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 2 

Abstract  48 

Background: Recent developments in sequencing technologies make it possible to obtain genome sequences from a 49 

large number of isolates in a very short time. Bayesian phylogenetic approaches can take advantage of these data by 50 

simultaneously inferring the phylogenetic tree, evolutionary timescale, and demographic parameters (such as 51 

population growth rates), while naturally integrating uncertainty in all parameters. Despite their desirable properties, 52 

Bayesian approaches can be computationally intensive, hindering their use for outbreak investigations involving 53 

genome data for a large numbers of pathogen isolates. An alternative to using full Bayesian inference is to use a 54 

hybrid approach, where the phylogenetic tree and evolutionary timescale are estimated first using maximum 55 

likelihood. Under this hybrid approach, demographic parameters are inferred from estimated trees instead of the 56 

sequence data, using maximum likelihood, Bayesian inference, or approximate Bayesian computation. This can 57 

vastly reduce the computational burden, but has the disadvantage of ignoring the uncertainty in the phylogenetic 58 

tree and evolutionary timescale.  59 

Results: We compared the performance of a fully Bayesian and a hybrid method by analysing six whole-genome SNP 60 

data sets from a range of bacteria and simulations. The estimates from the two methods were very similar, 61 

suggesting that the hybrid method is a valid alternative for very large datasets. However, we also found that 62 

congruence between these methods is contingent on the presence of strong temporal structure in the data (i.e. 63 

clocklike behaviour), which is typically verified using a date-randomisation test in a Bayesian framework. To reduce 64 

the computational burden of this Bayesian test we implemented a date-randomisation test using a rapid maximum 65 

likelihood method, which has similar performance to its Bayesian counterpart. 66 

Conclusions: Hybrid approaches can produce reliable inferences of evolutionary timescales and phylodynamic 67 

parameters in a fraction of the time required for fully Bayesian analyses. As such, they are a valuable alternative in 68 

outbreak studies involving a large number of isolates. 69 

 70 
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 74 

 75 

Background 76 

 77 

Genomic data are increasingly used to investigate infectious disease outbreaks caused by microbial pathogens. 78 

Recent developments in sequencing technologies have made it possible to obtain data for a very large number of 79 

samples, at low cost and within a very short timeframe. Phylogenetic methods can make use of these data to infer 80 

their evolutionary dynamics, known as phylodynamic inference. For example, genome data obtained during the first 81 

months of the 2013-2016 Ebola virus epidemic were used to determine the time of origin of the outbreak and the 82 

basic reproductive number (R0) of the circulating strains [1,2]. Some of the key requirements for these inferences are 83 

that the data must have sufficient genetic diversity and that they should be a representative sample of the circulating 84 

strains. 85 

 86 
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Serially sampled data are particularly useful because their sampling times can be used to calibrate the molecular 87 

clock. This consists of calculating the rate of evolution, which is the amount of genetic change that has accumulated 88 

per unit of time. The rate of evolution is key to infer an evolutionary timescale, typically represented by a 89 

phylogenetic tree where the branch lengths correspond to time, known as a chronogram. Some methods assume 90 

that the rate of evolution is constant over time, known as a strict molecular clock, but popular Bayesian 91 

implementations, such as that in BEAST [3,4], include relaxed-clock models that use a statistical distribution to 92 

describe rate variation across time and lineages (reviewed in [5]). Phylodynamic models can be used to estimate the 93 

epidemic growth rate (r), R0, and other parameters [6,7]. Importantly, these models describe the expectation of the 94 

distribution of node times in the chronogram. As such, inferences drawn from phylodynamic models rely on accurate 95 

estimates of evolutionary rates and timescales. A number of statistical methods are available to assess the 96 

robustness of inferences of evolutionary rates and timescales; those that are most widely used are implemented 97 

under a Bayesian framework (reviewed in [8]). 98 

 99 

Bayesian phylogenetic approaches allow sophisticated evolutionary models to be specified. For example, the 100 

evolution of a pathogen during an outbreak can be defined as an exponentially growing population with considerable 101 

evolutionary rate variation among lineages; which can be modelled by specifying a nucleotide substitution model, a 102 

relaxed-clock model and an exponential-growth tree prior. The parameters for all these models are obtained 103 

simultaneously and their estimates correspond to posterior probability distributions, such that their uncertainty is a 104 

natural by-product of the analysis. Bayesian methods require specifying a prior distribution for all parameters. 105 

Although specifying a prior distribution is not trivial for some parameters, their influence can be assessed by 106 

comparing them to the posterior. An advantage of specifying prior distributions is that it is possible to include 107 

previous knowledge about the data. As a case in point, a known probability of sampling can be represented with a 108 

prior distribution in birth-death models [9].  109 

 110 

Whilst Bayesian phylogenetic methods have many desirable properties, analysing large genomic data sets under 111 

complex models is often computationally prohibitive (e.g. [10,11]). An alternative to full Bayesian methods is to 112 

conduct the analysis in several steps. In this hybrid approach the phylogenetic tree, evolutionary rates and 113 

timescales, and demographic parameters are estimated separately.  114 

 115 

Phylogenetic trees can be rapidly estimated using various maximum likelihood implementations [12–15]. These 116 

methods assume a substitution model, but not a molecular-clock or demographic model, such that the branch 117 

lengths of the trees represent the expected number of substitutions per site, and are known as phylograms.  118 

 119 

Next, phylograms can be used to estimate evolutionary rates and chronograms, for example, using a recently 120 

developed molecular clock method based on least-squares optimisation, called LSD (Least Squares Dating) [16]. LSD 121 

is more computationally tractable than Bayesian molecular-clock methods, such that it is feasible to analyse genomic 122 

data sets with thousands of samples. Although LSD assumes a strict molecular clock, its accuracy is frequently similar 123 

to that obtained using more sophisticated Bayesian clock models [17]. Other non-Bayesian molecular-clock methods 124 

have also been developed recently with the purpose of analysing large genomic data sets [18–20].  125 

 126 
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Finally, a range of tools are available to infer phylodynamic parameters from a chronogram, such as that obtained 127 

using LSD. For example: TreePar uses maximum likelihood to fit birth-death and skyline models [21]; BEAST2 [4] and 128 

RevBayes [22] can fit a range of birth-death, coalescent, and Skyline models using Bayesian inference [7]; and 129 

approximate Bayesian computation (ABC) approaches that use tree summary statistics have recently been 130 

developed to fit phylogenetic epidemiological models [23,24]. The main disadvantage of these approaches over 131 

those that are fully Bayesian is that the estimates are based on a single tree, such that uncertainties in tree topology, 132 

branch lengths, and evolutionary rates are ignored. A potential solution is to repeat the analysis using non-133 

parametric bootstrap replicates, but combining the different sources of uncertainty under this framework is not 134 

trivial.  135 

 136 

Here, we compare the following two methods to infer evolutionary rates and timescales, and demographic 137 

parameters: 138 

(i) The fully Bayesian method, implemented in BEAST2, to simultaneously infer the phylogenetic tree, 139 

evolutionary timescales and phylodynamic parameters; 140 

(ii) The hybrid method: phylogram inference using maximum likelihood in PhyML v3.1 [14], chronogram 141 

inference using LSD v0.3, and estimation of phylodynamics parameters in BEAST2 using Bayesian 142 

inference. 143 

 144 

To compare the performance of these two methods, we analysed previously published whole genome SNP bacterial 145 

data sets of Mycobacterium tuberculosis Lineage 2 [25], Vibrio cholerae [26], Shigella dysenteriae type 1 [11], and 146 

Staphylococcus aureus ST239 [27]. Because these data sets have small numbers of samples (n=63 for M. tuberculosis, 147 

n=122 for V. cholerae, n=121 for S. dysenteriae, and n=74 for S. aureus) their analyses are computationally tractable 148 

using both approaches. We also demonstrate the unique potential of the hybrid approach by analysing two genomic 149 

data sets with larger numbers of sequences, which have been difficult to analyse using a fully Bayesian approach; a 150 

global sample of S. dysenteriae type 1 (n=329) and S. dysenteriae type 1 lineage IV (n = 208) [11]. Finally, we validated 151 

the performance of the hybrid approach using a simulation experiment. 152 

 153 

Results 154 

 155 

Estimates of evolutionary rates and timescales 156 

 157 

We compared estimates of rates and evolutionary timescales using the full Bayesian approach in BEAST2 and LSD. 158 

Because our data consist of SNPs, we used ascertainment bias correction by specifying the number of constant sites 159 

from the core genome. In BEAST2 we used both the strict and the uncorrelated lognormal (UCLN [28]) clock models. 160 

We investigated the degree of rate variation among lineages by inspecting the coefficient of rate variation, estimated 161 

in the UCLN model. This parameter is the standard deviation of branch rates divided by the mean rate. The data are 162 

considered to display clocklike behaviour if the distribution for this parameter abuts zero. Therefore, we used this 163 

parameter to select the clock model in BEAST2 for each data set, as suggested in previous studies [29,30]. The M. 164 

tuberculosis data set was the only data set to support a strict clock over the UCLN model, whereas the remaining data 165 

sets favoured the UCLN model (Fig.1). We set uniform prior distributions for the clock rate, the growth rate (r) and 166 
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the scaled population size (Φ). In the context of pathogen evolution, r determines the speed of spread of the 167 

pathogen in the host population, while Φ is proportional to the infected host population size at present.  168 

 169 

The estimates of evolutionary rates and timescales from these different methods were largely congruent (Fig.1). In all 170 

four cases, the 95% credible intervals for the evolutionary rate and age of the root node obtained with BEAST2 171 

overlapped with the 95% confidence intervals obtained for the same parameters with LSD (Fig.1). However, we 172 

observed some differences in the mean evolutionary rate estimates, with the estimates from BEAST2 consistently 173 

producing higher values than those from LSD. The largest difference in mean rate estimates was observed in M. 174 

tuberculosis, with a mean rate of 9.37×10
-8

 (95% credible interval: 4.25×10
-8 

– 1.73×10
-7

) using BEAST2, and 1.10×10
-8

 175 

(95% confidence interval: 1.00×10
-10 

– 2.02×10
-7

) in LSD (see Fig.1). In contrast we found more congruent mean rate 176 

estimates in the V. cholerae data set, with estimates of 7.20×10
-7

 (95% credible interval: 5.87×10
-7 

– 8.65×10
-7

) for the 177 

BEAST2 and 6.76×10
-7 

(95% confidence interval: 5.76×10
-7 

– 8.89×10
-7

) for LSD. The differences in estimates of the 178 

root-node age were similar, with the largest difference in the mean root-node age found in S. aureus ST239 (mean 179 

root-node age of 1958 for BEAST2 and 1949 for LSD) (Fig.1). In most cases, the estimates from BEAST2 were more 180 

uncertain with credible intervals that were wider than the confidence intervals from LSD. We investigated two 181 

aspects of phylogenetic data that can affect estimates of evolutionary rates; the topological uncertainty and the 182 

degree of clocklike variation. We found that the maximum likelihood trees were highly supported, according to local 183 

likelihood ratio tests (aLRT) [31] (which ranges from 0 to 1, for low to high branch support, respectively). The median 184 

aLRT values across nodes were 0.9 for M. tuberculosis, 0.83 for V. cholerae, 0.99 for S. dysenteriae type 1, and 0.92 for 185 

S. aureus.  186 

 187 

Assessing temporal structure using a date-randomisation test 188 

 189 

We assessed the reliability of our estimates of evolutionary rate and timescales by conducting a date-randomisation 190 

test [32,33]. The motivation of this test is similar to that of root-to-tip regressions implemented in TempEst [34]. That 191 

is, to determine whether there is sufficient sampling in the data. However, root-to-tip regressions should be 192 

interpreted for visual inspection, as opposed to date-randomisations, which are a formal statistical test. The date 193 

randomisation test consists in repeating the analysis several times after randomising the sampling dates. The 194 

resulting rate estimates correspond to the expected values if there is no association between sampling times and 195 

genetic divergence. The data are considered to have strong temporal structure if the rate estimate obtained using 196 

the correct sampling times is not contained within the range of values from the randomisations. In a Bayesian 197 

context, 10 to 20 randomisations appear to be sufficient [33,35]. We conducted this test in BEAST2 using 20 198 

randomisations and in LSD using 100 randomisations (Fig.2). Interestingly, the results from both tests were 199 

congruent, and consistent with visualisations of clock-like behaviour of the data using root-to-tip regressions 200 

(Fig.S1). The M. tuberculosis data set had no temporal structure with either method (Fig.2): the credible interval of the 201 

Bayesian estimate with the correct sampling times overlapped with those from all of the randomisations; using LSD, 202 

the estimate with the correct sampling times was around the lower threshold in the program, at 1.00×10
-10

 203 

subs/site/year, which also corresponds to the value obtained for most of the randomisations. The other data sets 204 

showed strong temporal structure with both date-randomisation tests: the Bayesian credible intervals using the 205 
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correct sampling times did not overlap with those from any of the randomisations, and the estimates from LSD using 206 

the correct sampling times were not contained within the distributions of the 100 randomisations (Fig.2).  207 

 208 

Inference of phylodynamic parameters 209 

 210 

We analysed the data sets using the exponential-growth coalescent model in BEAST2, which has two parameters, r 211 

and Φ. Because these are compound parameters, they cannot be interpreted in an absolute scale without additional 212 

information about the size of the infected host population at present [36]. In most cases, the posterior distributions 213 

of both parameters were very similar when using either BEAST2 or the hybrid approach, with similar means and 214 

uncertainties (Fig.3). Although the intervals overlapped in V. cholerae, S. dysenteriae, and S. aureus, the mode of the 215 

posterior distribution of Φ was higher when using the hybrid approach. The posterior distributions of r were almost 216 

identical across methods for the three data sets with temporal signal (Fig.3). The uncertainty in estimates of this 217 

parameter did not include 0, except in the case of V. cholerae, suggesting that most of these bacterial data sets were 218 

undergoing population growth. Interestingly, the M. tuberculosis data set, which had no temporal structure, was the 219 

only data set to display large differences in estimates among the methods (Fig.3).  220 

 221 

Application: analysing large data sets using the hybrid approach 222 

 223 

Having demonstrated good performance of the hybrid approach on small data sets with strong temporal signal, we 224 

applied it to analyse two published genome-wide SNP data sets whose sample size was prohibitively large to analyse 225 

under a full Bayesian framework in the original publication. These data sets consisted of: (i) 329 samples of S. 226 

dysenteriae type 1 from [11], which included BEAST2 analysis of a subset of 125 samples; and (ii) 208 samples of 227 

lineage IV of S. dysenteriae type 1, which was represented by 61 samples in the BEAST2 analysis in the same study 228 

[11]. These three data sets displayed strong temporal structure according to the date-randomisation test in LSD, with 229 

rate estimates that were not contained within the range of estimates from 100 date-randomisations (Fig.4). The 230 

evolutionary rate estimates from LSD were 5.93×10
-7 

(95% confidence interval: 3.65×10
-7 

- 1.65×10
-6

) subs/site/year for 231 

S. dysenteriae type 1, and 7.04×10
-7

 (95% confidence interval: 3.92×10
-7 

- 1.54×10
-6

) subs/site/year for S. dysenteriae 232 

type 1 Lineage IV (Fig.4). Interestingly, the estimate of r for S. dysenteriae type 1 lineage IV was over an order of 233 

magnitude higher than that for the global data set of this bacterium, with a mean of 2.00×10
-2

 for lineage IV 234 

compared with 3.40×10
-3

 for the global data set. Importantly, the posterior distributions of r for these three data sets 235 

did not include zero, indicating epidemic growth (Fig.4). 236 

 237 

Validation using simulations 238 

 239 

Although our empirical analyses suggest that the hybrid and the full Bayesian method can produce largely congruent 240 

results, it is unclear whether the methods are accurate. That is, whether they can recover the true parameter 241 

estimates. To investigate this, we conducted a simulation experiment. We simulated 100 whole genome data sets 242 

using similar parameters to those we inferred for our S. dysenteriae data set. We extracted the SNPs from the 243 

synthetic genomes and analysed them using the hybrid and full Bayesian methods, with the same settings that we 244 

used for the empirical data. Our date-randomisations in LSD indicated that all of these data sets had temporal 245 
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structure, with p-values of 0.00. The estimates for the age of the root-node from both methods were very similar. 246 

However, it is important to note that our hybrid method uses a single tree, such that the age of the root-node is a 247 

point value, whereas the full Bayesian analyses include uncertainty in this parameter. Accordingly, the estimates 248 

from LSD were very close to those used to generate the data (within 5 years of the true value), and those from the full 249 

Bayesian method always included the true value within their credible interval. The estimates for the demographic 250 

parameters, r and Φ, had credible intervals that always included the true value for both methods, with mean values 251 

that often matched those used to generate the data (Fig. 5a). Interestingly, in 10 randomly selected simulation 252 

replicates, we found that the credible intervals for the demographic parameters were very similar for both methods, 253 

with the hybrid approach sometimes producing more precise estimates. We found no estimation biases in any of the 254 

methods (Fig. 5a).  255 

 256 

We conducted a second set of simulations of data with no temporal structure. To do this, we generated similar 257 

sequence alignments as described above, but we assigned random sampling times in our analyses in LSD and in 258 

BEAST2. This means that the molecular clock calibration is effectively uninformative. The age of the root-node was 259 

over estimated by both methods. In LSD this bias was of over three orders of magnitude, whereas in BEAST2 it 260 

ranged between half and three orders of magnitude. The value of Φ was similarly overestimated in both methods. 261 

The growth rate, r, was underestimated by several orders of magnitude with the hybrid approach, but it tended to be 262 

overestimated with the full Bayesian method (Fig. 5b). A key result about the simulations with no temporal structure 263 

is that Φ was always incorrectly estimated, and the true value of r was only contained within the 95% credible interval 264 

in about 14% of the analyses using the full Bayesian method. Moreover, the estimates with the hybrid approach often 265 

displayed larger discrepancies with the correct values. 266 

 267 

Computational demands of the Bayesian and the hybrid methods 268 

 269 

The hybrid approach was several times faster than the full Bayesian approach. For example, the computation time for 270 

each randomisation of the V. cholerae data set each was about 2 hours using BEAST2, where as those in LSD took 271 

1.23 seconds (sec). However, a key aspect of the date-randomisation test in LSD is that the tree topology and branch 272 

lengths are fixed for all randomisations, where as they are re-estimated for each randomisation in BEAST2. For the V. 273 

cholerae data set, a complete analysis using the hybrid approach took: 10.06 minutes (min) to infer a maximum 274 

likelihood tree in PhyML, 1.23 sec to estimate the evolutionary rate and timescale in LSD, and 5 min to infer r and Φ in 275 

BEAST2 to obtain effective sample sizes (ESS) of over 200 for all parameters (drawing 1×10
7
 steps, with 1 minutes per 276 

10
6
 steps), for a total of about 15 min, and 1/12

th
 of the time required in BEAST2. Analysis of the full S. dysenteriae 277 

dataset from [11], the largest data set in our study, took 10.6 sec to analyse in LSD and 1 hour infer r and Φ BEAST2 278 

(drawing 5×10
7
 steps, with 1.2 minutes per 10

6
 steps), for the 329 sampled sequences. 279 

 280 

Discussion 281 

 282 

Our results demonstrate that, as long as a strong temporal signal is present, the hybrid and fully Bayesian methods 283 

can produce congruent estimates of evolutionary parameters, even in cases where the data display substantial rate 284 

variation among lineages. These methods also yielded similar estimates of demographic parameters in data sets with 285 
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strong temporal signal, indicating the hybrid approach is a reliable alternative to full Bayesian analyses. However, r 286 

appears to be more robust than Φ to mild differences in estimates of the rate and timescale. This probably occurs 287 

because the age of the root-node plays an important role in the population size under the coalescent. In particular, 288 

the effective population size, and therefore Φ, are known to scale positively with the age of the root-node [37].  289 

 290 

Obtaining congruent estimates between the two methods depends on whether the data meet certain criteria. In 291 

practice, it is important to verify that the trees have high branch support and that the data have strong temporal 292 

structure. The trees inferred here were highly supported, but it is likely that the hybrid approach will produce 293 

misleadingly precise estimates (i.e. with narrow confidence intervals) if branch support is low, because the 294 

demographic parameters will still be conditioned on a single, and possibly incorrect, tree obtained in step 1 that does 295 

not capture uncertainty in the topology. In contrast, in such circumstances the Bayesian method will simply integrate 296 

over phylogenetic uncertainty and yield wider credible intervals. Our simulations illustrate ideal conditions, in which 297 

the data evolve under the correct model and have strong temporal structure. In this case, we find that both methods 298 

produce accurate estimates with similar precision.  299 

 300 

Our simulations of data with no temporal structure demonstrate, not only that the hybrid and full Bayesian methods 301 

will produce different estimates, but that they both tend to be inaccurate. In the absence of temporal structure, LSD 302 

often produces rate estimates at the lower threshold of the program, which was 10
-10

 here. This means that the 303 

timescale of the chronogram is overestimated. The value of Φ is also overestimated, which occurs because this 304 

parameter scales positively with the age of the root-node [37]. Although, we found that r was also overestimated, this 305 

parameter is determined by the distribution of branches in the tree, such that its error is less predictable. The full 306 

Bayesian method produced estimates with smaller bias. We used uniform priors for Φ and r, and the prior for the age 307 

of the root was determined by the coalescent prior. It is likely that these parameters, especially Φ, will be affected by 308 

different choice of priors. For empirical data with low temporal structure, the hybrid approach will likely be 309 

misleading because it is conditioned on a single tree which is probably incorrect. In such cases, it may be necessary to 310 

use the full Bayesian method approach because it is possible to include sources of molecular clock calibration via prior 311 

parametric distributions, at the expense of much higher computational demands. For instance, a reasonable 312 

calibration on the age of the root-node might be sufficient to overcome low temporal structure and to obtain reliable 313 

estimates for Φ and r. To investigate this, it is important to verify that there exists a difference between the prior and 314 

posterior for parameters of interest (see Boskova et al. [38] for an investigation of the prior and posterior in Bayesian 315 

phylodynamics).   316 

 317 

Our results show that the date-randomisation test in LSD appears to be as effective as it is in BEAST2, with the 318 

advantage of being much less computationally demanding. As a result, it is possible to use a larger number of 319 

replicates, which can improve the power of the test. Moreover, the sampling times under a Bayesian analysis of 320 

sequentially sampled data are informative about the tree topology. That is, they impose a high prior probability on 321 

trees that cluster sequences with similar sampling times, which can render the date-randomisation test unreliable, 322 

with an increase in type I error [39]. Moreover, in some phylodynamic models, the estimate of the age of the root-323 

node and the evolutionary rate are determined by a combination of the sequence data and their sampling times [38], 324 

such that assessing temporal structure via the date randomisation test is not trivial. The date-randomisation test in 325 
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 9 

LSD does not suffer from these problems because sequence data alone, not tip dates, are used to infer the tree 326 

topology in maximum likelihood. 327 

 328 

Critically, the rates estimated using the date-randomisation in test in LSD are not necessarily unimodal in their 329 

distribution. This occurs because a lack of temporal structure usually leads to very low rate estimates, which affects 330 

randomisations in LSD and in BEAST2. In the case of LSD, very low values for the rate will correspond to the lower 331 

threshold set in the program [17], which we arbitrarily set at 10
-10 

subs/site/year, such that most randomisations will 332 

have this value. As such, a reasonable approach to interpret the date-randomisation test in LSD is to ensure that the 333 

rate estimate with the correct sampling times is higher than those from at least 95% of the randomisations, following 334 

the frequentist one-tailed p-value of α=0.05. 335 

 336 

Conclusions 337 

 338 

As shown here, hybrid methods offer an attractive alternative to full Bayesian approaches for genome-scale data sets 339 

with very large numbers of samples. The accuracy and precision of both methods are comparable, but hybrid 340 

methods can perform an analysis in a about an eighth of the time required for full Bayesian analyses. Nevertheless, 341 

some steps of the hybrid method used here require oversimplifications of the evolutionary process. For example, LSD 342 

always assumes a strict molecular clock, such that it is impossible to assess among-lineage rate variation or to 343 

pinpoint potential biological causes for why lineages have different rates. The choice of whether to use a hybrid 344 

method should be made based on what parameters a user wishes to interrogate. In the context of molecular 345 

epidemiology, demographic parameters (r and Φ) and divergence time information are of primary interest, all of 346 

which appear robust to some among-lineage rate variation. 347 

 348 

In this study, we used a simple demographic model, the exponential-growth coalescent. This model appears to be 349 

well suited when outbreak data are sampled at an early stage, but it makes several assumptions, including that the 350 

population of susceptible hosts is constant and that there is no population structure [6]. A better understanding of 351 

the data used here requires more sophisticated phylodynamic models, such as those that include changes in 352 

diversification parameters over time [40], and migration [41]. To this end, our results suggest that harnessing the 353 

power of such models and large-scale genome sequencing can be done through hybrid approaches.  354 

 355 

Materials and Methods 356 

 357 

Data collection 358 

 359 

Our bacterial data sets consisted of publically available genome data. We obtained all of our genome-wide SNP 360 

alignments from a previous studies [11,25,27,35]. These data sets are freely available online 361 

(github.com/sebastianduchene/bacteria_genomic_rates_data). These data have had regions with evidence of 362 

recombination removed using Gubbins v2 [42]. 363 

 364 

Phylogenetic analyses under the fully Bayesian approach 365 
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 366 

We analysed the sequence alignments in BEAST v2.4 using the sampling times for calibration, the GTR+Γ 367 

substitution model, the exponential-growth coalescent tree prior, and two clock models; the strict and the UCLN. We 368 

used the default priors for all parameters. Our Markov chain Monte Carlo (MCMC) sampling scheme consisted of a 369 

chain length of 5×10
8
 steps, sampling every 10

4
 steps. We verified that the ESS for all parameters was at least 200. To 370 

determine whether the data had temporal structure, we conducted a date-randomisation test by randomising the 371 

sampling dates 20 times and repeating the analyses [33]. 372 

 373 

Phylogenetic analyses using the hybrid approach 374 

 375 

We inferred phylogenetic trees using maximum likelihood in PhyML v3.1. We used the GTR+Γ substitution model, 376 

and a search strategy that combines the nearest-neighbour interchange and subtree prune and regraft algorithms. 377 

To assess branch support, we calculated the aLRT score for each branch. To visually assess temporal structure, we 378 

conducted a regression of the root-to-tip distances as a function of the sampling times using TempEst v1.5 [34]. To 379 

determine the optimal root in this program we selected the position that maximised R
2
. 380 

 381 

We analysed the maximum likelihood trees (i.e. phylograms) in LSD v0.3 to infer the evolutionary rate and timescale. 382 

We set the sampling times as calibrations and allowed the program to determine the optimal position of the root. We 383 

constrained the branching times of the estimated chronograms such that daughter nodes must be younger than their 384 

parent nodes. To obtain an uncertainty around estimates of times and rates, we conducted 100 parametric bootstrap 385 

replicates of the branch lengths, as implemented in the program. Therefore, the uncertainty corresponds to the 95% 386 

confidence interval of the parametric bootstrap values. We conducted a date-randomisation test 100 times by 387 

randomising the sampling times in the ‘date’ file and running LSD each time. In this version of the test, the 388 

phylogenetic tree topology and branch lengths are fixed. 389 

 390 

We used the chronograms estimated in LSD to infer demographic parameters in BEAST2. This consists in setting the 391 

input file to calculate the posterior as the likelihood of the tree given the model parameters multiplied by the priors 392 

on the parameters. In the exponential growth coalescent there are two parameters; Φ and r. We used an MCMC chain 393 

length of 1×10
7
 sampling every 10

4
 steps, and we verified that all parameters had ESS values of at least 200. 394 

 395 

Simulations 396 

We simulated whole genome sequence alignments using the parameters from our S. dysenteriae data set. To do this, 397 

we took the highest clade credibility tree from this data set inferred in BEAST2 and simulated the evolutionary rate 398 

using NELSI [29], according to an UCLN clock model. We used a mean rate of 10
-6

 subs/site/year and a standard 399 

deviation of 10
-7

. We used Seq-Gen v1.3 [43] to simulate genome sequence alignments of 3,750,125 nucleotides using 400 

the GTR+Γ substitution model with the mean parameter estimates for the empirical S. dysenteriae data. Finally, we 401 

extracted the SNPs from these alignments and analysed using the same method as for our empirical data. For our 402 

simulations with no temporal structure we set random sampling times for our analyses in LSD and BEAST2. In all 403 

cases, we conducted a date-randomisation test in LSD, as used in our empirical data analysis. 404 

 405 
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Abbreviations 406 

LSD, Least-squares dating; ABC, Approximate Bayesian Computation; UCLN, uncorrelated lognormal clock; aLRT, 407 

local Likelihood ratio test for branch support; MCMC, Markov chain Monte Carlo. 408 
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 540 

 541 

 542 

Figure legends 543 

 544 

Figure 1. Estimates of evolutionary rate, time to the most recent common ancestor, and the coefficient of rate 545 

variation of the UCLN. The histograms correspond to the posterior distribution in BEAST2 using the full Bayesian 546 

approach. With the exception of the Mycobacterium tuberculosis data set, we used the UCLN clock model because the 547 

coefficient of rate variation was not abutting zero. The red solid line is the estimate from LSD, and the dashed lines 548 
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correspond to the 95% confidence interval. Note that the coefficient of rate variation is not computed for LSD, which 549 

assumes a strict molecular clock. 550 

 551 

Figure 2. Date randomisation test using LSD and BEAST2. The left column shows histograms of the rate estimates 552 

with randomised sampling times in LSD (grey). The red line corresponds to the estimate using the correct sampling 553 

times. The right column shows the date randomisation test in BEAST2. The grey bars denote the 95% credible 554 

intervals of substitution rate estimates from the randomisations. The red lines correspond to the 95% credible 555 

interval of the rate estimates using the correct sampling times. The circles denote the mean value. The x-axis in the 556 

left column and the y-axis in the right column are in logarithmic scale. 557 

 558 

Figure 3. Posterior estimates of demographic parameters, Φ and r using the full Bayesian and hybrid 559 

approaches. The red histograms correspond to the estimates from the hybrid approach, where the coalescent 560 

likelihood is calculated on a fixed tree. The grey histograms correspond to the posterior estimates using the full 561 

Bayesian method. 562 

 563 

Figure 4. Date randomisation test in LSD and estimates of demographic parameters for large data sets using the 564 

hybrid approach. The grey histograms correspond to rate estimates from the randomisations, while the red lines 565 

correspond to the estimates using the correct sampling times. The red histograms correspond to the posterior 566 

distribution of parameters Φ and r.  567 

 568 

Figure 5. Parameter estimates for 10 randomly selected simulations (from a total of 100). Simulations with strong 569 

temporal structure (a) had a p-value for the date randomisations test of 0.00, where as those with no temporal 570 

structure (b) had a p-value of 1. Each row within each panel is for a simulated genome analysis. Estimates in red were 571 

obtained using the hybrid method, while those in grey are for the full Bayesian approach. The circles correspond to 572 

the mean value, except for the age of the root-node for the hybrid approach (LSD), where it is the point estimate. 573 

The bars denote the 95% credible interval. The dashed lines are the value used to generate the data. Note that the x-574 

axes in (b) are in log10 scale. 575 

 576 

Supplementary material legends 577 

 578 

Fig.S1. Root-to-tip regression for all data sets. The blue points correspond to tips in the tree. The black line 579 

represents the linear regression of root-to-tip distance as a function of the sampling time. The root-to-tip distance is 580 

measured by fitting the root of the tree that maximises R
2
. 581 
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