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across all four strains tested [47]. Determining agreement with this screen is somewhat
complicated by the fact that we associated gene presence to gut specificity across all
members of the phylum Bacteroidetes, and not only within the Bacteroides genus.
Significance of overlap therefore depends on what we take as the null “background”
set, the cutoff used for significance, and the set of results from the screen we choose
as true positives (Table[S3).

Despite these complications, this analysis clearly showed that the 79 genes whose
disruption led to lower fitness in the murine gut across all four Bacteroides species
were over-represented among our predictions for gut-specific genes (odds ratio = 4.39,
g = 8.3 x 1073), and remained so if we only considered the gene families that were
present in all Bacteroides species (odds ratio= 7.02, g = 3.0 x 1073) (Table .
Interestingly, we observed the opposite pattern for the overall prevalence model: the
prevalence-associated genes we identified were actually depleted for genes found to
be important in vivo (odds ratio = 0.18, g = 7.7 x 1073). We believe that this is because
the body-site-specific model, like the experiment, focused specifically on colonization
efficiency, while the overall gut prevalence model would have included genes involved
in persistence and dispersal in the environment and transfer between hosts. This
experimental evidence supports the idea that environment-specific phylogenetic linear
models truly identify genes that are important for bacteria to colonize an environment.

2.7 We identify Proteobacterial gene families associated with
microbes that are more prevalent in Crohn'’s disease

The above analyses were performed with respect to the gut of healthy individuals from
the mainly post-industrial populations of North America, Europe and China. However,
we also know that taxonomic shifts are common between healthy guts versus the guts
of individuals from the same population with diseases such as type 2 diabetes,
colorectal cancer, rheumatoid arthritis, and inflammatory bowel disease (reviewed in
Wang et al. [48])). One explanation for these results is that sick hosts select for specific
microbial taxa, as with the links previously observed between Proteobacteria and the
inflammation that accompanies many disease states [49]. Since gut microbes have also
been implicated in altering disease progression (reviewed in Lynch and Pedersen [50]),
identifying genes associated with colonizing diseased individuals may afford us new
opportunities for intervention.

To identify microbiome functions that could be involved in disease-specific
adaptation to the gut, we looked for genes that were present more often in microbes
that discriminated case from control subjects. Specifically, we compared n = 38 healthy
controls from the MetaHIT consortium to n = 13 individuals with Crohn’s
disease [51}/52]. Similar to our analysis of gut versus other body sites, we used the
conditional probability that a subject had Crohn’s disease given that we observed a
particular microbe in their gut microbiome P(ecp|M) (see Methods). We identified
1,904 genes whose presence in bacterial genomes is associated with Crohn’s after
correcting for phylogenetic relationships in at least one phylum (800 in Bacteroidetes,
272 in Firmicutes, 529 in Proteobacteria, and 319 in Actinobacteria).

Three of our top Proteobacterial associations were annotated as fimbrial proteins,
including one predicted to be involved specifically in the regulation of type 1 fimbriae,
or pili (FimE, association g = 4.0 x 107°), cell surface structures involved in attachment
and invasion. Crohn’s pathology has been linked to an immune response to invasive
bacteria, and adherent-invasive E. coli (AIEC) appear to be overrepresented in ileal
Crohn’s [53]. In an AIEC E. coli strain isolated from the ileum of a Crohn’s patient, type 1
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pili were required for this adherent-invasive phenotype [54]. Chronic infection by AIEC
strains was also observed to lead to chronic inflammation, and to an increase in Th17
cells and a decrease in CD8™ T cells similar to that observed in Crohn's patients [55].

An additional striking feature of the results was the number of Proteobacterial
proteins associated with greater risk of Crohn’s that were annotated as being involved
in the the type lll, IV, VI, and ESAT secretion systems (Fisher’s test g = 0.13). On
further investigation, we found that these proteins were actually all predicted to be
involved in conjugative transfer, a process by which gram-negative bacteria in direct
physical contact share genetic material. More specifically, many of these genes were
homologs of those involved in an “F-type” conjugal system for transferring IncF
plasmids, which can be classified as a variety of type IV secretion system [56].
Previously, in a mouse model, gut inflammation was shown to stimulate efficient
horizontal gene transfer in Proteobacteria by promoting blooms of Enterobacteriaceae
and thus facilitating cell-to-cell contact [57]. Future work will be required to determine
whether this increased conjugation is a neutral consequence of inflammation, a
causative factor, or provides a selective advantage in the inflamed gut.

3 Discussion

The present analyses represent a first look into what can be learned by combining
shotgun metagenomics with phylogenetically-aware models. Several extensions to our
work could be made in the future. First, in addition to modeling prevalence, for
instance, we could model abundance using a phylogenetic linear model with random
effects [58], potentially allowing us to learn what controls the steady-state abundance
of species in the gut. Additionally, we could also use these models to screen for
epistatic interactions, which would be near-intractable even in systems with
well-characterized genetic tools, but for which a subset of hypotheses could be
validated by, e.g., comparing the fitness of wild-type microbes with double knockouts.
While controlling the total number of tests would still be important to preserve power,
an automated, computational approach to detecting gene interactions would still offer
important savings in time and expense over developing a genome-wide experimental
library of multiple knockouts per organism under investigation.

Currently, these analyses estimate species abundance and gene presence-absence
from available sequenced isolate genomes. However, it has been estimated that on
average 51% of genomes in the gut are from novel species [31]. Especially for
case/control comparisons, using information from metagenomic assemblies could
enable quantification of species with no sequenced representatives, and would yield a
more accurate estimate of the complement of genes in the pangenome for species that
do have sequenced representatives. This would be particularly helpful in gut
communities from individuals in non-industrialized societies that are enriched for novel
microbial species [31]. In fact, genes then could be treated as quantitative variables
(e.g., coverage or prevalence) rather than binary, which is possible for covariates in
phylogenetic linear models and simply changes the interpretation of the association
coefficient (3; g.

Another potential extension would be to model prevalence and
environment-specific prevalence for taxa other than the species clusters analyzed in
this study. We focused on four prevalent and abundant phyla of bacteria, but our
methods could be applied more broadly as long as quantitative phenotypes and
genotypes could be accurately estimated. Phylogenetic linear modeling could also be
applied directly to genera or higher taxonomic groups, although both phenotypes and
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genotypes would be averages over more diverse sets of genomes, which could result in
associations with different signs canceling out. As more genome and metagenome data
is generated for microbial populations over time, extensions of phylogenetic linear
modeling (e.g., with random effects [58]) may also be useful for studying associations
between phenotypes and evolving gene copy number and single nucleotide variants at
the strain level. This application would require accurate trees with strains as leaves,
each with estimates of a phenotype and genotype. Additionally, our current definition
of species approximates a 95% average nucleotide identity (ANI) cutoff; while this
approach is a standard bioinformatic approach [59], and appears to be a “natural
boundary” in analyses of genome compendia [60], the precise definition of a bacterial
species remains a matter of active debate, and in the future may include phenotypic
information [61] or information about gene flow [62]. Beyond prevalence, other
phenotypes will also be interesting to investigate, especially experimentally measured
phenotypes from high throughput screens and other techniques that complement
genomics.

In summary, using phylogenetic linear models, we were able to discover thousands
of specific gene families associated with quantitative phenotypes calculated directly
from data: overall gut prevalence, a specificity score for the gut over other body sites,
and a specificity score for the gut in Crohn’s disease versus health. Importantly, we
have shown through simulation and real examples that standard linear models are
inadequate for this task because of an unacceptably high false-positive rate under
realistic conditions. Furthermore, many of the results we found also have biological
plausibility, both from the literature on specific microbial pathways and from a
high-throughput in vivo screen directly measuring colonization efficiency. In addition to
these expected discoveries, we also found thousands of novel candidates for
understanding and potentially manipulating gut colonization. These results illustrate
the potential of integrating phylogeny with shotgun metagenomic data to deepen our
understanding of the factors determining which microbes come to constitute our gut
microbiota in health and disease.

4 Methods

A graphical overview of our statistical methods can be found in Fig[52]

4.1 Species definition

We utilized the previously published clustering of 31,007 high-quality bacterial
genomes into 5,952 species from the MIDAS 1.0 database [31]
(http://lighthouse.ucsf.edu/MIDAS/midas_db_v1.0.tar.gz). These species
clusters are sets of genomes with high pairwise sequence similarity across a panel of
30 universal, single-copy genes. The genomes in each species clustering have
approximately 95% average genome-wide nucleotide identity, a common
“gold-standard” definition of bacterial and archaeal species [63]. These species-level
taxonomic units are similar to, but can differ from, operational taxonomic units (OTUs)
defined solely on the basis of the 16S rRNA gene.

Taxonomic annotations for each species were drawn from the MIDAS 1.0 database.
Some taxonomic annotations of species in the MIDAS database were incomplete;
these were fixed by searching the NCBI Taxonomy database using their web API via
the rentrez package [64] and retrieving the full set of taxonomic annotations.
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4.2 Pangenomes

Pangenomes for all species used in this study were downloaded from the MIDAS 1.0
database. As previously described [31], pangenomes were constructed by clustering
the DNA sequences of the genes found across all strains of each species at 95%
sequence identity using UCLUST [65]. Pangenomes were functionally annotated based
on the FIGfams [35] which were included in the MIDAS databases and originally
obtained from the PATRIC [66] database. Thus, each pangenome represents the set of
known, non-redundant genes from each bacterial species with at least one sequenced
isolate.

4.3 Phylogenetic tree construction

The tree used for phylogenetic analyses was based on the tree from Nayfach et al. [31]
based on an approximate maximum likelihood using FastTree 2 [67] on a concatenated
alignment (using MUSCLE [68]) of thirty universal genes. Thus, each tip in the tree
represents the phylogenetic placement for one bacterial species. For the current
analyses, the tree was rooted using the cyanobacterium Prochlorococcus marinus as an
outgroup, and the tree was then divided by phylum, retaining the four most prevalent
phyla in the human gut (Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria).
One Actinobacterial species cluster, the radiation-resistant bacterium Kineococcus
radiotolerans SRS30126, was dropped from the tree because it had an extremely long
branch length, indicating an unusual degree of divergence. Finally, phylum-specific
trees were made ultrametric using the chronos function in the R package ape [69],
assuming the default “correlated rates” model of substitution rate variation. We
performed this step because first, our taxa were contemporaneously sampled, and
second, we assumed that our phenotypes of interest varied with divergence time, as
opposed to the number of substitutions per site separating marker gene

sequences [70].

4.4 Estimating species abundance across human associated
metagenomes

Metagenome samples were drawn from subjects in the Human Microbiome Project
(HMP) [33], the MetaHIT consortium [51}/52], a study of glucose control [71], and a
study of type 2 diabetes [[72]. Accession numbers were identified using the aid of
SRAdb [73] and downloaded from the Sequence Read Archive (SRA) [74]. The relative
abundance of bacterial species in the metagenomes was estimated using MIDAS

v1.0 [31], which maps reads to a panel of 15 phylogenetic marker genes. Species
relative abundances are computed as previously described [31] (“Species abundance
estimation”): essentially, they are normalized counts of reads mapping to bacterial
species, with non-uniquely mapped reads assigned probabilistically.

Accession IDs used can be found in Table[S4} For prevalence estimates, we used
healthy subjects from all four cohorts; for body site comparisons, we used only healthy
subjects from HMP [33], and for the Crohn’s case-control comparison, we used only
subjects from the MetaHIT consortium [51,/52].
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4.5 Modeling gene-phenotype associations

The basic design is the same for all models that we fit: we model the effect of a
categorical variable, gene (specifically, FIGfam family) presence vs. absence, on a
particular phenotype estimated for many microbes from data.

Here, let d?X,E[,D](A) refer to a vector whose elements ¢, . £[ pj(A) refer to an
estimate of the phenotype ¢ for a microbe m, in an environment e, from a set of k
environments E = {ey, ... e}, optionally also adjusting for potential dataset effects D,
based on a matrix of microbial presence-absence data A. We then model the effect on
this phenotype of having vs. lacking each particular gene g, fitting one model per gene:

G £1,0)(A) = Bo + Brgly + &

where 3, is a baseline intercept value, 3; 4 is the effect size of gene g, /; is a binary
vector whose elements /, ,, are 1 when microbe m'’s pangenome contains the gene g
and 0 otherwise, and €, are the residuals. We then test the null hypothesis
Ho : B1,4 = 0, yielding one p-value per gene; the resulting genewise p-values are finally
corrected for multiple testing using an adaptive false discovery rate approach (g-value
estimation).

The differences in the models we fit concern only how we obtain phenotype
estimates @ELD](A), and our assumptions about how the residuals €, are distributed.

4.6 Fitting linear vs. phylogenetic models

The phylogenetic and standard linear models are very similar, except for the
assumptions about the distribution of the residuals. In the standard linear model, the
residuals are assumed to be independently and identically distributed as a normal
distribution, i.e., €5 m ~ N(0, 0°) or using multivariate notation €, ~ N(0, 62/). In the
phylogenetic model, in contrast, the residuals are not independent: rather, they are
correlated based on the phylogenetic relatedness of the species. They are therefore
distributed ¢ ~ N(0, X), with the following covariance matrix:

2

2 O12 -+ O1n
o271 02

Z =
On1 o2

where | is the number of species, o2 is the overall variance, and o » is the covariance
between species 1 and species 2. Under the assumption of the phylogenetic model
(evolution of a continuous phenotype according to Brownian motion), this covariance is
proportional to the distance between the last common ancestor of species 1 and 2 and
the root of the tree. Thus, very closely-related species have a common ancestor that is
far from the root, while the last common ancestor of two unrelated species is the root
node itself. This method was first described in Grafen [26]; for this study, we use the
implementation in the phylolm R package [75].

0B1 parameters were tested for a significant difference from 0 and the resulting
p-values were converted to g-values using Storey and Tibshirani's FDR correction
procedure [76,77].
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4.7 Metagenomic presence-absence data

We use binary presence-absence data to calculate the phenotypes of interest. More
formally, we conceptualize the metagenomic data as a matrix A of microbial
presence-absence with dimensions / x j, where i is the number of microbes and j is the
number of samples, and a,, , is 1 if the relative abundance of microbe m (calculated
using MIDAS'’s taxonomic profiling [31]) is greater than 0, and 0 otherwise:

ai1 di12 0 a1

dp1 d2p2 a j

i1 di2 o dij

We conceptualize each e;, e, ..., e € E as a set of indices, referring to samples

collected from that environment, e.g., the oropharynx in healthy subjects, or the gut in
subjects with Crohn’s disease, such that forall e, € £, e, C {1, 2, ..., j}. Because one
environment may be tested in multiple studies, for our prevalence estimates, we also
define a similar mapping of samples to datasets d;, d>, . . ., d; € D such that for all
d eD,d, C{1,2,..., j}. (For calculating environmental specificity scores, to avoid

having to correct for unbalanced designs, we only use single datasets that measured all
environments to be compared.) We also assume that £ and D are partitions of
{1,2,..., J}, such that every sample is covered and no sample belongs to multiple e, or

4.8 Estimating the prevalence phenotype

The first phenotype we consider is prevalence, p. Prevalence is usually defined as the
fraction of samples in which a particular taxon is observed. Using the formulation
above, the prevalence of microbe m in environment e, and study d, would be equal to:

an/\/(am,n)

, N={end,}
IV Y

where we denote the quantity Zne{exmdy}(l), yielding the number of samples in
environment e,, as || N|].

We now take a slightly more general definition, such that a particular taxon’s true
prevalence p,, y is the probability of observing a particular microbe m in a set of
samples N, P(m|N). Because N = e, N d,, we can also write this as P(m|ey, d,). More
specifically, we can say that p,,  is the probability parameter of the binomial random
variable a,, 5, which one can think of as generating the samples a,, , such that n € N in
our matrix A:

am,N ™~ Blnom(HNH, pm,N)
PmN = P(m|e><v dy)

The maximum likelihood estimator of p,, n given the data matrix A is then, as above,
the fraction of subjects in NV in which microbe m was observed:

AMLE > nen(@mn)
pm A = A

Because p is a proportion or probability, it is bounded between O and 1. The
distribution of p is therefore highly non-normal, potentially violating assumptions of
our regression model. We will therefore uselogit(p) as our phenotype. However, this
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now introduces a problem because ;3',\”’“-,5 can take the values 0 and 1, leading to infinite
estimates of logit(p,, n) . We therefore instead use a shrunken estimate of p,, n.

Shrinkage estimators reduce the variance in the estimate of a parameter by
combining it with prior information. These priors can be estimated from data (as in
empirical Bayes approaches), estimated from independent information about the
distribution of the parameter, or selected to be uninformative. Here, we use an
uninformative prior, in this case a uniform distribution:

a1y ~ Binom(|[N]], pm )
pm.n ~ Beta(1,1)

Mechanistically, this is equivalent to performing additive smoothing, which effectively
adds one pseudocount to the numbers of absences and presences:

AP (4 — 142 nen @mn
N 24 (IN]

Finally, we note that this estimate of prevalence is only valid within a single study
d, O N. However, what we really want is an estimator of prevalence that depends only
on the environment e,. We therefore marginalize out the effect of d,:

P(mle) = P(mle., d,)P(d,) =Y _ P(mIN)P(d,), N ={e,Nd,}

where we let the prior probability P(d,) simply be the probability of choosing a sample
belonging to a dataset d, out of all samples in environment e, or:
NI _ [lecndy]

|ex!| |lexl|
Effectively, this weights each dataset inverse-proportionally to the number of samples,
so that the study with the largest number of samples does not dominate our estimates
of prevalence. To avoid effects from additive smoothing dominating our estimates (as
might happen if the same smoothing were applied to samples with different numbers

of samples), we first obtain a marginalized version of the maximum-likelihood
estimator, then perform additive smoothing on these marginalized estimates:

sML lexndy ||
B (Zy P {end,} eHeXH ) (Zy l[ex N dy“) +1
>, llecndyl]) +2

Finally, we use the logit of this estimate, i.e., logit(p,2P¥, (A)), as the elements

¢ - H(A) of our first phenotype ¢7'e" , (A):

N . .Nd,
(Zy Phtendy) Hel\gxl\ H) (X, llexndyll) +1
(>, llexndyll) +2

P(dy)

Pt o(A)

heY £ 5 (A) = logit

To recapitulate, we use a logit-transformed, shrunken estimate of prevalence in a
given environment, weighted so that each study contributes equally.

4.9 Estimating environmental specificity scores
4.9.1 Formulating the specificity score

Prevalence gives us information about how commonly a microbe is seen in a particular
environment. While useful, this concept does not address the difference between
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microbes that are specific for a given environment and those that have a cosmopolitan
distribution. We therefore wanted to design a statistic capturing this environmental
specificity. We define this statistic in terms of how predictive a particular microbe is for
one out of a set of possible environments. (For simplicity, we only consider cases in
which all environments were measured within a single study, and therefore drop D
from these equations. This estimator could be extended in the future to account for
study effects as above.)

Recall that prevalence can be defined as the probability P(m|ey), i.e., the probability
of observing microbe m in environment e,. To avoid potential sources of confounding
error, we only consider environments both measured within the same study. We
therefore let the environmental specificity score s, « £ equal the probability of
observing a particular environment e, out of a set of k environments
E={e,e,..., ex}, given that we observe microbe m:

Smx.e = Plex|m)
which, by application of Bayes’ rule and then marginalization, becomes:

Peym) = P(mledP(e) _ P(mledP(e)  _ pmeP(e)

P(m) 25:1 P(mle,)P(ey) ZI;:1 Pm.e, P(ey)

where P(m|e,) is the prevalence p, ., of microbe m in environment e, € E, and P(ey)
is the prior probability of observing environment e,. The priors P(e) can be
uninformative, in which case P(e.) = 1/k for all x, meaning that all environments are
equally likely. This is the approach we take for body site comparisons. Alternatively, for
a disease state, it could be drawn from actual epidemiological data about the frequency
of that disease in the population of interest. This is the approach we take for the
Crohn'’s disease comparisons, taking P(ecp) = 0.002 [78], since in a Crohn’s
case-control study, the fraction of individuals with Crohn’s will be much higher than
the true prevalence of this disease in the population. In either case, the P(e) values do
not depend on the values in the dataset A. An intriguing third possibility that would
depend on A would be to estimate the priors P(e,) based on the average observed
a-diversity within environment e, such that more diverse environments would be
modeled as a priori more likely to contain any particular microbe.

4.9.2 Motivating a shrunken estimator of s, , £ (A)

One simple way to estimate 3y,x,£(A) would be to simply plug in our estimates of
PAPD(A), yielding:

&ADD (A) = ﬁﬁ?e?(A) - P(ex)
X, E - ~
" Sou—1 PAPD(A) - P(ey)

However, for cases in which the number of total observations of a microbe .. am»
is low (imagine, e.g., a microbe that is observed once in environment e; and zero times
in &), even the shrunken estimate p,°° (A) will have relatively high variance. This is
particularly problematic here because both the numerator and denominator of
§/PP_(A) depend on p2PP(A), so as pm,1,e — 0, the standard error of 0P (A) will
tend to increase. This means that the microbes with the least-confidently estimated
prevalences will tend to have high leverages in the regression, distorting the results.
The confounding between the magnitude of $2°P_(A) and its standard error also leads
to heteroskedasticity, or unequal variance across the residuals, violating one of the

main linear model assumptions.
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To account for these issues, we construct a more aggressively-shrunk estimator of
Sm.x.£- We assume that most microbes do not differ substantially between
environments, and therefore shrink estimates of s, x ¢ = P(ex|m) towards the prior
probability P(e,), indicating that that this microbe is uninformative about the
environment. To accomplish this, we use a maximum a posteriori (MAP) estimator,

r'\r’,"iPE(A), with a Laplace prior centered on P(e,). Laplace priors are also used in the

Bayesian lasso to make parameter estimates more sparse, by shrinking them to zero.

However, critically, we are not using the Laplace prior to perform model selection,
since the exact same model is fit as in equation (1); we are only using it to reduce the
variance in estimating 3, x £; unlike the Bayesian lasso, we therefore use no
information about the independent variable (gene presence-absence) in obtaining
estimates of 5, . £.

4.9.3 An estimator of s, , £ using Laplace shrinkage

Before introducing this estimator, we briefly define the “environment-weighted
prevalence” of a microbe m as its prevalence in each environment ¢, € E weighted by
the prior probability of that environment P(e, ). Similarly to our previously-defined
study-weighted prevalence estimator, this can be thought of as the overall probability
of encountering a microbe, marginalized over environments:

PE (A Z(ﬁmb ea)(P(ey))

Since we are not taking the logit of this estimate, we can use the ML estimator. The
environmental specificity score can then be modeled in this way:

am,e. ~ Binom(Ne, prosteror(A))
(gMAP AENV
APostenor(A) m X, E( ))(prEnnEW( ))
m x,E P(ex)
Iog|t(5mAXPE(A)) ~ Laplace(P(ey), b)

where b is a hyperparameter giving the width of the Laplace distribution, or
equivalently the amount of shrinkage. Here, we are attempting to estimate sMAP. The
MAP estimate takes the following form:

SMAP_(A; b) = argmaxgme_(a, »-Z (Allogit(s)) x f(Alb) (2)

where § is the parameter being estimated, A represents our data matrix, .Z represents
the likelihood function of the distribution from which the data is assumed to be drawn,
f represents the density function of the prior distribution (without which the estimator
reduces to the maximum-likelihood estimator), and b is the hyperparameter as above.
We can expand this to give the final maximization:

St £ (A1 b) = argmaxawe_(4.p) [((LGXH> ( ,'?,Oiteg”or(A)) ” (1 ﬁsqoitenor(A)) llexll= ”""5) X
ob.

(1 exp( OB R (A1) — Iogit(P(exmﬂ a)

2b (- b

where we let nops = >, c. am.n, i.€., the number of times microbe m was observed
in environment e,.
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4.9.4 Choosing the Laplace width parameter

To choose appropriate, dataset-specific values of b, which controls how much
sMAP-(A; b) is shrunk back to the prior, we performed simulations. We chose a
simulation-based approach instead of, for example, cross-validation because we lacked
labeled examples of microbes that truly differed between environments. Instead, we
constructed datasets A’ with elements a/, , where we “knew” that some microbes

(m € My) were not informative about the environment and others (m ¢ M) had “true”

differences, by simulating data with the following model:

afney ~ Binom(Ne, pm.y.£)

 {m vy #x)
o€ = logistic(logit(qm + zn)) (v = X)

WES (2- (Bernoulli(r)) = 1) (m ¢ My)
™ Vo (m e M)

dm ~ Beta(a, b)

In other words, for each species m in different environments e, € E,
presence-absence a;, . was modeled as a binomial random variable. The success
parameter from this binomial was drawn from a Beta distribution with parameters a
and b, which were fit from a single environment in the corresponding real dataset using
maximume-likelihood, thus ensuring that the simulated species had similar baseline
prevalences as real species. In species with no difference between environments
m € Moy, the true prevalence p,, « ¢ was set to be equal between the environment of
interest e, and all other environments; in species with true differences between
environments (m ¢ M), in contrast, the effect size z was either added or subtracted
from the logit-prevalence (with the parameter r controlling the proportion of positive
true effects). The number of null species ||[My|| was set to 25% of the total number of
simulated species ||M||, which was matched to the real dataset.

For a given simulated dataset and value of b, the false positive rate (F PR}) and the
true positive rates for F > 0 and F < 0 (T PRyos and T PR g, respectively) were
calculated:

FPRy = #(|P(ex)|m € Mo) — P(ex)| > €)/|IMol|

TPRpos, = #(P(ex|(zm > 0)) — P(ex) > €)/#(zm > 0)
TPRneg, = #(P(ex) = P(e|(zm < 0)) > €)/#(zm < 0)

Since we are using numerical optimization, posterior probabilities are not always
shrunk exactly to the prior; we therefore use a tolerance parameter ¢ set at

P(ex) - 0.005 to account for numerical error. The tuning parameter b was then
optimized according to the following piecewise continuous function, which increases
from O to 1 until the false positive rate drops to 0.05 or lower (in order to guide the
optimizer), and then increases above 1 in proportion to the average (geometric mean)
of the positive and negative effect true positive rates:

1—FPR, FPR, > 0.05
14 \/TPRpos, X TPRyeg, FPR,<0.05

boptim = argmax, {

Given z = 2 and r = 0.5, for Crohn’s disease, boptim Was estimated at b = 0.14 and
for the body site specificity, boptim Was estimated at b = 0.19. (Changing z to 1 or 0.5,
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or changing r to 0.1 or 0.9, resulted in very similar estimates of bgptim. Additionally,
boptim €Stimates were consistent across several orders of magnitude of ¢; see Fig )

4.9.5 Worked example

An example showing the effect of this procedure on real data can be seen in Fig[S3]
The microbe Bacillus subtilis is detected once in the healthy cohort and once in the
Crohn'’s cohort, while Bacteroides fragilis is present in 24/38 healthy subjects but 13/13
Crohn’s subjects (Fig[S3JA). The maximum-likelihood values of p, cp.£(A) and
Sm.cp.e(A) are therefore much higher for B. subtilis than for B. fragilis, even though the
evidence for a difference across environments in the prevalence of B. subtilis is much
weaker (Fig[S3B-C). In contrast, the Laplace prior (Fig[S3D) successfully shrinks the
estimate of the B. subtilis specificity score back to the baseline (P(ecp) = 0.002), while
the evidence for B. fragilis overcomes this prior and yields an estimate close to the
maximume-likelihood value (0.0031; Fig[S3E).

4.10 Alternatives to shrinkage estimation of environmental specificity
scores

An alternative to using the Laplace shrinkage estimator would be to allow all taxa to
contribute to the regression, but to downweight taxa with less-confidently measured
phenotypes. In generalized least squares (GLS), this is typically accomplished by scaling
the variance-covariance matrix of the residuals by the variances of the estimators. This
in effect says that the residuals are expected to be more dispersed around the
regression line when the variance of the estimator is high: equivalently, this procedure
weights each point in least-squares by the inverse of the estimator’s variance. We
represent these variances as v, = (SE(8,.x.£(A)))? . The covariance matrix is then:

o1vi O12y/V1iVa -+ O1.m\/ViVm
02,14/ V2 V1 02V2
yWLS _

Om,1v/VmV1 OmVm

where ¢ values are as above. (Off-diagonal elements are weighted by the geometric
mean of the variances, thus giving the same correlation structure as before.)

Because we have the data matrix A from which 5/°5_ was estimated, we can
estimate the variances of these estimates by bootstrapping. Denoting the s estimates
derived from bootstrap sample c as 57, | -, where c € {1, C} and C is the number of
bootstraps, and letting the mean across bootstrap samples be 5, £, then

_(_1 x~C rac _ = 232
Vm = (Cfl Zc:l(sm,x,E Sm,X,E) ) .

Both approaches (Laplace shrinkage estimation and WLS) account for variability in
the accuracy of estimating s, « £, but in different ways. We would expect them to
agree more when s, . g values were more confidently estimated (meaning the
evidence for difference from the prior would be stronger and the extent of
downweighting would be lower), and when more of the s, . £ values diverged
substantially from the prior (leading to less sparsity in §,5i2'?,§e). Indeed, when comparing
body site specificities, which are based on higher numbers of samples and involve
comparisons across highly divergent environments, both approaches yield more similar
estimates, and become more concordant when the effect sizes are calculated only over
significantly-different gene families. In contrast, for the Crohn'’s disease comparison, in
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which the environments (healthy vs. diseased gut) are more closely related and the
number of samples is smaller, the two methods tend to disagree more, especially in
phyla where most taxa are shrunk back to the prior (Table[S2). These results reflect the
different underlying assumptions of each estimator: Laplace shrinkage assumes that
taxa are not truly varying across environments without strong evidence, while WLS
uses information from all taxa but downweights less-confidently-observed species. For
the purposes of this manuscript, we focused on the results based on Laplace shrinkage
estimation, since we believe the assumption that most taxa do not change is
appropriate when comparing the same body site in health and disease. However, either
approach may be preferable depending on the precise scenario being studied. It could
also be possible to combine the two approaches by, for example, using the full
posterior distribution of 3, , £ to derive weights.

4.11 Power analysis

To test the power and false positive rate of our method, we used parametric
simulations, either under the null hypothesis in which a gene had no effect on the
phenotype, or under the alternative hypothesis in which it had a defined effect. These
involved generating one binary genotype and one continuous phenotype per
simulation. These were parameterized as follows:

e The continuous phenotype ¢>™ is simulated according to a Brownian motion
model with parameters Gy corresponding to the ancestral state of the phenotype
and o2 corresponding to the phenotype’s overall variance (i.e., the diagonal of &
in the phylogenetic model).

¢ The binary genotype /™ is generated from a Markov process as in Ives and
Garland, with parameters o and 3;. a gives the sum of the transition probabilities
going from O to 1 and from 1 to 0. 3; gives the effect size: that is, how much the
simulated phenotype influences the binary genotype (in logit space).

We perform the following process, given a choice of o and 3;, for each phylum h:

1. Estimate the parameters 6§rev and o2 by fitting the following intercept-only
phylogenetic model to the real prevalence phenotype:

(A =65 + €
where ¢ ~ N(0,¥) and Diag(X) = 02
2. For each of B simulations:

(a) Generate a continuous phenotype ¢>™ according to a Brownian motion
process, evolving along the tree of phylum h, with parameters 65rev and o2.

(b) Generate a binary genotype /™ according to an Ives-Garland Markov
process with parameters o and 8; and a covariate <f>§",'__l

(c) Fit the following regression equation:
(ZS‘Sim — El)'est +6Iest/'5im +e

using either a standard linear model or the phylogenetic model (as specified
in Methods[4.6).

(d) Return the p-value for the test of the null hypothesis B¢t = 0.

March 21, 2018 22


https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/189795; this version posted March 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

3. The fraction of p-values < 0.05 yields the power (when given 5; > 0) or the false
positive rate (when given 3; = 0) of the test.

The binary genotype effect size §; is not a linear function of the effect of the gene on
prevalence. A more intuitive description of the effect size might be the (average)
fold-change in prevalence associated with a gene’s presence. Because the parameters
B7est are on a logit scale, this quantity would be equal to:

_ logistic (B1%* + B{*=t)
~ logistic(B)

This quantity will depend on the amount of phylogenetic signal in the binary genotype
a, the tree along which genotypes and phenotypes are simulated, and the “input”
effect size B;. Accordingly, we simulated sets of 50 binary genotypes with given effect
sizes B; € {0, 0.5,0.75,1.0,1.25} and values of a € {0, 25, 50}. While there is
substantial variation, in general an “input” effect size (i.e., ;) of 1.0 approximately
corresponds to F ~ 2, a two-fold difference in prevalence, and an “input” effect size of
0.5 corresponds to F ~ 1.5, a 50% increase (Fig[S8).

4.12 Assessing the potential impact of sampling with left-censoring

One potential pitfall with applying linear methods occurs when the distribution of the
response variable (here, our phenotype) has a minimum value. This arises because,
within a particular dataset, the lowest possible value of p/°PP.(A) is equal to |[e.|| 7%,
where ||e,|| is the number of samples in environment e,. This phenomenon is referred
to as “left-censoring.” (Some may have encountered the term “left-censoring” in the
context of participants who join a study having already experienced an event of
interest. The time they experienced this event is therefore lower by an unknown
amount than the lowest-possible measured value. While the domain and application
are different, the statistical phenomenon is the same.) Left-censoring can result in
inaccurate p-values because the variance is mis-estimated for the data points below
the limit of detection. We therefore empirically assessed the impact of left-censoring
in simulation, and also created extensions of the method to be used when its impact is
noticeable.

Empirically, our prevalence phenotype (f)ffeEV(A) displays substantial left-censoring
(Fig[S6A). The distribution of this phenotype fits well to a normal with left-censoring at
the limit of detection, in this case approximately —0.50 standard deviations below the
mean (AIC using truncated normal and censoring: 20844.82; AIC using standard normal:
21833.38).

We therefore repeated the simulation process above, but after using our continuous
phenotype to generate the binary genotype in step 2.b, we truncated the continuous
phenotype ™ artificially at a specified number of standard deviations K below the
mean, yielding $°e". We then replaced #>™ with ¢<" in the regression in step 2.c.

Using this simulation framework, we benchmarked three different ways to test the
significance of 3]t in the phylogenetic model. We computed p-values in one of the
following three ways:

1. t-statistic: Return the p-value of a t-test of the null hypothesis that 5]t = 0, as
in Methods

2. Parametric Bootstrap: Simulate a number C of null binary genotypes /¢ with
B1=0,wherece{l,..., C'}, and collect the estimates 3¢ based on the
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following phylogenetic linear model:
¢ = B5 + BLI + €

Then compute the fraction that are at least as extreme as the test statistic BIE“
and return this as a p-value:

1y {1 (B - B)?) = (BT — B))?
C o (85 - B9 < (BTt - B))?

where 3¢ is the mean of 3¢ values. To save computation time on high p-values,
we use early stopping: after every 25 such simulations, if the resulting p-value
would already be guaranteed to exceed 0.05, we stop and return the p-value
based on the current number of simulations.

3. Mock-Uncensored Bootstrap: As #2, simulate a number C of additional binary
genotypes with 8; = 0. Instead of calculating p-values as in #2, however:

(a) Simulate the same number C of “uncensored” versions of the continuous
phenotype ¢V, in effect “filling in” or imputing the censored values with
random values from the predicted tail of the distribution (see Fig[Sé|B-C for
an illustration):

i. First, fit a left-truncated normal distribution to the part of ¢<e"s that is
above the lowest value (assumed to be the limit of detection) by
maximum likelihood (using fitdistcens in R package fitdistrplus),
yielding mean p ™", standard deviation 62™™, and lower truncation
point min(@5e™) statistics (e.g., Fig[SéB).

ii. Next,force {1,..., C}, generate a vector T< whose elements TS are
realizations of the random variable 7 ~ NRTunc(  Trunc ;270 i (gCens)y
Here, NRTUNC represents a right-truncated normal distribution, having
mean 1™, variance 62", and upper truncation point min(¢Se"). Then
generate the “uncensored” vector V" with elements @Y as follows:

Unc® ¢S7ens d)%ens > min((bsqens)
e A
(An example can be seen in Fig[SEC).
(b) Foreachce {1,..., C}:

i. estimate a test statistic B’Ie“c by fitting the following phylogenetic linear
model:
QT)‘UncC — gestc +6'1Festc /‘Sim te

ii. estimate a null test statistic 61C by fitting the following phylogenetic
linear model:
q‘bUncC — 6£I)'estc +61C/% te

(c) Calculate p-values as follows:

1i {1 ((B5 — BS)?) > (BTt — BS))?
C 410 ((Bs B> < ((BF - BS))>

where 3¢ is the mean of the 3§ values and 35 is the mean of the 3¢ values.
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Intuitively, the second method generates a null distribution via simulation, while the
third method additionally reduces the impact of data points at the limit of detection, by
randomly imputing them from the best-fit normal distribution. We then calculated
power and FPR for each of these three methods, varying the amount of censoring K
and the effect size 3; (see Fig[S7). Interestingly, for the level of censoring in our data
(K = —0.50), the false-positive rate in all three methods remained well-controlled,
although power dropped. The mock-uncensored bootstrap had lower power overall
and became more conservative, especially in the case where the phylogenetic signal
was highest (o« = 0) and where the level of censorship K was highest.

Another common approach to this problem is the tobit model: the true value of the
response variable is treated as a hidden variable, and expectation-maximization is used
to fit the regression parameters based on the observed censored values. Given that the
degree of censoring we observed did not appear to inflate the false positive rate in any
of the methods we tested, we opted not to construct a phylogenetic tobit model;
however, this could be an interesting area of future research.

4.13 Assessing the impact of compositionality

Because relative abundances are compositional (i.e., sum to 1.00), changes in highly
abundant taxa combined with read sampling can lead to skewed estimates of relative
abundance. For example, if a very abundant microbe exhibits large changes in relative
abundance across samples, other microbes will appear to become less abundant simply
because they make up a smaller proportion of the total reads, regardless of whether
their level actually changes. This necessitates the use of compositional data analysis
methods such as fitting intrinsically compositional distributions to the data (e.g.,
multinomial) or transforming it such that it is no longer compositional (e.g., the
clr-transform [79]). However, the impact of these factors on prevalence was a priori
less clear, because while prevalences are based on presence-absence, which could be
affected by sampling, prevalences themselves do not have to sum to 1.

Let R be an // x j matrix of read counts whose elements r,, , correspond to the
number of reads mapping to the single-copy marker genes for microbial species m in
sample n, where /" is the number of microbes with at least one read in one of the j
samples.

We resampled R using Dirichlet-multinomial sampling as follows. We first
determined the set of microbes MY that have at least one read across our j samples
but are not among the Y-most abundant microbes (so M would exclude the 100
most-abundant species). We then constructed a Dirichlet distribution v, from each 7,
such that:

up ~ Dirichlet(ryy , +¢, ryy , +¢, ..., Myt L)

where ¢ is a pseudocount corresponding to the average number of reads for the

average microbe:
J
_ [ 'm,n
¢ = median,,,_; (g F )

n=1

We then drew a multinomial distribution v, from each u,, then based on this
multinomial distribution, drew a count vector 7, with total number of counts >, i .
These count vectors constituted the columns of a resampled dataset RY,, with elements
obtained by Dirichlet-multinomial sampling from the original dataset R, after excluding
the Y most prevalent microbes.
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First, we examined how increasing Y impacted estimates of relative abundance,
that is, how much relative abundance profiles were distorted by the effects of sampling
in the presence of species with large read counts. We transformed the resampled “read
count” dataset Ry, to a matrix of relative abundances Q\, by dividing each column
Ry, by > Ry, to yield normalized relative abundances g, . We then applied the
clr-transform to correct for compositionality effects, yielding a matrix of transformed
abundances Ci, with columns:

. C_f,y_n + o
&, = log i _,' 1/i
(IT(&, , + a@)Y

where g is the minimum non-zero value of Q{, i.e., go = argmaxquly(q > 0).

After applying the clr-transform to compensate for compositionality artifacts, we
tested the correlation of the row vectors ¢;,,  with the corresponding &, . As expected,
the median correlation was low (for Y=10, rvegian=0.21) and continued to decrease as Y
increased from 10 to 100 (rvedian=0.16) (Fig[S9).

In comparison, we next examined how increasing Y impacted prevalence. We first
transformed each the resampled read matrix R{, into a binary presence-absence matrix
A, then calculated pL25Y (Al for each value of Y. Finally, we calculated the
correlation of pR2PW(Ap) to each pR2PW(A(), Y € {10, 20, 50, 100}. Strikingly, we
found that prevalences were highly correlated even out to Y = 100, where r = 0.91
(Fig[S9).

These analyses suggest that unlike relative abundance profiles, our estimates of
prevalence were robust to sampling and compositionality effects

4.14 Enrichment analysis

Enrichment analysis was performed using SEED subsystem annotations for
FIGfams [35l[80]. Each subsystem was tested for a significant overlap with significant
hits from the linear models (g < 0.05), given the set of FIGfams tested, by Fisher's exact
test. For each gene set, a 2 x 2 contingency table was constructed with the following
form:

[[{subsys N signif} N BG|| ||{subsys\signif} N BG||

[|{signif\subsys} N BGJ|| [|BG\{subsys U signif}||

where “subsys” is the set of FIGfams in a given SEED subsystem, “signif” is the set of
FIGfams in a particular phylum that were significant hits, and “BG” is the set of all
FIGfams tested in that phylum. Two-tailed p-values were corrected using the
Benjamini-Hochberg procedure [81] and an FDR of 25% was set for detecting
significant enrichment and depletion (only enrichment is reported). We used this
significance threshold in accordance with accepted practice for gene set enrichment
analysis [82]. We used the Benjamini-Hochberg procedure since unlike the g-value
method it does not require the estimation of the proportion of true nulls, which is more
difficult with small numbers of tests.

4.15 Overlap with in vivo results

Results of the screen were obtained from the Supplemental Material of Wu et al.
(downloaded on 2017 May 3) [47]. Genes were mapped to FIGfams by matching
identifiers in the Supplemental Material to genome annotations from PATRIC [66].
Significance of overlap between these genes and the results for the Bacteroidetes

March 21, 2018

26/42)


https://doi.org/10.1101/189795
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/189795; this version posted March 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

phylum from the body-site-specific or overall models was determined by Fisher’s exact
test.

This test depends both on how we determine which genes from the in vivo screen
count as true positives, and on the choice of the “background set,’ i.e., which genes
would be possible to find in the in vivo study. Rather than committing to one method of
picking the “true positive” and “background” sets, we instead enumerated several
possibilities, performed all possible combinations (Table[S3), and corrected for multiple
comparisons. The options we tested for true positive sets were 1. genes in the screen
that were significantly associated with fitness in all four Bacteroides strains tested, 2.
Bacteroides thetaiotaomicron genes significantly associated with diet-independent
fitness effects, and 3. B. theta genes associated with either diet-dependent or
-independent effects. The background sets we tested were 1. all gene families for
which a phylogenetic model was fit, 2. all gene families appearing at least once in a
Bacteroides genome cluster pangenome, 3. all gene families present in all Bacteroides
pangenomes, 4. gene families present in some but not all Bacteroides pangenomes, and
5. gene families present in Bacteroides thetaiotaomicron. Similarly to our approach to
gene set enrichment analysis, for each test we assembled a 2x2 contingency table as
follows:

[[{pos N signif} N BG|| [|{pos\signif} N BG||

[|{signif\pos} N BG|| ||BG\{pos U signif}||
where “pos” refers to the true positive FIGfam set, “signif” refers to the set of
significant FIGfam hits from the phylogenetic model, and “BG” refers to the
background FIGfam set. The full results are depicted in Table with the results for
true positive set #1 excerpted from this full comparison in Table [1}

4.16 Codebase

The code used to perform these analyses is available at
http://www.bitbucket.com/pbradz/plr in the form of an Rmarkdown notebook.

4.17 Glossary of notation
e Data and metadata

- A: | x j binary matrix of microbial presence-absence, where i is the number
of microbes, j is the number of samples, and a, , is 1 when microbe m is
observed in sample n and 0 otherwise

- am n: a vector of presence-absences for microbe m in samples n € N

- e, dy: environment x or study population y, each corresponding to a set of
samples

- E={e, ..., ex}: the set of environments being studied or compared (e.g.,
body sites; health vs. disease)

- D ={di, ..., d;}: the set of study populations
e Linear models

- $X,E[,D](A): phenotype vector, calculated for environment e, € E and
potentially adjusting for dataset effects D, based on microbial
presence-absence matrix A, with elements corresponding to phenotype
estimates for individual microbes
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- @Y, (A): prevalence phenotype estimates (based on logit(pA07 (A)); see
below).

_ "Spec

£ (A): environmental specificity score phenotype estimates (based on
Ioglt SMAP_(A: b)); see below).

m x,E
Bo,g: in the linear model for gene g, intercept term used to model the
average value of a given phenotype ¢, £(A)

B1,4: in the linear model for gene g, the effect of having vs. not having gene
g on a given phenotype ¢, £(A)

- /2,: the binary vector of gene presence-absence whose elements are /g ,,

equal to 0 if the gene g is absent in microbe m and 1 if it is present

e Phenotype estimation

pm.n: prevalence, the probability of observing a microbe m in a set of
samples N P(m|N)

PMLE(A): the maximum-likelihood estimate of prevalence, based on the
presence-absence matrix A

/S,AHD,\?(A): an estimate of prevalence based on the presence-absence matrix
A using additive smoothing

PADPW(A): an estimate of prevalence based on the presence-absence matrix
A using additive smoothing, and additionally weighting by the inverse
number of samples per dataset in D

;3,'5,7“‘,’5W(A): an estimate of the prevalence across environments, weighted by
their probability (i.e., P(/m) obtained by marginalizing P(m|ex))

Sm.x.£: environment specificity, the probability of being in a particular
environment e, given that microbe m was observed P(e,|m)

Sm.x.e(A): an estimate of environment specificity based on
presence-absence matrix A

b: a hyperparameter controlling the width of the Laplace prior on 3, x £(A)
(i.e., the amount of shrinkage in the estimate)

boptim: @ value of b optimized for sensitivity and specificity in parametric
simulations

P(ey): the prior probability of encountering environment e,; we use either
an uninformative uniform prior (for bodysites), or take this prior from
epidemiological data (for disease comparisons)

SMAP-(A; b): a maximum a posteriori (MAP) estimate of environment
specificity score for environment e, based on presence-absence matrix A
and the shrinkage hyperparameter b; in this paper we calculate
environmental specificity scores for x = CD (Crohn'’s disease specificity) and

x = Gut (healthy gut specificity)

e Simulation and censoring analysis

- ¢>™: a simulated continuous phenotype

- I3™: a simulated binary genotype (gene presence-absence)

- o lves-Garland o, the sum of the transition probabilities from 0 to 1 and

from 1 to 0 in a Markov model of binary trait evolution across a tree (i.e., a
measure of phylogenetic signal in a binary trait)
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Bo: assigned parameter giving the ancestral state of the simulated genotype
d;’Sim

B1: assigned parameter giving the degree to which the continuous
phenotype ¢°™Maffects the binary genotype /°™: a measure of effect size of
phenotype on gene

68'“: the estimated ancestral state of our prevalence phenotype @f‘,}YD(A),

using a Brownian motion model of trait evolution

o2: the estimated (non-phylogenetic) variance of our prevalence phenotype
e p(A)

BIeSt: estimated value of effect of gene on phenotype from the phylogenetic
linear model

F: ratio of prevalences, comparing taxa with a given gene (numerator) to
taxa without (denominator); an alternative measure of effect size of gene on
phenotype

Bf: when using a bootstrap null, estimated value of effect of null gene on
phenotype from the phylogenetic linear model

HU"<’: a version of the phenotype ¢ where values at the certain limit of
detection have been imputed based on a truncated normal

T¢: a vector the same length as ¢ whose elements have been randomly
drawn from a truncated normal distribution

%" an estimated value of effect of gene on the mock-uncensored
phenotype ¢V

K: the value at which left-censoring starts for a phenotype ¢, expressed as
standard deviations below the mean

o Compositionality with resampling analysis

R: an i’ x j matrix with elements r,, , corresponding to the number of reads
mapping to microbe m in sample n

MY': a set of microbes with at least one read in R, excluding the top X-most
abundant microbes

t: pseudocount used in constructing Dirichlet distributions of microbial
relative abundance

u,: a Dirichlet distribution fit to sample n

vp: a particular draw from a Dirichlet distribution representing a multinomial
distribution, from which resampled read counts are drawn

RY,: a matrix of resampled read counts with dimensions (i — [|Y||) x J,
where read counts are drawn from v,

\+ a matrix of resampled relative abundances derived from R, such that
every column adds up to 1

C{,: a matrix of clr-transformed relative abundances derived from Q{,

go: a pseudocount used in the clr-transformation
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Figure legends

Figure 1. Failing to account for tree structure results in an elevated false positive rate.
Continuous phenotypes and binary genotypes were simulated across the trees for the
four phyla under consideration. A-B show results for the null of no true
phenotype-genotype correlation. A) Histogram of p-values for simulated phenotypes
and genotypes on the Bacteroidetes tree, using phylogenetic (left) or standard (right)
linear models. The phylogenetic model distribution was similar to a uniform
distribution, while the standard model was very anticonservative, having an excess of
small p-values. B) False positive rate (Type | error rate) at p = 0.05 for the phylogenetic
and standard models. C) Traits with varying levels of “true” association spanning values
we observed in real data were simulated, and power was computed using phylogenetic
linear models.

Figure 2. Examples of hits from standard linear (blue highlights) and phylogenetic
(orange highlights) models. In each panel, the tree on the left is colored by species
prevalence (black to orange), while the tree on the right is colored by gene
presence-absence (blue to black). Selected species are displayed in the middle; lines
link species with the leaves to which they refer. The color of the line matches the color
of the leaf. A-B) The standard model recovered hits that matched large clades but
without recapitulating fine structure. C-D) The phylogenetic model recovered
associations for which more of the fine structure was mirrored between the left-hand
and right-hand trees, as exemplified by the species labeled in the middle. E) Violin plots
of Ives-Garland o, a summary of the rate of gain and loss of a binary trait across a tree,
for genes significantly associated with prevalence in the standard (left, blue) and
phylogenetic (right, orange) linear models. Horizontal lines mark the median of the
distributions. The phylogenetic (orange) and standard linear (blue) models were
significantly different for each phylum (Wilcox test for Bacteroidetes: 4 x 1075;
Firmicutes: 7 x 10~!!; Proteobacteria: 2 x 10722; Actinobacteria: 2 x 10722).

Figure 3. Comparison of results from the overall prevalence and body-site specific
models for Firmicutes. FDR-corrected significance (as — log;(q)) of the overall model
is plotted on the horizontal axis, whereas the same quantity for the body-site-specific
model is plotted on the vertical axis. All FIGfams significant (¢ < 0.05) in at least one of
the two models are plotted as contour lines: FIGfams significant in the overall
prevalence model (and possibly also the gut specific model) are plotted in orange, while
FIGfams significant in the gut specific model (and possibly also the overall prevalence
model) are plotted in blue. Selected SEED subsystems are displayed as colored points
(legend), and selected individual genes are plotted as black points.
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Figure 4. Genes involved in conjugative transfer are associated with Crohn'’s
disease-enriched species. The conjugation transcriptional regulator traR is plotted as
an example. The left-hand tree is colored by each species’ disease specificity score, i.e.,
the conditional probability of Crohn’s given the observation of a given species (grey,
which represents the prior, to orange, which represents a higher conditional
probability). The right-hand tree is colored by gene presence-absence (grey, meaning
absent, or blue, meaning present). The mirrored patterns drive the
phylogeny-corrected correlation.

Table 1. Assessment of agreement between the in vivo results from Wu et al. [47] and
gut-specific (“bodysite”) vs. gut prevalence (“overall”) phylogenetic models. The
background sets for enrichment tests were defined as follows: “all tested” (all gene
families for which a phylogenetic model was fit), “Bacteroides (core or variable)” (all
gene families with at least one representative in Bacteroides genome cluster
pangenomes), “Bacteroides (core only)” (gene families that were present in all
Bacteroides genome cluster pangenomes), “Bacteroides (variable only)” (gene families
present in some but not all Bacteroides genomes clusters), and “Bacteroides
thetaiotaomicron only” (only gene families present in Bacteroides thetaiotaomicron). The
p-values are from Fisher’s exact tests. These comparisons have been excerpted from
the full set, which can be seen in Additional Table[S3} g-values were calculated based
on this full set of tests using the Benjamini-Hochberg method [81].

Background set FDR MODEL p-value odds ratio g-value significant
All tested (overall) 5% overall 3.19 x 1073 0.18 7.65 x 1073 TRUE
Bacteroides (core or variable) 5% overall 2.46 x 107%? 0.05 2.46 x 1071 TRUE
Bacteroides (core only) 5% overall 1.00 0.00 1.00 FALSE
Bacteroides (variable only) 5% overall 7.20 x 107* 0.13 2.06 x 1073 TRUE
Bacteroides thetaiotaomicron only 5% overall 2.96 x 107° 0.09 1.48 x 107° TRUE
All tested (overall) 25% overall 1.65 x 1072 0.37 3.41 x 1072 TRUE
Bacteroides (core or variable) 25% overall 1.98 x 1073 0.10 237 x 1071 TRUE
Bacteroides (core only) 25% overall 1.00 0.80 1.00 FALSE
Bacteroides (variable only) 25% overall 4.12 x 107* 0.18 1.45 x 1073 TRUE
Bacteroides thetaiotaomicron only | 25% overall 6.04 x 1077 0.18 3.63x 107° TRUE
All tested (body site) 5% bodysite 3.58 x 1073 4.39 8.27 x 1073 TRUE
Bacteroides (core or variable) 5% bodysite 1.34 x 107! 2.00 2.44 x 107! FALSE
Bacteroides (core only) 5% bodysite 1.14 x 1073 7.02 2.98 x 1073 TRUE
Bacteroides (variable only) 5% bodysite 6.25 x 107! 0.00 7.62 x 107! FALSE
Bacteroides thetaiotaomicron only 5% bodysite 2.77 x 107} 1.64 4.49 x 1071 FALSE
All tested (body site) 25% | bodysite 6.09 x 107* 3.86 1.86 x 1073 TRUE
Bacteroides (core or variable) 25% | bodysite 8.88 x 1072 1.78 1.72 x 1071 FALSE
Bacteroides (core only) 25% bodysite 1.09 x 1072 347 2.33 x 1072 TRUE
Bacteroides (variable only) 25% | bodysite | 4.51 x 107! 1.55 6.15 x 107! FALSE
Bacteroides thetaiotaomicron only 25% bodysite 438 x 1071 1.34 6.12 x 107! FALSE
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Table S2. Concordance of 3; 4 estimates for weighted least squares vs. Laplace
shrinkage procedures. Pearson’s correlation coefficient r comparing estimates of 5 4
for the weighted phylogenetic least squares procedure with the unweighted
phylogenetic least squares using Laplace-shrunken estimates of specificity scores were
computed across: all tested genes (all), all genes significant in either the weighted or
shrunken phylogenetic model (one significant), or all genes significant in both models
(both significant). Comparisons were performed for both body site environmental
specificity scores (bodysite) and Crohn’s disease (Crohn's). Additionally, the number of
taxa not shrunk back to the prior by Laplace shrinkage for each environmental
specificity score are given (non-shrunk).

r Bacteroidetes Firmicutes Proteobacteria Actinobacteria
r non-shrunk r \ non-shrunk r non-shrunk r non-shrunk

bodysite (all) 0.50 0.40 0.35 0.43

bodysite (one significant) | 0.65 122 0.64 325 0.39 102 0.35 99
bodysite (both significant) | 0.83 0.64 0.73 0.72
Crohn’s (all) 0.19 0.11 -0.40 0.46

Crohn'’s (one significant) | 0.63 25 0.19 64 -0.47 7 0.12 14
Crohn’s (both significant) | 0.54 -0.29 -0.68 0.77

Supporting Information

Table S1. Species prevalences, gut specificities, and Crohn’s disease specificities for all
genome clusters (species) tested. logit.Prevalence, logit.BodySite, and logit.Crohns
column titles refer to our estimates of cﬁzfeE‘fD(A), ﬁﬂfE(A), and ﬁ‘gc‘g(A), respectively.
Row labels (5-digit numbers) correspond to MIDAS taxon IDs.

Table S3. Full assessment of whether genes linked to microbial fitness in an in vivo
experiment [47]] were enriched for significant hits of the body site-specific and overall
gut prevalence models. The different sets of true positives were defined as:
“Bacteroides” (genes in the screen significantly associated with fitness in all four
strains), “BthetaDietIlndep” (genes present in Bacteroides thetaiotaomicron that had
diet-independent fitness effects in the screen), and “BthetaAny” (same, but for
diet-dependent as well as -independent effects). The “background sets” were defined
as follows: “all tested” (all gene families for which a phylogenetic model was fit),
“Bacteroides (core or variable)” (all gene families with at least one representative in
Bacteroides genome cluster pangenomes), “Bacteroides (core only)” (gene families that
were present in all Bacteroides genome cluster pangenomes), “Bacteroides (variable
only)” (gene families present in some but not all Bacteroides genomes clusters), and
“Bacteroides thetaiotaomicron only” (only gene families present in Bacteroides
thetaiotaomicron). Two false discovery rates for each model were tested (5% and 25%).
Fisher tests yielded p-values that were then converted to g-values using the
Benjamini-Hochberg approach [81].

Table S4. SRA accession IDs used to estimate prevalence and environmental
specificity scores.
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Figure S1. Estimates of logit-gut prevalence (x-axis) vs. logit-gut environmental
specificity score (y-axis), showing only modest correlation.

Figure S2. Method overview. Using MIDAS, we calculate species relative abundances
from shotgun sequencing data. These are binarized to yield a matrix of microbial
presence/absence, with rows corresponding to microbes and columns corresponding
to samples. Samples are organized into environments (i.e., the environments from
which the sample was collected) and into datasets (corresponding to samples collected
as part of the same project). Using the presence/absence matrix together with these
metadata, we estimate phenotype vectors <13(A), whose elements are estimates of
microbial phenotypes. These phenotypes fall into two groups: prevalence (AETEEYD(A))
and environmental specificity scores (@i?,f-c(A)). Separately, we use the whole genomes
incorporated into the MIDAS database to assemble a matrix of gene presence/absence
in the pangenome of microbes, and to construct a phylogenetic species tree based on
previously-validated single-copy marker genes. We subset this tree to yield four
phylum-specific trees. The inputs to our phylogenetic models are a phenotype vector, a
gene presence-absence vector, and a phylogenetic tree. Based on these models, we
estimate p-values for a non-zero effect of the gene on the phenotype, then convert
these p-values into g-values to obtain predicted gene-phenotype interactions at a
given false discovery rate (here, 5%).

Figure S3. Laplacian regularization reduces noise in estimating 3., cp £(A). Two
species are compared, one that was infrequently observed in both Crohn's disease
cases and controls (Bacillus subtilis, left) and one with a significant bias for Crohn'’s
disease cases (Bacteroides fragilis, right). A) Total counts across subjects for Bacillus
subtilis and Bacteroides fragilis. B) Likelihood function for 3, cp £(A), or prevalence in
Crohn'’s disease. The maximume-likelihood value is given in the inset. C) Unregularized
likelihood for logit(5,, cp.£(A)), or the environmental specificity of the microbe. Note
that the maximume-likelihood value (inset) was actually almost twice as large for Bacillus
subtilis as for Bacteroides fragilis despite the relative paucity of data for B. subtilis
(compare Y-axes, which show that the distribution for B. subtilis is flatter). D) Laplace
prior around P(ecp) = 0.002 with width parameter b = 0.15 (optimized using
simulation). E) Log-likelihood plot for the posterior P(ecp|m) = 5M¢%, - (A), obtained by
taking the product of the prior distribution and the unregularized distribution. The
maximum a posteriori (MAP) estimates are the modes of these distributions (inset).

Figure S4. Sensitivity plot for ¢ tolerance parameter in Laplace shrinkage. Y-axis gives
the best boptim value obtained given a particular logy,(€) selected when performing
Laplace shrinkage of §¢%, - (A) estimates. The value of e used in the manuscript
(0.005) is highlighted with a vertical dashed line.

Figure S5. lllustration showing logit-prevalence vs. the pattern of glutamate-GABA
decarboxylase (gadB) inheritance in Bacteroidetes. As in Fig[2] the tree on the left is
colored by species prevalence (black to orange), while the tree on the right is colored
by gene presence-absence (blue to black), with selected species called out in the
middle, and lines linking species labels to leaves that match leaf color.
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Figure Sé6. Distribution of estimated logit-prevalence éffeE‘{D(A), showing impact of
censoring. A) Density of estimated logit-prevalence distribution, ¢7"¢' ;(A), showing
pile-up of values at the limit of detection K. B) Density of a normal distribution with
mean and standard deviation obtained from best-fit of truncated normal to éfngD(A).
C) “Uncensored” version of @feE‘fD(A). Data points at or below K have been replaced by
random sampling from a truncated normal, with mean and standard deviation as in B

and with K as upper truncation point.

Figure S7. Impact of left-censoring on the false positive rate and power of
phylogenetic tests. Bars give replicate measurements of false positive rate (left, effect
size of 0) and power (right, effect size of 0.75) across the different phyla (colors), based
on simulating binary genotypes and continuous phenotypes as in Methods[4.11} with
varying levels of left-censoring (“censoring point”), and obtaining p-values with the
three methods described in Methods[4.12] Horizontal dashed lines give a rate of 0.05.
Binary genotypes had varying levels of Ives-Garland « (0, 25, 50), representing high to
low phylogenetic signal.

Figure S8. Simulations showing the prevalence ratios F corresponding to various
effect sizes. To give a more intuitive sense of scale for simulated effect sizes,
simulations were performed as in Methods [4.11] with effect sizes 8; ranging from O to
1.25. After fitting phylogenetic models to the simulated phenotypes and genotypes,
the average prevalences with the simulated gene, logistic(61,4 + 50,4), and without,
logistic(Bo 4), were computed, and their ratio £ was taken. log,(F) is plotted here, such
that a value of 1 means the gene conferred (on average) a 2-fold change in prevalence.
Violin plots were made of 50 simulations.

Figure S9. Effect of resampling after dropping abundant taxa on prevalence and
abundance. Dirichlet-Multinomial sampling was performed on read counts either as-is
or first dropping the 10, 20, 50, or 100 most-abundant taxa (X-axis). Relative
abundances and prevalences were computed from all resampled datasets. The Y-axis
represents Pearson’s correlation of prevalences (teal) or abundances (orange). Microbial
prevalences with dropped taxa were compared to prevalence calculated without
dropping taxa, yielding one correlation per sampling. For relative abundance profiles,
the same microbe’s profile was compared between the as-is sampling and the sampling
that dropped taxa, yielding a distribution of correlations (orange box-and-whisker
plots). Each correlation coefficient is an average calculated from 100 resamplings.
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