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Abstract

The development of chemotherapeutic resistance resulting in tumor relapse is thought largely
to be a consequence of the mechanism of competitive release of pre-existing resistant cells in
the tumor that are selected for growth after chemotherapeutic agents attack the population
of chemo-sensitive cells which had previously dominated the collection of competing sub-
clones. To study this process, we use an evolutionary game theory model, with a prisoner’s
dilemma payoff matrix, based on a system of coupled replicator equations quantifying the
clonal competition among three groups of cells: healthy cells (H), sensitive cells (S), and
resistant cells (R). Maximum tolerated dose (MTD) schedules are effective at reducing the
sensitive cell population which initially shrinks the tumor volume, but releases the resistant
cells to re-populate and eventually re-grow the tumor in a more dangerous resistant form.
By monitoring the state space associated with the three populations of cells as a coupled
nonlinear dynamical system and using the nullcline structure of the system, we show how
one can steer the tumor away from the resistant state with an adaptive chemotherapeutic
schedule. The control parameters in our model adjust the selection pressure on the various
subclones, which effectively allows us to tailor the fitness landscape to suppress the growth
of the resistant population while keeping the sensitive population at low enough levels so
the tumor volume remains small.

Keywords: competitive release; evolutionary dynamics; adaptive therapy;
chemotherapeutic resistance; prisoner’s dilemma; replicator dynamics; evolutionary game
theory; adaptive control

*corresponding author
Email addresses: runningwest@gmail.com (Jeffrey West), yongqiam@usc.edu (Yonggian Ma),
newton@usc.edu (Paul K. Newton)

Preprint submitted to J. Theoretical Biology September 18, 2017


https://doi.org/10.1101/190140
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/190140; this version posted September 17, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1. Introduction

In his now classic 1961 study of competition for space between two species of barnacles
in the intertidal zone off the Scottish coast, Joseph Connell [1] discovered something inter-
esting. The blue barnacles Balanus normally occupied the intertidal zone, while the brown
barnacles Chthamalus occupied the coast above high tide. Despite the commonly held belief
that each occupied their own niche because of different adaptations to local micro-conditions,
Connell hypothesized that the colonization of the intertidal zone by Balanus was actually
preventing Chthamalus from inhabiting this region. To test this, he removed the blue bar-
nacles from the intertidal zone and tracked the subsequent penetration of Chthamalus into
this region. He concluded that Chthamalus had undergone relief from competition with Bal-
anus which allowed it to flourish where previously it could not. The point, he emphasized,
was there was nothing inherent about the micro-environment of the intertidal zone that was
preventing Chthamalus from occupying this region. It was simply the competition against
a more dominant species that was holding it back. Without the presence of that species,
Chthamalus happily claimed both zones as fundamental niches. Thus, the important notion
of competitive release was formulated (see Grant [2]). When two (or more) sub-species com-
pete for the same resources, with one species dominating the other, if the dominant species
is removed, this can provide the needed release from competition that can allow the less
dominant species to flourish. The mirror image of competitive release is the related notion
of character displacement developed by Brown and Wilson [3] in which competition can serve
to displace one or more morphological, ecological, behavioral, or physiological characteristics
of two closely related species that develop in close proximity. These concepts are now well
established as part of the overall framework of co-evolutionary ecology theory.

Since co-evolution among competing subclones is now a well established [4, 5, 6, 7] pro-
cess in malignant tumors, the mechanism of competitive release should be expected to play
a role and affect the chemotherapeutic strategies one might choose to eliminate or control
tumor growth. Indeed, tumor relapse and the development of chemo-therapeutic resistance
is now thought largely to be a consequence of the mechanism of competitive release of pre-
existing resistant cells in the tumor which are selected for growth after chemotherapeutic
agents attack the subpopulation of chemo-sensitive cells which had previously dominated
the collection of competing subclones. Anticancer therapies strongly target sensitive cells
in a tumor, selecting for resistance cell types and, if total eradication of all cancer cells is
not accomplished, the tumor will recur as derived from resistant cells that survived initial
therapy [8]. A schematic of a three compartment model of competitive release is shown in
figure 1, where the tumor consisting of sensitive and resistant cells is competing with the
surrounding healthy tissue. At diagnosis (see figure 1, left), the tumor is dominated by
sensitive cells (red) which out competes the surrounding healthy population (blue) during
unhindered tumor progression. A small portion of resistant cells (green) remains in small
numbers, suppressed by the larger sensitive population. After several rounds of chemother-
apy, the tumor shrinks, leaving the resistant population largely unaffected (figure 1, middle).
Inevitably, the tumor relapses due to the small number of cancer cells remaining after ther-
apy (figure 1, right). In the absence of competition from the dominant sensitive population,
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the resistant cells grow unhindered, rendering subsequent rounds of chemotherapy less ef-
fective. Subsequent application of identical therapies will have a diminished effect. Figure 2
shows the process in a "Miiller fishplot’, which we will use later to track the subclonal popu-
lations. This representation was first utilized in cancer to compare modes of clonal evolution
in acute myeloid leukemia (see [9]). A fishplot shows the tumor burden (vertical axis) over
time (horizontal axis) and the clonal lineages (a subclone is encased inside of the founding
parent clone in the graph). Figure 2 displays a schematic of unhindered tumor growth after
the first driver mutation (figure 2, left). Before diagnosis, the tumor grows exponentially,
during which time a resistant mutation occurs (figure 2, middle). After diagnosis, a regimen
of continuous chemotherapy shows initial good response and tumor regression, but the resis-
tant population grows back (although at a slower growth rate) unhindered by competition,
leading to relapse (figure 2, right). A recent (2012) systematic literature analysis of cancer
relapse and therapeutic research showed that while evolutionary terms rarely appeared in
papers studying therapeutic relapse since 1980 (< 1%), the language usage has steadily in-
creased more recently, due to a huge potential benefit of studying therapeutic relapse from
an evolutionary perspective [10].

Pre-treatment Post-treatment Tumor re-growth

Tumor is dominated by After chemotherapy the sensitive Resistant cells eventually repopulate a
sensitive cells which out- cell population is reduced, leaving larger proportion of the tumor,
compete both healthy cells and resistant cells free to re-populate rendering the subsequent rounds of
resistant cells. without competition. chemotherapy less effective.

@ Healthy @ Sensitive @ Resistant

Figure 1: Schematic of competitive release in a tumor — (a) Prior to treatment, a tumor consists of
a large population of sensitive cells (red) and a small population of less fit resistant cells (green) competing
for resources with the surrounding healthy cells (blue); (b) Chemotherapy targets the sensitive population
(middle), selecting for the less fit resistant population that thrives in the absence of competition from
the sensitive population; (¢) Upon regrowth, the tumor composition has larger numbers of resistant cells,
rendering the subsequent rounds of treatment less effective.

Our goal in this paper is to describe an evolutionary mathematical model of competitive
release in a tumor in order to better quantify and understand the key mechanism responsible
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for the evolution of chemo-therapeutic resistance with the hope that understanding it could
ultimately prove useful for controlling and harnessing the evolutionary engine that drives its
growth. We develop quantitative tools from nonlinear dynamical systems theory which use
the current global state of the system with respect to the nullcline curves of the equations
to shape the fitness landscape so that the resistant cell population is suppressed while the
sensitive cell population stays below a threshold level. The chemotherapeutic strategies that
we implement are ones that can adapt on the same timescale as the inherent timescale of
evolution of the subclones comprising the tumor, i.e. are as dynamic as the tumor.

exponential growth of
chemo-sensitive population

h\

good initial response competitive release
to chemotherapy resistant populatio;
first driver mutation

tumor
burden first resistant mutation

== (Chemo-sensi
=== Chemo-resis

| >

begin continuous chemotherapy treatment

time

Figure 2: Clonal evolution of competitive release — A fishplot (sometimes known as a Miiller plot),
showing the tumor size (vertical axis) and composition (sensitive: red; resistant: green) over time (horizontal
axis, left to right) with important events annotated. After first driver mutation (left), initial exponential
growth of sensitive population occurs until diagnosis (dashed line). Continous therapy targeting the chemo-
sensitive population responds well with a decrease in tumor burden. In the absence of sensitive cells, the
resistant population (existing in small numbers before the start of therapy) grows to become the dominant
clone at relapse, albeit typically with lower exponential growth rate.

1.1. Pre-existing resistance

Cancer therapies have shown success in reducing tumor burden for significant time pe-
riods, but eventual relapse and resistance have led many to use evolutionary principles and
mathematical modeling to address the question of whether resistance arises at some point
during therapy or is pre-existing before therapy. It is thought that pre-existing resistant
sub-clones should generally be present in all patients with late-stage metastatic disease (for
single point mutations which confer resistance), a conclusion supported by probabilistic
models [11] and from tumor samples taken prior to treatment [12, 13] which have been
reported for melanoma [14], prostate cancer [15], colorectal cancer [16, 17], ovarian cancer
[18], and medulloblastoma [19]. According to this view, treatment failure would not be due
to ewvolution of resistance during therapy, but rather the pre-existing presence of resistant
phenotypes that are relatively sheltered from the toxic effects of therapy [20].

The likelihood of pre-existing resistance has important therapeutic implications. If we
assume no pre-existing resistance, then most models predict maximum dose-density therapy
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will reduce the probability of resistance largely because this treatment minimizes the number
of cell-divisions, thereby minimizing the risk of a mutation leading to acquired resistance [20).
By contrast, in pre-existing resistance scenarios, the maximum dose-density therapy strategy
lends itself to competitive release due to the evolutionary nature of tumor progression.
Most pre-clinical efforts that aim to maximize the short-term effect of the drug on sensitive
cells does not significantly affect the long-term control of cancer [11]. This is because the
phenomenon of competitive release can occur via the harsh selective pressure imposed by the
tumor microenvironment after cancer therapies diminish the presence of the dominant (i.e.
the chemo-sensitive) clone. Additionally, the process of metastasis may allow a resistant
subclone in the primary tumor to emerge elsewhere [21].

Pre-existing mutations that are responsible for conferring resistance may be associated
with a phenotypic cost, or a reduced fitness, compared to the average fitness of the sensitive
cell population. Even factoring in this fitness cost, deleterious mutations are still expected
to be present in late-stage metastatic cancers [22]. This cost can come in many ways, such
as an increased rate of DNA repair, or an active pumping out of the toxic drug across cell
membranes. All of these strategies use up a finite energy supply that would otherwise be
available for invasion into non-cancerous tissues or proliferation. Tumors that have not yet
undergone treatment may possess resistant cells in small numbers because a fitness disad-
vantage allows the sensitive population to suppress the growth of the resistant population.
The rapid removal of chemo-sensitive cells during therapy releases the resistant population
from unwanted competition and thereby permits unopposed proliferation of the resistant
cell population.

1.2. Using evolutionary principles to model chemotherapy

It is increasingly understood that eradicating most disseminated cancers may be im-
possible, undermining the typical goal of cancer treatment of killing as many tumor cells
as possible [23]. The underlying assumption of this approach has been that a maximum
cell-kill will either lead to a cure or, at worst, maximum life extension. Taking cues from
agriculturists who have long abandoned the goal of complete eradication of pests in favor
of applying insecticides only when infestation exceeds a threshold in the name of “control”
over “cure,” there are those who advocate for a shift from the cure paradigm in cancer
treatments to a control paradigm [23, 24]. The first step in this paradigm shift is viewing
tumor progression from an evolutionary lens. As such, any therapeutic methods should take
the following parameters into account: the pre-existing fraction of the resistant population
in the tumor before therapy and the relative growth rates (i.e. the fitness cost) of resistant
subclones.

With an increasingly detailed picture of evolutionary events in a tumor [25], several treat-
ment strategies have been proposed to exploit or predict the evolutionary trajectory of tumor
growth and adaptations [26, 27], such as targeting the trunk driver events (i.e. mutational
events that are near the 'trunk’ of the phylogenetic tree), that would be present in every tu-
mor cell. Additionally, one could also target parallel evolutionary events, forcing the tumor
down a specific evolutionary path, resulting in acquired sensitivity (sequential therapy).
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Or, one could design dynamic therapies that maintain a stable population of treatment-
sensitive cells [21] to keep the tumor volume small. This is the approach we describe in
this manuscript. Some have proposed modelling tumorigenesis as a process by which the
homeostasis that characterizes healthy tissue is disrupted, which partly explains how the
order of treatments can take advantage of an evolutionary double bind [28, 29, 30|, thereby
predicting tumor adaptations and exploiting that prediction using fundamental evolution-
ary principles. Regaining homoeostasis might not mean tumour eradication but instead
may represent a new state where the patient lives with cancer as a controllable, yet chronic
disease [23]. Treatments can be synergized such that evolving resistance to a single drug
will increase susceptibility to a different drug. Others are modeling and planning “evolu-
tionary enlightened” therapies, known as “adaptive therapies” that respond to the tumor’s
adaptations in order to make future treatment decisions. A theoretical framework for these
adaptive therapies first developed by Gatenby [31], leverages the notion that pre-existing
resistance is typically present only in small population numbers due to a cost of resistance.
This less fit phenotype is suppressed in the Darwinian environment of the untreated tumor
but treatments that are designed to kill maximum numbers of cells remove the competi-
tion for the resistant population and ultimately select for that population during tumor
relapse!. In contrast, the goal of an adaptive therapy is to maintain a stable tumor burden
that permits a significant population of chemo-sensitive cells for the purpose of suppressing
the less fit but chemo-resistant populations, consistent with the philosophy that it takes an
evolutionary strategy to combat an evolving tumor.

Some of these evolutionary ideas were tested experimentally using mouse models to op-
timize adaptive strategies designed to maintain a stable, controllable tumor volume [32, 33].
The two-phase adaptive therapy involved an initial high-dose phase to treat the exponential
growth of the tumor and a second phase designed for stable tumor control using a variety of
strategies (such as decreasing doses or skipping doses when stability is achieved). Findings
suggest that adaptive therapies based on evolutionary treatment strategies that maintain
a residual population of chemo-sensitive cells may be clinically viable, and is currently ex-
tended to an on-going clinical trial (NCT02415621).

With these advances in mind, the goal of this manuscript is to introduce an evolutionary
framework to model the important parameters of competitive release and use that framework
to better understand therapeutic implications of the tumor evolution. We use a three-
component replicator system with a prisoner’s dilemma payoff matrix [34] to model the three
relevant subclonal populations: healthy cells (H), sensitive cells (S), and resistant cells (R).
Using the nullcline information in a triangular phase plane representation of the nonlinear
dynamics of the tumor, we first show the essential ingredients that render competitive release
possible. Then, using the parameters that control selection pressure (hence relative growth
rates) on the three subclonal populations, we attempt to maintain the tumor volume at low
levels so that the resistant population does not reach fixation. The upshot of our approach

Tt is important to note that both high-dose, maximum tolerated dose schedules and low-dose, metronomic
dose schedules have this cumulative goal of achieving maximum cell-kill over the course of many cycles of
treatment.
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could be called "dynamically shaping the fitness landscape’ of the evolving tumor to combat
competitive release.

2. Materials and Methods

Previously, a linear combination of exponentials model has been proposed to track the
relative tumor volume, v(t), after treatment as a function of the exponential death rate of
the sensitive cells, d, the exponential growth rate of the resistant cells, g, and the initial
fraction of resistant cells, f [11]. The model can be written as follows:

o(t) = (1= fle " + fe. (1)
This model, shown to be a reasonably good description of the changing tumor size during
therapy for colorectal, prostate, and multiple myeloma cancers, identifies the important
parameters in competitive release: initial fractional resistance (f), and birth/death rates
(g9,d) for the resistant and sensitive populations, respectively. The regrowth rate of the
resistant population (g) affects the effectiveness of a continuous therapy (see figure 3a). A
greater “cost” of resistance (reflecting by a lower regrowth rate, g) leads to a longer time to
relapse. Although the tumor might recur with a slower growth rate, subsequent treatment
is ineffective due to resistant population in large numbers. The initial fraction of resistant
cells present at the time of treatment, f, also influences treatment effectiveness (figure 3b).
An increase in initial fraction leads to a shorter time to relapse. A small difference in
resistant regrowth rate (two-fold decrease from g = 0.2 to 0.1) leads to an earlier relapse
time compared to a large difference in initial fractional resistant (hundred-fold increase from
f =1075 to 107%), indicating that the regrowth rate parameter has a greater effect on the
effectiveness of a continuous therapy (figure 3c). Despite the fact that (1) curve-fits data
reasonably well, it contains no evolutionary information or concepts, a keystone principle
behind competitive release. Figure 3d - 3f show the results of our evolutionary model
(described in the next subsection) with respect to the same effective parameter variations
as those from Figure 3a - 3c. The evolutionary model is able to recapitulate the exponential
model of equations (1) but has the additional capability of allowing us to track responses
to various therapeutic strategies and design new adaptive strategies as the tumor evolves,
using a novel technique of shaping the fitness landscape with control parameters to avoid
crossing of certain nullclines of the clonal phase space. We describe this technique next.

2.1. The replicator equation model

Our model tracks the evolutionary dynamics of the three competing cell types using the
replicator system (see [35]) of equations:

i = (fi—(f))zi, (2)
fi = 1—w; +wi(AZ);. (3)

Each of the cells of type i (i = 1,2,3) competes according to equation (2), where & =
(21,20, 23)" is the vector of the corresponding frequency of healthy (H), sensitive (S) and
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Figure 3: Dynamics of competitive release under continuous therapy — The top row (a, b, c)
dynamics are described by the simple linear combination of exponential sensitive decay and resistant growth
(equation 1). (a) An increase in the resistant regrowth rate (¢ = [0.10,0.15,0.20,0.25,0.30]) leads to de-
creased effectiveness of therapy and shorter relapse times (f = le — 5;d = 0.3;). (b) An increased initial
fraction of resistance (f = [le —6,1e — 5,1e — 4, 1e — 3, 1e — 2]) also leads to decreased therapy effectiveness
(9 = d =0.3;). (c) A small difference in resistant regrowth rate (two-fold decrease from g = 0.2 to 0.1)
compared to a large difference in initial fractional resistance (hundred-fold increase from f = 1075 to 107%)
shows that the regrowth rate parameter (g) has a greater effect on the effectiveness of a therapy than initial
fraction (f). The bottom row (d, e, f) dynamics are described by the evolutionary model (equation 2) and
show trends similar to the exponential model. (d) Increasing the phenotypic cost of resistance ((a — 8)/«),
results in extended relapse times (o = 0.02,f = 1073). (e) Increased fractional resistance also results in an
extended relapse time (o = 3 = 0.02,f = 1072). (f) A low initial fractional resistance (f = 107%) with no
cost to resistance (blue) compared with two orders of magnitude greater fractional resistance (f = 107%)
with a relatively small cost (cost = 4%) and yet has a shorter time to relapse. This implies that the cost of
resistance is more important to relapse than the initial fraction of resistance.

resistant (R) cells, respectively, such that >, z; = 1. The prevalence of each subpopulation,
x;, changes over time according to the changing population fitness, f;, and the average
fitness of all three populations (f) = fix1 + faxs + f3xs. If the fitness of the subpopulation
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is greater than the average fitness, that subpopulation grows exponentially, whereas if it is
less, it decays. The fitness is a function of the selection pressure parameters, w;; 0 < w; <1
(¢ = 1,2,3), and the payoff matrix, A. A value of w; = 0 corresponds to neutral drift (no
selection) and a value of w; = 1 corresponds to strong selection. (AZ); is the ith element of
vector AT

Before therapy, the selection pressure is constant across all cell types (ie. w; = w,
i =1,2,3) at a level that represents the natural selection pressure the tumor environment
imposes on the different subpopulations. These values discussed in the literature are typically
small, in the range w; = w ~ 0.1 — 0.3. We implement chemotherapy in our model by
changing the selection pressure parameters on each of the subpopulations of cells. Values
are altered as follows (see figure 4 for explanation of changing fitness landscape):

w; = (14+c)w (healthy) (4)
wy = (1—c)w (sensitive) (5)
w3 = w (resistant) (6)

Therapy can be administered at different doses (i.e. values of the drug concentration: ¢;0 <
¢ < 1). A higher value of ¢ indicates a stronger dose of chemotherapy drug (described in
more detail in [36]). This follows the schematic in figure 4 which depicts the change in the
fitness landscape before and after therapy.

The fitness landscape (3) is described in detail by the entries of the payoff matrix A,
where each pairwise cell-cell interaction is described by the row and column values, which
are parameters in the fitness equation (3). The payoff matrix is given by:

H S R

H a b o
A= ¢ h j k (M)

R I m n

There are three pairwise games that can be played, depending on which pairs of cells are
interacting at a given timestep: (H,S), (H, R), or (R,S), which are all calculated using a
prisoner’s dilemma (cooperators, defectors) game, which necessitates the following inequal-
ities: h >a>7>0b,l>a>n>o0,and k >n > j > m. With this paradigm, the cancer
cells act as ’defectors’, whereas the healthy cells act as 'cooperators’ at each interaction.
This scheme has been developed in [34, 37] and discussed at great length, leading to a Gom-
pertzian growth of cancer cells, an increase in the fitness of the cancer population, but an
overall decrease in the fitness of the total population of cells. With the two subpopulations of
cancer cells in the current model (sensitive and resistant), an interaction between those two
treats the sensitive cells as the defectors, with the resistant cells as the cooperators. More
discussion of why the prisoners dilemma matrix, which models the evolution of defection, is
a useful paradigm for cancer can be found in [34, 37].
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Figure 4: Fitness landscape before and during therapy — A schematic of the fitness of each subpopu-
lation before therapy (top) and during therapy (bottom). A driver mutation leads to a fitness advantage of
the cancer cell (red), determined by the prisoner’s dilemma payoff matrix. A subsequent resistant-conferring
mutation comes at a fitness cost (green). The fitness of the resistant population is unaffected by therapy’s
selective pressure, but the healthy population is given an advantage over the chemo-sensitive population.

2.2. The linearized system and the cost of resistance

The notion of the cost of resistance is highlighted in figure 4. With no therapy, the
sensitive cells exhibit fastest growth due to their higher fitness value relative to both the
resistant population and the healthy population. The difference between the baseline fitness
values of the sensitive cells and the resistant cells can be thought of as the ‘price paid’ by the
resistant population to retain their resistance to toxins. This cost, in our model, is quantified
as the difference in the (linearized) growth rates of the two populations. Linearizing eqn (2),
(3), (which form a cubic nonlinear system if expanded out) gives rise to the sensitive-resistant
uncoupled system:

i‘g = T2 (8)
Si'g = 51’3, (9)
10
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with the growth parameters:

a =w(l—a)+wy(h—1) (10)
B =wi(l—a)+ws(l—1) (11)
Using eqns (4), (5), (6) gives:
a =wh—a)—cwlh+a—2) (12)
g =w(l—a)+cw(l—a). (13)

With no therapy, ¢ = 0, we have:

We call the fitness cost of resistance the difference between these growth rates with no
therapy, hence (o — ) = w(h — ).

3. Results

It is useful to view the nonlinear dynamical trajectories of the system using the trilinear
coordinates shown in figure 5a, which gives a representation of the clonal phase space for
every possible value of Z. The corners represent saturation of a single cell type (e.g. the top
corner represents Z = [1,0, 0], or all healthy cells. Figure 5b shows the nullcline information
of the dynamical system (&; = 0) with therapy off (solid green line) and on (dashed green
line). As the trajectory crosses a particular nullcline, the growth (i; > 0) / decay (&; < 0)
on one side switches to decay/growth, allowing for the possibility of trapping an orbit in a
closed loop for a finite period of time if the state of the system can be ‘steered” appropriately.
We do this by altering the dose concentration parameter ¢ in eqns (4) in an off-on (bang-
bang) fashion, (5),(6). This is a parameter that can, in principle, be accessed clinically.
This is schematically depicted in figure 5b. The dynamics of equation (2) are shown in state
space diagrams in Figure 5 for no therapy (figure 5¢: ¢ = 0) and with therapy (figure 5d:
¢ = 0.6). Before treatment, the healthy (H; top corner), sensitive (S; bottom left corner),
and resistant (R; bottom right corner) populations compete according to equation (2) and
follow trajectories shown (black) in figure 5c. Instantaneous relative velocity is indicated
by background color gradient (red to blue). All internal trajectories (pre-therapy) lead to
tumor growth and eventual saturation of the sensitive population (bottom left corner). The
resistant population nullcline (line of zero growth; £z = 0) is plotted in dashed dark red in
figure 5¢c. With no therapy (left), the nullclines divide the triangle into 3 regions. Region
1: g > 029 > 012z < 0; Region 2: 25 < 025 > 0 2 < 0; Region 3: 25 < 0 x5 > 0
g > 0. With chemotherapy (right) the selection pressure is altered to the disadvantage
of chemo-sensitive cancer population and advantage of the healthy population (shown for
¢ =0.6,a =0.020, § = 0.018, w = 0.1). In this case the nullclines divide the triangle into
6 regions; Region 1: 2 > 0 29 > 0 25 < 0; Region 2: 25 > 0 25 < 0 g < 0; Region 3:
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Ty > 025 <0 xr > 0;Region 4: 25 <025 <0 2xr > 0; Region 5: x5 <0 xg >0 2 > 0;
Region 6: 5 < 0 #g > 0 #xr < 0. Solution trajectories (black) show the initial trajectory
toward healthy saturation (triangle top) but eventual relapse toward resistant population
(bottom right of triangle) upon passing the resistant nullcline. The nullclines will be used
later to determine timing schedules of adaptive therapy (see figure 7).

3.1. Competitive release in action

Figure 6 details the relationship between dose and two important measures of therapy
effectiveness: progression free survival (PFS) and time to relapse. Measuring the effective-
ness of a chemotherapy schedule based on the killing rate or progression free survival alone
are not sufficient predictive measures of long-term cancer control [11]. As seen in figure 6,
left, an increased dose (3 therapies are simulated on identical initial conditions: « = 0.020,
B = 0.018, f = 1073) corresponds to a slightly shorter PFS, but an increased time to re-
lapse to the initial tumor volume. However, despite the increase in relapse times, none of
these doses optimizes tumor control, as seen in the fishplots (figure 6, right). At the point
of relapse to the initial tumor volume, the tumor is dominated by the presence of resis-
tant clones, rendering future treatments ineffective. Oftentimes, the effectiveness of a new
chemotherapy drug is be determined by PFS times when drugs that have high killing rates
of sensitive cells may have shorter times to progression and lower total tumor burden at
all times (everything else equal). The figure clearly shows that all treatments have similar
progression free times but with a greater range of relapse times (even though continuous
treatment always eventually leads to relapse).

The effect of two important parameters of competitive release are shown in 3d - 3f where
we vary the cost of resistance (percent cost = (a— f3)/a), and the initial fraction of resistant
cells (f). An increased cost of resistance (figure 3d) decreases the regrowth rate and leads
to a longer relapse time under continuous therapy. The initial regression rate is identical
at the beginning of therapy, but the regrowth rate is diminished by the cost of resistance.
An increase in initial fraction of resistance, f, (figure 3e) at the start of therapy leads to
shorter relapse times. Although the initial regression rate and the regrowth rate are identical
for all simulations (see figure 3e), a small fractional resistance leads to a lower minimum
tumor burden achieved and longer relapse times. One can ask which of these parameters
has the most significant effect on time to relapse, shown in figure 3f. A low initial fractional
resistance with no cost to resistance (f = 107% 0% cost; shown in blue) is compared to
a two orders of magnitude greater fractional resistance (f = 107*) with a relatively small
cost (f = 1072; 4% cost; shown in red). Even a small cost (4%) of resistance leads to a
significant delay in tumor relapse dynamics, despite a large increase in initial fraction of
resistance. This implies that the cost of resistance (i.e. the diminished regrowth rate of the
tumor) is more important to relapse than the initial fraction. Note that the results from
the evolutionary model (figures 3d - 3f; equation 2) recapitulate the heuristic linear sum of
exponentials model (figures 3a - 3c; equation 1) quite well.
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Trilinear Coordinates Schematic Adaptive Therapy Schematic
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Figure 5: Dynamic phase portraits before and during chemotherapy — (a) Trilinear coordinate
phase space representation; (b) Schematic of proposed adaptive therapy concept using the resistant nullclines
to determine therapy “on” and “off” times in order to trap the tumor in the controllable region 2, and reach
approximate cycle that repeats back on itself in red. The continuous therapy is also plotted in dashed blue,
for comparison. Two nullclines divide the triangle into 3 regions; region 1: £z < 0 for both therapy on and

off; region 2:2p > 0 for therapy off and ©r < 0 for therapy on; region 3: g > 0 for both therapy on and
off.
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Figure 5: (c¢) Before chemotherapy, the healthy (H), sensitive (S), and resistant (R) populations compete on
a dynamical fitness landscape, with several solution trajectories shown (black) and the instantaneous relative
velocity indicated by background color gradient (red to blue). All internal trajectories lead to tumor growth
and eventual saturation of the sensitive population (bottom left corner). Each population nullcline (line of
zero growth: &; = 0) is plotted: healthy (dashed blue), sensitive (dashed red), and resistant (dashed green).
The nullclines divide the triangle into 3 regions. Region 1: 5 > 0 &g > 0 2g < 0; Region 2: 5 < 0
g > 0 &r < 0; Region 3: &y < 0 g > 0 2r > 0; (d) Chemotherapy alters the selection pressure to
the disadvantage of chemo-sensitive cancer population and advantage of the healthy population (shown for
¢=0.6,a=0.020, 8 = 0.018, w = 0.1). In this case, the nullclines divide the triangle into 6 regions; Region
1: 2g > 02g > 02r < 0; Region 2: 2 > 029 < 0 ar < 0; Region 3: 2 > 0 25 < 0 £ > 0;Region
4: g < 0zg < 0z > 0; Region 5: zg < 025 > 0 g > 0; Region 6: 2y < 0 2g > 0 2p < O
Solution trajectories (black) show initial trajectory toward healthy saturation (triangle top) but eventual
relapse toward resistant population (bottom right of triangle) upon passing the resistant nullcline.

time to relapse

=== Chemo-sensitive

10%; m===_Chemo-resistant
>
g
3
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=, 2l :
g 10 §
=
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— === Therapy 1 (c =0.5)
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Figure 6: The effect of dose on tumor relapse and progression free survival under continuous
therapy — (a) Three therapies are simulated on identical initial conditions (a = 0.020, 3 = 0.018, f = 1073,
w = 0.1). Time to relapse significantly increases with increasing dose while the progression free survival
shows marginal, but decreasing, difference; (b) The same three therapies are shown in a fish plot, where the
simulation is stopped at the point of relapse to initial tumor size (now consisting entirely of chemo-resistant
population).
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3.2. Managing competitive release

Adaptive therapies take advantage of the important recognition that fitness is contextual
and changes during therapy or on drug holidays. The mechanism for control is also contex-
tual. The suppression of the growth of resistant cell population occurs during periods of rest
or weaker doses of therapy (drug-sensitive cells have a fitness advantage in these conditions);
suppression of the growth of the sensitive cell population occurs during treatment. Figure
7 shows how the idea of contextual fitness can be applied to therapeutic strategies.

A simple control paradigm is proposed to indirectly control the resistant population.
Therapy targets only the chemo-sensitive cells, but the resistant population can be controlled
by systematically choosing when to administer therapy and when to give drug holidays.
Therapy “on” is for the purpose of killing sensitive cells. Therapy “off” is for the purpose
of allowing a sufficient number of sensitive cells to remain, in order to suppress the resistant
population. The control paradigm is as follows: a continuous dose of therapy is administered
until the nullcline (£p = 0) is reached (see figure 5, right). This is the starting point of
positive growth for the resistant population (further therapy would result in £z > 0). At
this point, a drug holiday (no therapy administered) is imposed until the second nullcline
is reached (see figure 5, left). The sensitive population is allowed to regrow until it is large
enough to suppress the resistant population once again (and when g = 0). Therapy is
administered to allow the tumor to cycle back and forth between the two nullclines. This
bang-bang (on-off) strategy allows an extension of relapse times.

This control paradigm is seen in figure 7 for identical initial conditions using a range of
drug concentration dose values (low dose: blue; medium dose: red; high dose: yellow). The
low and medium dose adaptive therapy strategies adequately outperform the continuous,
constant dose (dashed lines). As seen in the fishplots on the right, the resistant population
(green) is suppressed during the “off” times of drug holidays, leading to an extended time
without relapse. However, a higher dose (during therapy “on”) results in diminished tumor
control and eventual relapse.

The low- and medium-dose adaptive therapy strategies are successful for two reasons.
First, the drug holidays allow an adequate sensitive population size to suppress the growth
of the lower-fitness resistant population. Second, the resistant population is never allowed
to reach a positive growth (ir > 0).

4. Discussion

The chemotherapeutic scheduling strategies outlined in this paper cannot be pre-planned
by the oncologist at the beginning of therapy like classical strategies [38], as they rely
on significant decision making and continuous monitoring of the different subpopulations
of cells that co-evolve as the tumor progresses. This means that the quality of the cell
population monitoring system is crucial to the entire strategy, as has been pointed out in
[39]. There can be no adaptive tumor control strategy without continuous monitoring of
the sub-clones. In addition, the information gleaned from a detailed monitoring system
cannot be acted upon unless the various administered drugs are sufficiently targeted to
act efficiently and exclusively on specific sub-clones. These two systems must be in place
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Figure 7: Adaptive therapy strategy to control resistant population. In each case, the adaptive
therapy control paradigm administers therapy (ON) until the nullcline is reached (zg = 0; see figure 5b).
At this point, further therapy will result in the growth of the resistant population (i.e. g > 0). Therapy
is then turned OFF (a drug “holiday”) until the second nullcline is reached (see figure 5b), allowing the
sensitive population to regain a stable and adequate size useful to suppress the resistant population. This
control paradigm works well for low and medium dose, but stable control is not achieved for high dose. (a)
Low dose therapy (blue; top: ¢ = 0.4) for continuous therapy (dashed line) and adaptive therapy (solid line);
(b) Corresponding fishplot; (¢) Medium dose therapy (red; middle: ¢ = 0.6) for continuous therapy (dashed
line) and adaptive therapy (solid line); (d) Corresponding fishplot; (e) High dose therapy (yellow; bottom:
¢ = 0.8) for continuous therapy (dashed line) and adaptive therapy (solid line); (f) Corresponding fishplot.
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(sensing and actuating) in order to successfully shape the fitness landscape and steer a
growth trajectory in a desired direction. We also want to emphasize a separate point,
which is that it is not enough to know in detail the current state of the system in order
to steer it successfully. One must also have a description of all possible nearby states of
the system, both under therapeutic pressure and without therapy. Better yet is to have
a global picture of all possible states of the system, with nonlinear nullcline information,
as one would obtain by analyzing the full phase space of the entire system. With this
information, one would know where to steer the system to get to a desired state, even
if one does not know how to achieve this (clinically). In current state-of-the-art medical
practice, such sophisticated sensor-actuator capability is not yet sufficiently developed as
it is in many engineering contexts where adaptive control theory is routinely used. Many
similar challenges, and the necessary steps towards their implementation, present themselves
in the ecology and pest control communities, and we point to Gould’s article [40] for a nice
early overview. More recently, connections between the approaches developed in the past
by ecologists and possible future strategies for oncologists have been discussed by Gatenby
and collaborators [41]. Other groups [42, 43, 44] have also developed highly mathematical
approaches to tumor control from different points of view. Clearly not all of the clinical steps
are in place to effectively test and implement many of the strategies that have been explored
theoretically. Yet it is still important to continue to develop the kinds of mathematical
models and computer simulations that would serve to identify the many possible schemes,
parameter ranges, and sensitivities that could one day be tested via clinical trials that focus
on adaptive therapies with the goal of suppression of potential evolution of resistance.
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