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Abstract
In this work, we present a fully automated lung CT cancer
diagnosis system, DeepLung. DeepLung contains two parts,
nodule detection and classification. Considering the 3D na-
ture of lung CT data, two 3D networks are designed for the
nodule detection and classification respectively. Specifically,
a 3D Faster R-CNN is designed for nodule detection with a
U-net-like encoder-decoder structure to effectively learn nod-
ule features. For nodule classification, gradient boosting ma-
chine (GBM) with 3D dual path network (DPN) features is
proposed. The nodule classification subnetwork is validated
on a public dataset from LIDC-IDRI, on which it achieves
better performance than state-of-the-art approaches, and sur-
passes the average performance of four experienced doctors.
For the DeepLung system, candidate nodules are detected
first by the nodule detection subnetwork, and nodule diagno-
sis is conducted by the classification subnetwork. Extensive
experimental results demonstrate the DeepLung is compara-
ble to the experienced doctors both for the nodule-level and
patient-level diagnosis on the LIDC-IDRI dataset.

Introduction
Lung cancer is the most common cause of cancer-related
death in men. Low-dose lung CT screening provides an ef-
fective way for early diagnosis, which can sharply reduce the
lung cancer mortality rate. Advanced computer-aided diag-
nosis systems (CADs) are expected to have high sensitivities
while at the same time maintaining low false positive rates.
Recent advances in deep learning enable us to rethink the
ways of clinician lung cancer diagnosis.

Current lung CT analysis research mainly includes nod-
ule detection (Dou et al. 2017; Ding et al. 2017), and nodule
classification (Shen et al. 2015; 2016; Hussein et al. 2017;
Yan et al. 2016). There is few work on building a complete
lung CT cancer diagnosis system for fully automated lung
CT cancer diagnosis, integrating both nodule detection and
nodule classification. It is worth exploring a whole lung CT
cancer diagnosis system and understanding how far the per-
formance of current technology differs from that of experi-
enced doctors. To our best knowledge, this is the first work
for a fully automated and complete lung CT cancer diagno-
sis system.

The emergence of large-scale dataset, LUNA16 (Setio et
al. 2017), accelerates the nodule detection related research.

Typically, nodule detection consists of two stages, region
proposal generation and false positive reduction. Traditional
approaches generally require manually designed features
such as morphological features, voxel clustering and pixel
thresholding (Murphy et al. 2009; Jacobs et al. 2014). Re-
cently, deep convolutional networks, such as Faster R-CNN
(Ren et al. 2015) and fully convolutional networks (Long,
Shelhamer, and Darrell 2015), are employed to generate can-
didate bounding boxes (Ding et al. 2017; Dou et al. 2017).
In the second stage, more advanced methods or complex fea-
tures, such as more carefully designed texture features, are
designed to remove false positive nodules. Due to the 3D na-
ture of CT data and the effectiveness of Faster R-CNN for
object detection in 2D natural images (Huang et al. 2016b),
we design a 3D Faster R-CNN for nodule detection with U-
net-like encoder-decoder structure to effectively learn latent
features (Ronneberger, Fischer, and Brox 2015).

Before the era of deep learning, feature engineering fol-
lowed by classifiers is a general pipeline for nodule classifi-
cation (Han et al. 2013). After the public large-scale dataset,
LIDC-IDRI (Armato et al. 2011), becomes available, deep
learning based methods have become dominant for nod-
ule classification research (Shen et al. 2016). Multi-scale
deep convolutional network with shared weights on differ-
ent scales has been proposed for the nodule classification
(Shen et al. 2015). The weight sharing scheme reduces the
number of parameters and forces the multi-scale deep con-
volutional network to learn scale-invariant features. Inspired
by the recent success of dual path network (DPN) on Ima-
geNet (Chen et al. 2017; Deng et al. 2009), we propose a
novel framework for CT nodule classification. First, we de-
sign a 3D deep dual path network to extract features. Then
we use gradient boosting machines (GBM) with deep 3D
dual path features, nodule size and cropped raw nodule CT
pixels for the nodule classification (Friedman 2001).

At last, we build a fully automated lung CT cancer diag-
nosis system, DeepLung, by combining the nodule detection
network and nodule classification network together, as illus-
trated in Fig. 1. For a CT image, we first use the detection
subnetwork to detect candidate nodules. Next, we employ
the classification subnetwork to classify the detected nodules
into either malignant or benign. Finally, the patient-level di-
agnosis result can be achieved for the whole CT by fusing
the diagnosis result of each nodule.
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Figure 1: The framework of DeepLung. DeepLung first employs 3D Faster R-CNN to generate candidate nodules. Then it uses
3D deep dual path network (DPN) to extract deep features from the detected and cropped nodules. Lastly, gradient boosting
machine (GBM) with deep features, detected nodule size, and raw nodule pixels are employed for classification. Patient-level
diagnosis can be achieved by fusing the classification results of detected nodules in the CT.

Our main contributions are as follows: 1) To our best
knowledge, DeepLung is the first work for a complete
automated lung CT cancer diagnosis system. 2) Two 3D
deep convolutional networks are designed for nodule detec-
tion and classification. Specifically, inspired by the effec-
tive of Faster R-CNN for object detection and deep dual
path network’s success on ImageNet (Huang et al. 2016b;
Chen et al. 2017), we propose 3D Faster R-CNN for nodule
detection, and 3D deep dual path network for nodule clas-
sification. 3) Our classification framework achieves superior
performance compared with state-of-the-art approaches, and
the performance surpasses the average performance of ex-
perienced doctors on the largest public dataset, LIDC-IDRI
dataset. 4) The DeepLung system is comparable to the av-
erage performance of experienced doctors both on nodule-
level and patient-level diagnosis.

Related Work
Traditional nodule detection requires manually designed
features or descriptors (Lopez Torres et al. 2015). Recently,
several works have been proposed to use deep convolu-
tional networks for nodule detection to automatically learn
features, which is proven to be much more effective than
hand-crafted features. Setio et al. proposes multi-view con-
volutional network for false positive nodule reduction (Se-
tio et al. 2016). Due to the 3D nature of CT scans, some
work propose 3D convolutional networks to handle the chal-
lenge. The 3D fully convolutional network (FCN) is pro-
posed to generate region candidates, and deep convolution
network with weighted sampling is used in the false pos-
itive candidates reduction stage (Dou et al. 2017). Ding
et al. uses the Faster R-CNN to generate candidate nod-
ules, followed by 3D convolutional networks to remove
false positive nodules (Ding et al. 2017). Due to the ef-
fective performance of Faster R-CNN (Huang et al. 2016b;
Ren et al. 2015), we design a novel network, 3D Faster R-
CNN, for the nodule detection. Further, U-net-like encoder-
decoder scheme is employed for 3D Faster R-CNN to ef-
fectively learn the features (Ronneberger, Fischer, and Brox
2015).

Nodule classification has traditionally been based on seg-

mentation (El-Baz et al. 2011; Zhu and Xie 2016) and man-
ual feature design (Aerts et al. 2014). Several works de-
signed 3D contour feature, shape feature and texture feature
for CT nodule diagnosis (Way et al. 2006; El-Baz et al. 2011;
Han et al. 2013). Recently, deep networks have been shown
to be effective for medical images. Artificial neural network
was implemented for CT nodule diagnosis (Suzuki et al.
2005). More computationally effective network, multi-scale
convolutional neural network with shared weights for dif-
ferent scales to learn scale-invariant features, is proposed
for nodule classification (Shen et al. 2015). Deep trans-
fer learning and multi-instance learning is used for patient-
level lung CT diagnosis (Shen et al. 2016). A comparison
on 2D and 3D convolutional networks is conducted and
shown that 3D convolutional network is superior than 2D
convolutional network for 3D CT data (Yan et al. 2016).
Further, a multi-task learning and transfer learning frame-
work is proposed for nodule diagnosis (Hussein et al. 2017;
Zhu et al. 2017). Different from their approaches, we pro-
pose a novel classification framework for CT nodule diag-
nosis. Inspired by the recent success of deep dual path net-
work (DPN) on ImageNet (Chen et al. 2017), we design a
novel totally 3D deep dual path network to extract features
from raw CT nodules. Then, we employ gradient boosting
machine (GBM) with the deep DPN features, nodule size,
and raw nodule CT pixels for the nodule diagnosis. Patient-
level diagnosis can be achieved by fusing the nodule-level
diagnosis.

DeepLung Framework
The fully automated lung CT cancer diagnosis system,
DeepLung, consists of two parts, nodule detection and nod-
ule classification. We design a 3D Faster R-CNN for nodule
detection, and propose gradient boosting machine with deep
3D dual path network features, raw nodule CT pixels and
nodule size for nodule classification.

3D Faster R-CNN for Nodule Detection
The 3D Faster R-CNN with U-net-like encoder-decoder
structure is illustrated in Fig. 2. Due to the GPU memory
limitation, the input of 3D Faster R-CNN is cropped from
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Figure 2: The 3D Faster R-CNN framework con-
tains residual blocks and U-net-like encoder-decoder
structure. The model employs 3 anchors and multi-
task learning loss, including coordinates (x, y, z) and
diameter d regression, and candidate box classifica-
tion. The numbers in boxes are feature map sizes in
the format (#slices*#rows*#cols*#maps). The num-
bers above the connections are in the format (#filters
#slices*#rows*#cols).

3D reconstructed CT images with pixel size 96×96×96. The
encoder network is derived from ResNet-18 (He et al. 2016).
Before the first max-pooling, two convolutional layers are
used to generate features. After that, four residual blocks are
employed in the encoder subnetwork. We integrate the U-
net-like encoder-decoder design concept in the detection to
learn the deep networks efficiently (Ronneberger, Fischer,
and Brox 2015). In fact, for the region proposal generation,
the 3D Faster R-CNN conducts pixel-wise multi-scale learn-
ing and the U-net is validated as an effective way for pixel-
wise labeling. This integration makes candidate nodule gen-
eration more effective. In the decoder network, the feature
maps are processed by deconvolution layers and residual
blocks, and are subsequently concatenated with the corre-
sponding layers in the encoder network (Zeiler et al. 2010).
Then a convolutional layer with dropout (dropout probabil-
ity 0.5) is used for the second last layer. In the last layer, we
design 3 anchors, 5, 10, 20, for scale references which are
designed based on the distribution of nodule sizes. For each
anchor, there are 5 parts in the loss function, classification
loss Lcls for whether the current box is a nodule or not, re-
gression loss Lreg for nodule coordinates x, y, z and nodule
size d.

If an anchor overlaps a ground truth bounding box with
the intersection over union (IoU) higher than 0.5, we con-
sider it as a positive anchor (p? = 1). On the other hand, if
an anchor has IoU with all ground truth boxes less than 0.02,
we consider it as a negative anchor (p? = 0). The multi-task
loss function for the anchor i is defined as

L(pi, ti) = λLcls(pi, p
?
i ) + p?iLreg(ti, ti

?), (1)

where pi is the predicted probability for current anchor i
being a nodule, ti is the regression predicted relative coor-
dinates for nodule position, which is defined as

ti = (
x− xa
da

,
y − ya
da

,
z − za
da

, log(
d

da
)), (2)

where (x, y, z, d) are the predicted nodule coordinates and
diameter in the original space, (xa, ya, za, da) are the coor-
dinates and scale for the anchor i. For ground truth nodule

position, it is defined as

t?i = (
x? − xa
da

,
y? − ya
da

,
z? − za
da

, log(
d?

da
)), (3)

where (x?, y?, z?, d?) are nodule ground truth coordinates
and diameter. The λ is set as 0.5. For Lcls, we used binary
cross entropy loss function. For Lreg , we used smooth l1
regression loss function (Girshick 2015).

Gradient Boosting Machine with 3D Dual Path Net
Feature for Nodule Classification
Inspired by the success of dual path network on the Ima-
geNet (Chen et al. 2017; Deng et al. 2009), we design a 3D
deep dual path network framework for lung CT nodule clas-
sification in Fig. 4.

Dual path connection benefits both from the advantage
of residual learning and that of dense connection (He et al.
2016; Huang et al. 2016a). The shortcut connection in resid-
ual learning is an effective way to eliminate gradient van-
ishing phenomenon in very deep networks. From a learned
feature weights sharing perspective, residual learning en-
ables feature reuse, while dense connection has an advan-
tage of keeping exploiting new features (Chen et al. 2017).
And densely connected network has fewer parameters than
residual learning because there is no need to relearn redun-
dant feature maps. The assumption of dual path connection
is that there might exist some redundancy in the exploited
features. And dual path connection uses part of feature maps
for dense connection and part of them for residual learning.
In implementation, the dual path connection splits its feature
maps into two parts. One part, F(x)[d :], is used for residual
learning, the other part, F(x)[: d], is used for dense connec-
tion as shown in Fig. 3. Here d is the hyper-parameter for
deciding how many new features to be exploited. The dual
path connection can be formulated as

y = G([F(x)[: d],F(x)[d :] + x]), (4)

where y is the feature map for dual path connection, G is
used as ReLU activation function, F is convolutional layer
functions, and x is the input of dual path connection block.
Dual path connection integrates the advantages of the two
advanced frameworks, residual learning for feature reuse
and dense connection for keeping exploiting new features,
into a unified structure, which obtains success on the Ima-
geNet dataset.

For CT data, advanced method should be effective to ex-
tract 3D volume feature (Yan et al. 2016). We design a 3D
deep dual path network for the 3D CT lung nodule classifi-
cation in Fig. 4. We firstly crop CT data centered at predicted
nodule locations with size 32 × 32 × 32. After that, a con-
volutional layer is used to extract features. Then 4 dual path
blocks are employed to learn higher level features. Lastly,
the 3D average pooling and binary logistic regression layer
are used for benign or malignant diagnosis.

The 3D deep dual path network can be used as a clas-
sifier for nodule diagnosis directly. And it can also be em-
ployed to learn effective features. We construct feature by
concatenating the learned 3D deep dual path network fea-
tures (the second last layer, 2,560 dimension), nodule size,
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Figure 3: Illustration of dual path connection (Chen et al.
2017), which benefits both from the advantage of resid-
ual learning (He et al. 2016) and that of dense connection
(Huang et al. 2016a) from network structure design intrinsi-
cally.

Figure 4: The 3D deep dual path network framework in the
nodule classification subnetwork, which contains 4 dual path
connection blocks. After the training, the deep 3D dual path
network feature is extracted for gradient boosting machine
to do nodule diagnosis. The numbers in the figure are of the
same formats as Fig. 2.

and raw 3D cropped nodule pixels. Given complete and ef-
fective features, gradient boosting machine (GBM) is a su-
perior method to build an advanced classifier from these
features (Friedman 2001). We validate the feature combin-
ing nodule size with raw 3D cropped nodule pixels, employ
GBM as a classifier, and obtain 86.12% test accuracy aver-
agely. Lastly, we employ GBM with the constructed feature
and achieve the best diagnosis performance.

DeepLung System: Fully Automated Lung CT
Cancer Diagnosis
The DeepLung system includes the nodule detection using
the 3D Faster R-CNN, and nodule classification using gradi-
ent boosting machine (GBM) with constructed feature (deep
dual path features, nodule size and raw nodule CT pixels) in
Fig. 1.

Due to the GPU memory limitation, we first split the
whole CT into several 96 × 96 × 96 patches, process them
through the detector, and combine the detected results to-
gether. We only keep the detected boxes of detection prob-
abilities larger than 0.12 (threshold as -2 before sigmoid
function). After that, non-maximum suppression (NMS) is
adopted based on detection probability with the intersection
over union (IoU) threshold as 0.1. Here we expect to not
miss too many ground truth nodules.

After we get the detected nodules, we crop the nodule
with the center as the detected center and size as 32×32×32.
The detected nodule size is kept for the classification model

as a part of features. The 3D deep dual path network is em-
ployed to extract features. We use the GBM and construct
features to conduct diagnosis for the detected nodules. For
CT pixel feature, we use the cropped size as 16 × 16 × 16
and center as the detected nodule center in the experiments.
For patient-level diagnosis, if one of the detected nodules is
positive (cancer), the patient is a cancer patient, and if all
the detected nodules are negative, the patient is a negative
(non-cancer) patient.

Experiments
We conduct extensive experiments to validate the DeepLung
system. We perform 10-fold cross validation using the detec-
tor on LUNA16 dataset. For nodule classification, we use the
LIDC-IDRI annotation, and employ the LUNA16’s patient-
level dataset split. Finally, we also validate the whole system
based on the detected nodules both on patient-level diagno-
sis and nodule-level diagnosis.

In the training, for each model, we use 150 epochs in total
with stochastic gradient descent optimization and momen-
tum as 0.9. The used batch size is relied on the GPU mem-
ory. We use weight decay as 1 × 10−4. The initial learning
rate is 0.01, 0.001 at the half of training, and 0.0001 after the
epoch 120.

Datasets
LUNA16 dataset is a subset of the largest public dataset for
pulmonary nodules, the LIDC-IDRI dataset (Armato et al.
2011). LUNA16 dataset only has the detection annotations,
while LIDC-IDRI contains almost all the related informa-
tion for low-dose lung CTs including several doctors’ an-
notations on nodule sizes, locations, diagnosis results, nod-
ule texture, nodule margin and other informations. LUNA16
dataset removes CTs with slice thickness greater than 3mm,
slice spacing inconsistent or missing slices from LIDC-IDRI
dataset, and explicitly gives the patient-level 10-fold cross
validation split of the dataset. LUNA16 dataset contains 888
low-dose lung CTs, and LIDC-IDRI contains 1,018 low-
dose lung CTs. Note that LUNA16 dataset removes the an-
notated nodules of size smaller than 3mm.

For nodule classification, we extract nodule annotations
from LIDC-IDRI dataset, find the mapping of different doc-
tors’ nodule annotations with the LUNA16’s nodule annota-
tions, and get the ground truth of nodule diagnosis by taking
different doctors’ diagnosis averagely (Do not count the 0
score for diagnosis, which means N/A.). If the final average
score is equal to 3 (uncertain about malignant or benign),
we remove the nodule. For the nodules with score greater
than 3, we label them as positive. Otherwise, we label them
as negative. For doctors’ annotations, we only keep those of
four doctors who label most of the nodules for comparison.
We only keep the CTs within LUNA16 dataset, and use the
same cross validation split as LUNA16 for classification.

Preprocessing
We firstly clip the raw data into [−1200, 600]. Secondly, we
transform the range linearly into [0, 1]. Thirdly, we use the
LUNA16’s given segmentation ground truth and remove the
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Figure 5: Sensitivity (Recall) rate with respect to false pos-
itives per scan. The FROC (average recall rate at the false
positives as 0.125, 0.25, 0.5, 1, 2, 4, 8) is 83.4%. The 3D
Faster R-CNN has a recall rate 94.6% for all the nodules.
The dash lines are lower bound and upper bound FROC
for 95% confidence interval using bootstrapping with 1,000
bootstraps (Setio et al. 2017). The solid line is the interpo-
lated FROC based on prediction.

useless background. It is worth visualizing the processed
data during processing because some segmentations are im-
perfect, and need to be removed. After that, the data can be
processed by the deep networks.

DeepLung for Nodule Detection
We train and evaluate the detector on LUNA16 dataset
following 10-fold cross validation with given patient-level
split. In the training, we use the flipping, randomly scale
from 0.75 to 1.25 for the cropped patches to augment the
data. The evaluation metric, FROC, is the average recall rate
at the average number of false positives as 0.125, 0.25, 0.5,
1, 2, 4, 8 per scan, which is the official evaluation metric for
LUNA16 dataset.

The FROC performance on LUNA16 is visualized in Fig.
5. The solid line is interpolated FROC based on true predic-
tion, and the dash lines are upper bound and lower bound for
the bootstrapped FROC performance. The 3D Faster R-CNN
achieves 83.4% FROC without any false positive nodule re-
duction stage, which is comparable with 83.9% for the best
method, which uses two-stage training (Dou et al. 2017).

DeepLung for Nodule Classification
We validate the nodule classification performance of the
DeepLung system on the LIDC-IDRI dataset with the
LUNA16’s split principle, 10-fold patient-level cross vali-
dation. There are 1,004 nodules left and 450 nodules are
positive. In the training, we firstly pad the nodules of size
32×32×32 into 36×36×36, randomly crop 32×32×32
from the padded data, horizontal flip, vertical flip, z-axis flip
the data for augmentation, randomly set 4 × 4 × 4 patch as
0, and normalize the data with the mean and std. obtained
from training data. The total number of epochs is 1,050. The

Table 1: Nodule classification comparisons on LIDC-IDRI
dataset.

Models 3D DPN Nodule Size
+Pixel+GBM

All feat.
+GBM m-CNN

Acc. (%) 88.74 86.12 90.44 86.84

Table 2: Nodule-level diagnosis accuracy (%) between nod-
ule classification subnetwork in DeepLung and experienced
doctors on doctor’s individually confident nodules.

Dr 1 Dr 2 Dr 3 Dr 4 Average
Doctors 93.44 93.69 91.82 86.03 91.25

DeepLung 93.55 93.30 93.19 90.89 92.74

learning rate is 0.01 at first, then became 0.001 after epoch
525, and turned into 0.0001 after epoch 840. Due to time
and resource limitation for training, we use the fold 1, 2, 3,
4, 5 for test, and the final performance is the average perfor-
mance on the five test folds. The nodule classification per-
formance is concluded in Table 1.

From the table 1, our 3D deep dual path network (DPN)
achieves better performance than that of multi-scale CNN
(Shen et al. 2015) because of the power of 3D structure and
deep dual path network. Because of the power of gradient
boosting machine (GBM), GBM with nodule size and raw
nodule pixels with crop size as 16× 16× 16 achieves com-
parable performance as multi-scale CNN (Shen et al. 2015).
Finally, we construct feature with 3D deep dual path net-
work features, nodule size and raw nodule pixels, and obtain
90.44% accuracy.

Compared with Experienced Doctors on Their Individu-
ally Confident Nodules We compare our predictions with
those of four experienced doctors on their individually confi-
dent nodules (with individual score not as 3). Note that about
1/3 nodules are labeled as 3 for each doctor. Comparison re-
sults are concluded in Table 2.

From Table 2, these doctors’ confident nodules are easy
to be diagnosed nodules from the performance comparison
between our model’s performances in Table 1 and Table 2.
To our surprise, the average performance of our model is
1.5% better than that of experienced doctors. In fact, our
model’s performance is better than 3 out of 4 doctors (doctor
1, 3, 4) on the nodule diagnosis task. The result validates
deep network surpasses human-level performance for image
classification (He et al. 2016), and the DeepLung is better
suited for nodule diagnosis than experienced doctors.

DeepLung for Fully Automated Lung CT Cancer
Diagnosis
We also validate the DeepLung for fully automated lung CT
cancer diagnosis on the LIDC-IDRI dataset with the same
protocol as LUNA16’s patient-level split. Firstly, we employ
the 3D Faster R-CNN to detect suspicious nodules. Then we
retrain the model from nodule classification model on the
detected nodules dataset. If the center of detected nodule is
within the ground truth positive nodule, it is a positive nod-
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Table 3: Comparison between DeepLung’s nodule classifi-
cation on all detected nodules and doctors on all nodules.

Method TP Set FP Set Doctors
Acc. (%) 81.42 97.02 74.05-82.67

Table 4: Patient-level diagnosis accuracy(%) between
DeepLung and experienced doctors on doctor’s individually
confident CTs.

Dr 1 Dr 2 Dr 3 Dr 4 Average
Doctors 83.03 85.65 82.75 77.80 82.31

DeepLung 81.82 80.69 78.86 84.28 81.41

ule. Otherwise, it is a negative nodule. Through this map-
ping from the detected nodule and ground truth nodule, we
can evaluate the performance and compare it with the per-
formance of experienced doctors. We adopt the test fold 1,
2, 3, 4, 5 to validate the performance the same as that for
nodule classification.

Different from pure nodule classification, the fully auto-
mated lung CT nodule diagnosis relies on nodule detection.
We evaluate the performance of DeepLung on the detection
true positive (TP) set and detection false positive (FP) set in-
dividually in Table 3. If the detected nodule of center within
one of ground truth nodule regions, it is in the TP set. If the
detected nodule of center out of any ground truth nodule re-
gions, it is in FP set. From Table 3, the DeepLung system us-
ing detected nodule region obtains 81.42% accuracy for all
the detected TP nodules. Note that the experienced doctors
obtain 78.36% accuracy for all the nodule diagnosis on av-
erage. The DeepLung system with fully automated lung CT
nodule diagnosis still achieves above average performance
of experienced doctors. On the FP set, our nodule classifi-
cation subnetwork in the DeepLung can reduce 97.02% FP
detected nodules, which guarantees that our fully automated
system is effective for the lung CT cancer diagnosis.

Compared with Experienced Doctors on Their Individu-
ally Confident CTs We employ the DeepLung for patient-
level diagnosis further. If the current CT has one nodule that
is classified as positive, the diagnosis of the CT is positive.
If all the nodules are classified as negative for the CT, the
diagnosis of the CT is negative. We evaluate the DeepLung
on the doctors’ individually confident CTs for benchmark
comparison in Table 4.

From Table 4, DeepLung achieves 81.41% patient-level
diagnosis accuracy. The performance is 99% of the aver-
age performance of four experienced doctors, and the per-
formance of DeepLung is better than that of doctor 4. Thus
DeepLung can be used to help improve some doctors’ per-
formance, like that of doctor 4, which is the goal for com-
puter aided diagnosis system. We also employ Kappa coeffi-
cient, which is a common approach to evaluate the agree-
ment between two raters, to test the agreement between
DeepLung and the ground truth patient-level labels (Landis
and Koch 1977). For comparison, we valid those of 4 indi-
vidual doctors on their individual confident CTs. The Kappa
coefficient of DeepLung is 63.02%, while the average Kappa

coefficient of doctors is 64.46%. It shows the predictions
of DeepLung are of good agreement with ground truths for
patient-level diagnosis, and are comparable with those of ex-
perienced doctors.

Discussion
In this section, we are trying to explain the DeepLung by
visualizing the nodule detection and classification results.

Nodule Detection
We randomly pick nodules from test fold 1 and visualize
them in the first row and third row in Fig. 6. Detected nod-
ules are visualized in the second, fourth and fifth row. The
numbers below detected nodules are with the format (ground
truth slice number-detected slice number-detection probabil-
ity). The fifth row with red detection probabilies are the false
positive detections. Here we only visualize the slice of cen-
ter z. The yellow circles are the ground truth nodules or de-
tected nodules respectively. The center of the circle is the
nodule center and the diameter of the circle is relative to the
nodule size.

From the first four rows in Fig. 6, we observe the 3D
Faster R-CNN works well for the nodules from test fold 1.
The detection probability is also very high for these nodules.
From the detected false positive nodules in the last row, we
can find these false positives are suspicious to nodules vi-
sually if we observe them carefully. And the sizes of these
false positive nodules are very small. Note that the nodules
less than 3mm are removed in the ground truth annotations.

Nodule Classification
We also visualize the nodule classification results from test
fold 1 in Fig. 7. The nodules in the first four rows are those
the DeepLung predicted right, but some doctors predicted
wrong. The first number is the DeepLung predicted malig-
nant probability. The second number is which doctor pre-
dicted wrong. If the probability is large than 0.5, it is a ma-
lignant nodule. Otherwise, it is a benign nodule. The rest
nodules are those the DeepLung predicted wrong with red
numbers indicating the DeepLung predicted malignant prob-
ability. For an experienced doctor, if a nodule is big and has
irregular shape, it has a high probability to be a malignant
nodule.

From the first 4 rows in Fig. 7, we can observe that doc-
tors mis-diagnose some nodules. The reason is that, humans
are not good at processing 3D CT data, which is of low sig-
nal to noise ratio. In fact, even for high quality 2D natural
image, the performance of deep network surpasses that of
humans (He et al. 2016). From the doctors’ individual expe-
rience point of view, some doctors intend to be optimistic to
some nodules, and some doctors intend to be pessimistic to
them. And they can just observe one slice each time. Some
irregular boundaries are vague. The machine learning based
methods can learn these complicated rules and high dimen-
sional features from these doctors’ annotations, and avoid
such bias.

The rest nodules with red numbers are the nodules the
DeepLung predicted wrong for test fold 1 in Fig. 7. If the
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Figure 6: Visualization of central slices for nodule ground
truths and detection results. We randomly choose nodules
(the first row and third row) from test fold 1. Detection re-
sults are shown in the second row and fourth row. The num-
bers below detected nodules are with the format (ground
truth slice number-detected slice number-detection probabil-
ity). The last row shows the false positive detected nodules
and detection probabilities. Note that the ground truth nod-
ules are of diameter greater than 3mm. The DeepLung per-
forms well for detection.

predicted malignant probability is large than 0.5, the ground
truth label is benign. Otherwise, the ground truth label is
malignant. From the central slices, we can hardly decide the
DeepLung’s predictions are wrong. Maybe the DeepLung
cannot find some weak irregular boundaries as for the bot-
tom right 4 nodules, which is the possible reason why the
DeepLung predicts them as benign. From the above analy-
sis, the DeepLung can be considered as a tool to assist the
diagnosis for doctors. Combing the DeepLung and doctor’s
own diagnosis is an effective way to improve diagnosis ac-
curacy.

Conclusion
In this work, we propose a fully automated lung CT can-
cer diagnosis system, DeepLung. DeepLung consists two
parts, nodule detection and classification. For nodule detec-
tion, we design a 3D Faster R-CNN with U-net-like encoder-
decoder structure to detect suspicious nodules. Then we in-

Figure 7: Visualization of central slices for nodule classi-
fication results on test fold 1. We choose nodules that is
predicted right, but annotated wrong by some doctors in the
first 4 rows. The numbers below the nodules are (model pre-
dicted malignant probability-which doctor is wrong). The
last 2 rows show the nodules our model predicted wrong.
The red number is the wrongly predicted malignant proba-
bilities (> 0.5, predict malignant; < 0.5, predict benign).
The DeepLung avoids doctors’ individual bias and achieves
better performance than the average performance of doctors.

put the detected nodules into the nodule classification net-
work. The 3D deep dual path network is designed to extract
features. Further, gradient boosting machine with different
features combined together to achieve the state-of-the-art
performance, which surpasses that of experienced doctors.
Extensive experimental results on public available large-
scale datasets, LUNA16 and LIDC-IDRI datasets, demon-
strate the superior performance of the DeepLung.

In the future, we will develop more advanced nod-
ule detection method to further boost the performance of
DeepLung. Further, a unified framework for automated lung
CT cancer diagnosis is expected for nodule detection and
classification. Integrating multi-modality data, such as elec-
tronic medical report history, into the DeepLung is another
direction to enhance the diagnosis performance.
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