
A blood-based signature of cerebrospinal fluid
Aβ1−42 status
Benjamin Goudey1,2,3,*, Bowen J Fung1,4,*, Christine Schieber1, for the Alzheimer’s
Disease Metabolomics Consortium†5, for the Alzheimer’s Disease Neuroimaging
Initiative‡6, and Noel G Faux1,7,+

1IBM Australia - Research, Carlton, Victoria, Australia
2Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Australia
3Department of Computing and Information System, The University of Melbourne, Parkville, Australia
4School of Psychological Sciences, University of Melbourne, Victoria, Australia
5A complete listing of ADNI investigators can be found at: http:
//adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
6A complete listing of ADMC investigators can be found at:
https://sites.duke.edu/adnimetab/who-we-are/
7The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
+Corresponding author: noel.faux@au1.ibm.com
*These authors contributed equally to this work

ABSTRACT

It is increasingly recognized that Alzheimer’s disease (AD) exists before dementia is present and that shifts in amyloid beta
occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the
success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established
methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1−42 (Aβ1−42) may be an earlier indicator
of Alzheimer’s disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF
collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap.
In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual’s
CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes
can accurately predict subjects as having abnormal (low) CSF Aβ1−42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity,
and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA,
Aβ1−42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent
validation cohort that individuals with predicted abnormal CSF Aβ1−42 levels transitioned to an AD diagnosis over 120 months
significantly faster than those with predicted normal CSF Aβ1−42 levels and that the resulting model also validates reasonably
across PET Aβ1−42 status (0.78 AUC).
This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is
able to predict CSF Aβ1−42 status, the earliest risk indicator for AD, with high accuracy.

1 Introduction
Alzheimer’s disease (AD) is a terminal neurodegenerative disease that has historically been diagnosed based on “clinically
significant” cognitive decline of an individual and exclusion of other conditions. However, it is increasingly recognized that AD
is a decades-long neurodegenerative process, with shifts in amyloid β1−42 (Aβ1−42 ) providing the first indicators of disease
development, long before “Alzheimer’s dementia” (significant cognitive decline) is clinically apparent1–5.

There is currently no cure or disease-modifying therapy for this terminal illness despite hundreds of clinical trials being
conducted since 20026, 7. It is hypothesized that the high failure rate of AD trials is in part due to the trials targeting AD patients
with significant cognitive impairment, who are therefore in the late stages of the disease and likely have suffered a level of brain
tissue loss that cannot be compensated for8. Compounding this is the discovery that many patients enrolled in clinical trials
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were retrospectively found to have normal levels of amyloid and hence did not have AD9, with this number as high as 20%10.
Given these findings, there is a great interest in amyloid screening for clinical trial enrichment in order to recruit individuals
at the earliest stages of AD, where intervention is thought to have the greatest chance of success8. It would also ensure that
included individuals are amyloid positive (i.e. have abnormal levels of amyloid), a necessary precondition for the development
of AD. This sort of selective screening is an important precursor for the longer-term goal of population screening for AD11.

There are currently two established methods to measure an individual’s amyloid burden: either in vivo in the form of
reduced levels of Aβ1−42 in the cerebrospinal fluid (CSF) or increased uptake of radioactive tracers that bind selectively to the
Aβ fibrillary aggregates by PET imaging. Unfortunately, existing methodologies for measuring an individual’s amyloid levels
suffer drawbacks that limit their utility for screening. Lumbar punctures are highly invasive, with this factor alone limiting the
applicability of CSF biomarkers for screening. While PET scans are less invasive, they are far more expensive and access to
PET scanning facilities is limited in some regions. Despite this, many current trials that target amyloid now require positive
amyloid imaging at baseline to ensure accurate diagnosis, a cost-intensive process7.

Despite their invasiveness, recent studies have found evidence that changes in CSF Aβ1−42 may indicate AD risk long
before these same changes are reflected in PET Aβ imaging12–14. Palmqvist et al13 have shown compelling evidence that
changes in CSF Aβ1−42 occur up to a decade before the same signal is found by PET Aβ imaging. These results indicate that
CSF may be a more suitable measure for early detection, whereas Aβ PET contributes independent information that is more
related to disease progression and downstream pathology.

To bypass the invasiveness of CSF collection, there is a strong interest in finding blood-based markers that yield the same
information about amyloid status as would be obtained from CSF. There have been a number of studies which have shown
that a blood protein signature can be found that reflects AD brain pathology as measured by PET15–24. Of particular interest
is the recent study by Nakamura et al. (2018) 25, whereby levels of Aβ1−40, Aβ1−42 and APP669−771 in plasma, measured
using specialised immunoprecipitation (IP) coupled with Matrix Assisted Laser Desorption/Ionization (MALDI) time-of-flight
(TOF) mass spectrometry (MS) (henceforth referred to as IP-MALDI-TOF-MS), were shown in combination to have strong
performance (> 0.94 area under the receiver operating characteristic curve (AUC)) in predicting PET Aβ1−42 status across two
cohorts. This combination of biomarkers was also found to be predictive of CSF Aβ1−42 status, with an AUC of 0.88 on a
smaller subset of patients (n=46). The novel IP-MALDI-TOF-MS method employed by Nakamura et al.25 is still in its infancy
and it is unclear how easily this will be translated into a clinical setting. Thus, there is still strong interest in finding blood
markers for CSF Aβ1−42 using alternative approaches that rely on more established assays.

Here, we evaluated the ability of proteomic and metabolomic data to predict the levels of CSF Aβ1−42 using a Random
Forest (RF) approach and explore which types of measurements lead to the strongest predictive performance. We then determine
the minimal set of features required to achieve comparable predictive performance. Finally, we evaluate the robustness and
utility of these predictive models across a held-out validation cohort of individuals with mild cognitive impairment (MCI),
demonstrating that subjects with predicted abnormal CSF Aβ1−42 levels showed a faster rate of cognitive decline (measured by
the transition to a clinical AD diagnosis) than those with predicted normal CSF Aβ1−42 levels.

2 Methods

2.1 Overview of cohort and measurements
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large, multicenter, longitudinal neuroimaging study, launched in
2004 by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies, and non-profit organizations.

ADNI is a longitudinal study of older adults, designed to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD.

The ADNI study protocols were approved by the institutional review boards of all participating sites (http://www.adni-
info.org/) and written informed consent was obtained from all participants or authorized representatives. All the analytical
methods were performed on the de-identified data and were carried out in accordance with the approved guidelines. Study
inclusion criteria and definitions for each diagnosis class have been previously reported in detail26. Briefly, individuals
diagnosed as AD had to meet the National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s
Disease and Related Disorders Association criteria for probable AD (McKhann et al. 1984). These individuals had issues
with global cognition and memory function and they, or their caretakers, reported significant concerns about their memory. In
contrast, individuals with MCI exhibited subjective memory loss (CDR of 0.5 and were at least one standard deviation(SD)
below the normal mean of the delayed recall of the Wechsler Memory Scale Logical Memory II) but showed preserved activities
of daily living, the absence of dementia and scored 24-30 on the MMSE.
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Dataset Training Validation
Diagnosis CN MCI AD CN MCI AD
Number of participants
(n) 58 198 102 0 198 10

Age (mean, (SD)) 75.11 (5.77) 74.35 (7.48) 74.90 (7.91) - 75.13 (7.32) 73.73 (10.04)
Gender; female (n, (%)) 28 (48.28) 65 (32.82) 43 (42.16) - 75 (37.88) 4 (40.00)
Years of education (mean,
(SD)) 15.67 (2.78) 15.81 (2.99) 15.16 (3.29) - 15.48 (3.09) 14.70 (2.06)

APOEε4 carriers (n, (%)) 5 (8.62) 106 (53.54) 71 (69.61) - 105 (53.03) 5 (50.00)
CSF Aβ1−42 abnormal (n,
(%)) 0 (0) 146 (73.7) 94 (92.16) - - -

PET imaging (n, (%)) 28 (48.28) 71 (35.86) 9 (8.82) - 108 (65.55) -

Table 1. Demographic characteristics of the ADNI data set separated into training and validation cohorts, corresponding to
individuals with and without CSF measures respectively. Columns in each cohort provide a further breakdown into individuals
that are cognitively normal (CN), have mild cognitive impairment (MCI) or Alzheimer’s disease (AD). The units of each cell
are shown in parentheses in the row names and commonly include number of patients (n) or mean of a given quantity (mean).
If a secondary measure (percent (%) or standard deviation (SD)) is also present, it is listed in brackets next to the primary
measure.

2.2 Data preparation
We examined 566 individuals in the ADNI cohort who had baseline measures of age, APOEε4 carrier status, 193 protein
levels (including homocysteine, Aβ1−40, and Aβ1−42) and a further 190 proteins measured on a Rules-Based Medicine (RBM)
platform) and 186 LC-MS/MS metabolites and lipids. After applying previously documented quality control procedures
(Supplementary Methods) and removing analytes with more than 15% missingness, 149 proteins and 138 metabolites remained.
No samples were removed from the analysis as missingness levels were less than 5%. Any remaining missing data points were
imputed using an unsupervised RF approach27, with the resulting 289 analytes listed in Supplementary Table 5, showing means,
SD, and association across different CSF Aβ1−42 status. After quality control, a total of 566 individuals, each with measures
for 289 analytes, age, and APOEε4 carrier status, were present in the ADNI cohort (Table 1).

2.3 Training and Validation cohorts
The 566 individuals in this study ranged from 54.4-89.6 years of age and could be categorized at baseline by their AD clinical
diagnosis as cognitively normal (CN; n = 58), amnestic MCI (n = 396) or probable AD (n = 112). A breakdown of the
demographics of the 566 individuals by baseline diagnosis and CSF availability is shown in Table 1.

This cohort was split into training and validation cohorts with 356 and 210 individuals with and without measures of
CSF Aβ1−42, respectively. CSF Aβ1−42 was measured using the Luminex xMAP platform. The training set was used to
build predictive models and evaluate their performance directly using the measured Aβ1−42 levels while the validation cohort
was used to evaluate the generalizability and utility of the model’s predictions. For each cohort, we also considered a subset
of individuals for whom Aβ1−42 status from PET was available at least one-time point (not just at baseline), either using
[11]C-Pittsburgh compound B (PiB) and [18]F-AV-45 (florbetapir, AV45) tracers, for further validation of our modeling. Further
demographic information for these cohorts can be found in Supplementary Tables 1, 2 and 3.

2.4 Binary and regression modeling tasks
The primary aim of this work was to produce a model that predicts if an individual’s CSF Aβ1−42 levels are below the recognized
clinical threshold of 192pg/ml for the Luminex platform, indicating an abnormal CSF Aβ1−42 level, and hence increased AD
risk. Given the continuous CSF Aβ1−42 measures in the ADNI cohort, two approaches were considered

• a ‘regression‘ task: learning the continuous CSF Aβ1−42 levels and thresholding these post-prediction

• a ‘binary‘ task: learning the dichotomized CSF Aβ1−42 status based on clinical thresholds directly.

While both tasks result in a binary classifier, they face different trade-offs. The regression task makes use of the full
information in the CSF levels but needs to learn a suitable threshold to convert its continuous predictions into suitable binary
labels whereas the binary task only learns from the dichotomized CSF levels. Given these trade-offs, we have investigated both
modeling approaches throughout this work.
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2.5 Statistical modeling
We made use of Random Forests (RF) as the modeling approach to predict CSF Aβ1−42 levels for both the binary and regression
tasks. RFs are a widely-used machine-learning ensemble method that have a number of advantages for the small sample size
and disparate types of features observed in the ADNI dataset. RFs are invariant to the scale of the observed features and make
few assumptions about the distributions of observed data allowing them to be applied to multiple data modalities easily. It can
also detect non-additive relationships between variables without needing them to be included explicitly28.

All analysis in this work made use of the RF implementation in the R package ranger29. Each forest contained 2000
individual trees, each making use of a random selection of p3/4 features, where p was the total number of variables used in
a given model. These parameter choices were based on recommendations provided in Ishwaran et al. (2011)30. All other
parameters in the ranger implementation were set to their default values.

To get an estimate of the performance of our models, we have made use of a nested cross-validation (CV) framework,
whereby an inner CV was used to determine model parameters, and the outer CV was used to gain an estimate of the model’s
performance on unseen data31. In this study, we used 3 repetitions of 3 fold CV for the inner loop and 10 repetitions of 10 fold
CV for the outer loop.

As the RF used pre-determined parameter values, only a single parameter had to be determined; the threshold on the
continuous regression predictions necessary to generate binary labels. This threshold was selected based on performance in the
inner CV loop, using the R package OptimalCutoffs32 to evaluate six potential cutoff metrics (Supplementary Methods) and
selecting the method which maximized the accuracy over all of the test folds from the inner cross validation loops. The best
performing cutoff criterion was then used in the current iteration of the outer cross-validation loop and the accuracy, sensitivity,
and specificity derived from this threshold was recorded for that fold. While this approach means that a different method could
be used to derive the regression threshold for each fold in the outer CV loop, the resulting estimate of performance is unbiased
and hence is likely to be more representative of performance on unseen data compared with selecting a threshold based on the
entire set of training data.

2.6 Measures of model performance
Model performance was summarized by the mean and standard deviation of the area under the Receiver Operating Characteristic
(ROC) curve (AUC), accuracy, sensitivity, and specificity from the testing performance across the different cross-validation runs.
R2 values were also calculated for the regression task. Increases in AUC between models were tested for significance using a
one-tailed Wilcoxon signed-rank test. Receiver operating curves were constructed by aggregating all of the test predictions
from the outer cross-validation.

2.7 Evaluating the importance of different input modalities
The input variables were separated into three classes: a commonly used baseline model (B) including age and APOEε4 carrier
status; Proteomics (P), which included the 146 analytes measured on the RBM panel as well as homocysteine and plasma
Aβ1−40 and Aβ1−42; Metabolomics (M), including 138 metabolites and lipids.

Four separate random forests were created using different subsets of these features to determine which were most useful for
modeling CSF Aβ1−42. We denoted these models by the combination of features they included; for example ‘BPM’ refers to a
model built using all three classes of features. The best performing model was selected for all subsequent analysis.

2.8 Discovery of the smallest set of markers needed for strong predictive performance
After evaluating the impact of the different input modalities, we determine the minimum set of individual analytes necessary to
achieve high predictive performance. This was done by treating the number of included features as a parameter to be determined
in our nested CV framework. Within each fold of the inner CV loop, we used a recursive feature elimination approach, ranking
features according to their Variable Importance, the difference in the prediction error on the out-of-bag data when a given
feature was permuted and unpermuted28 and removed the lowest ranking features in a stepwise fashion. The AUC of the
resulting RF was recorded, and the procedure was repeated over increasingly smaller subsets of features until no features were
left to be removed. After the inner CV loop finishes, we determine the number of features that achieved the optimal trade-off
between model complexity and performance by selecting the smallest subset of features that achieved within 4% of the maximal
observed AUC. A model using this subset of features was then trained on all training folds of the outer CV loop and evaluated
on the test fold. Again, by determining the number of features to include within our nested cross-validation framework, we are
able to determine an unbiased estimate of the model’s expected performance over unseen data.

2.9 Survival Analysis
Survival analysis was conducted to determine if the rate of conversion from MCI to AD was different between those with
predicted low and normal CSF Aβ1−42 levels, enabling us to determine if our predictions lead to useful clinical outcomes in the
validation cohort.
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Regression Binary
Feature set AUC R2 Acc Sens Spec AUC Acc Sens Spec

BPM 0.830 (0.08) 0.274 (0.11) 0.771 (0.07) 0.784 (0.09) 0.748 (0.13) 0.826 (0.07) 0.766 (0.06) 0.884 (0.06) 0.536 (0.14)
BM 0.788 (0.08) 0.209 (0.13) 0.744 (0.08) 0.779 (0.09) 0.679 (0.16) 0.784 (0.08) 0.737 (0.08) 0.855 (0.08) 0.507 (0.15)
BP 0.839 (0.07) 0.293 (0.11) 0.765 (0.08) 0.782 (0.10) 0.731 (0.13) 0.834 (0.07) 0.769 (0.07) 0.882 (0.08) 0.552 (0.14)

B 0.795 (0.08) 0.275 (0.14) 0.746 (0.06) 0.751 (0.08) 0.747 (0.15) 0.800 (0.07) 0.745 (0.07) 0.731 (0.09) 0.780 (0.11)
BP f s 0.812 (0.08) 0.270 (0.14) 0.749 (0.07) 0.807 (0.10) 0.638 (0.15)

Table 2. Mean and standard deviation (in parentheses) of performance metrics (area under the receiver operator curve, AUC;
accuracy, Acc; sensitivity, Sens; specificity, Spec and R2 for the regression models) for the different Random Forest models
using different feature sets across all cross-validation folds. Left and right halves are for the Regression and Binary tasks
respectively. Bold faced text on AUCs indicates the best performing model or those that are statistically equivalent (via a
Wilcox rank signed test, with a Bonferroni-corrected significance threshold of 0.05/5=0.01). Features sets describe
combinations of (B) baseline model (age and APOEε4 carrier status), (P) Proteomics, (M) Metabolomics.

Four separate analyses were performed, using the:

1. measured CSF status on the training set (n=198)

2. predicted CSF status from B model, the standard baseline, in the validation set (n=198)

3. predicted CSF status from BP model, the best performing model, in the validation set (n=198)

4. predicted CSF status from BP f s model, the most parsimonious model, in the validation set (n=198),

where BP f s is the feature selected model with the smallest set of features. For each analysis, we have examined the hazard ratios
using Cox regression and used log-rank tests to compare the survival distribution of low/normal CSF Aβ1−42 stratifications in
the four analyses, as well to compare equivalence between the actual and predicted stratifications.

2.10 Validation performance over PET Aβ1−42 status
In order to further validate our model, we have examined the ability of our model to differentiate PET Aβ1−42 abnormal and
normal status. While it is known that Aβ1−42 status from PET can differ from that observed in CSF, measurements from the two
modalities are correlated and should be very similar for individuals who are not close to the cutoff indicating pathology. This
provides analysis provides further evidence of our model’s ability to determine Aβ1−42 status in individuals in the validation
cohort, where CSF measurements are not available.

Given that only a limited number of individuals had associated measures of PET imaging at baseline (n=18 and 27 for
training and validation cohorts respectively), we have made use of the earliest PET image available, leaving us with 108 and 68
individuals in the training and validation cohort to evaluate. The threshold for abnormality was defined as an SUVR of 1.5 and
1.11 for PET images using PiB and AV45 tracers respectively. The mean number of years past baseline that a scan was taken
was 3.07 and 2.97 years for training and validation cohorts respectively.

The use of imaging at non-baseline times assumes that differences between the baseline and time that the image was taken
are relatively small (which may be reasonable assuming a slow rate of Aβ1−42 accumulation) and that few individuals are close
to the defined threshold for abnormality. If these assumptions do not hold, it is likely to worsen predictive performance, making
this analysis somewhat conservative.

3 Results

3.1 Models utilizing protein levels accurately predict CSF positivity
We evaluated the ability of blood-based biomarkers to predict CSF Aβ1−42 normal/abnormal status using RFs trained using
different subsets of input variables, treating the modeling of CSF Aβ1−42 as either a regression or binary task. Summaries of the
performance metrics from the resulting models are shown in Table 2 with their corresponding ROC curves shown in Figure 1.

We observed strong overall predictive performance for both the regression and binary tasks within our cross-validation
framework. All sets of features outperformed the base model of age and APOEε4 carrier status with BP based models leading
to the highest AUC of 0.84 and 0.83 for the regression and binary tasks respectively. The standard deviation for the AUC was
relatively high (7-8%), likely due to the noise inherent in both the analytes being used for prediction as well as in the CSF
Aβ1−42 measurements.
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Figure 1. ROC curves comparing different sets of features to determine predictive value for the a) regression, and b) binary
tasks. Different colours of lines correspond to different feature sets, (B) baseline model (age and APOEε4 carrier status), (P)
Proteomics, (M) Metabolomics, with corresponding AUCs indicating in the legend under each plot. The model BP f s in subplot
a) indicates the performance of the RF using feature selection.

The BP models resulted in a mean R2 of 0.29 for the regression task. The automatically derived threshold for this regression
RF yielded a mean accuracy of 0.77, with a sensitivity of 0.78 and a specificity of 0.73. Across the 100 cross-validation runs,
the chosen threshold ranged from 164pg/ml to 194pg/ml with a median of 185pg/ml.

Similar AUC and accuracy could be observed for learning the dichotomized CSF labels directly (e.g 0.83 AUC, 0.77
accuracy for the BP model). For the binary task, a slight drop in both AUC, as well as an altered trade-off between sensitivity
and specificity, was observed across all different feature sets compared to the regression task. Given this, we chose to focus on
the regression model for much of the follow-up analysis.

While all models making use of blood analytes outperformed the base model of age and APOEε4, models that made use of
the protein level measurements consistently achieved the strongest predictive performance, whereas metabolites appeared to be
of limited utility. In both the regression and binary tasks, models containing metabolites and proteomic data (BPM) achieved
equivalent or worse AUCs than models containing only the proteomic data (BP). Furthermore, we observed that the use of the
base features and metabolites alone (BM) lead to decreased performance compared to the baseline model, indicating that the
set of measured metabolites may have contributed little predictive information or may have been too noisy to be useful for
predicting CSF status. These findings are in contrast to the previously reported utility of metabolites in predicting PET Aβ1−42
positivity22.

While the results presented in this section include clinically diagnosed AD individuals, who are almost all CSF Aβ1−42
positive, it is worth considering only ‘pre-clinical’ individuals as this may be more relevant for selective screening in drug trials.
Evaluating our model’s performance on CN and MCI individuals only, we find that similarly strong predictive performance can
be obtained (Supplementary Table 4, Supplementary Figure 1, 0.80 AUC, 0.77 accuracy for the BP model) supporting our
primary findings that plasma protein levels can be utilized to predict amyloid pathology status.

To ensure that our imputation procedure did not bias our results, we also built similar models using only complete cases
after applying more stringent quality control (removal of plasma analytes where more than 1% of measurements were missing),
obtaining similar AUCs of 0.81 for the regression and binary tasks (Supplementary Figure 2).
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Figure 2. Partial dependency plots of the five features selected from the full BP model using a recursive feature elimination
approach. Each subplot shows how the variation of a specific feature impacts that predicted levels of CSF Aβ1−42 assuming the
other four features are fixed.

3.2 Strong predictive performance is maintained using only four proteins
The models described so far used all (> 140) available features in this dataset. In practice, measuring hundreds of analytes
is costly, negating a key advantage of using blood biomarkers for screening. Given this, we have applied feature selection to
the BP regression model to identify the smallest number of features that still achieved high predictive performance. Within
cross-validation, we find that the average performance of this feature selection approach, denoted BP f s, yields an AUC,
sensitivity, and specificity of 0.81, 0.81 and 0.63. The number of features selected in the model ranges from 2 to 15, with a
median of 5 features included.

When applying this feature selection procedure to the entire set of training data, we identified a subset of four plasma
analytes as well as APOE4 genotype status critical for model performance: Chromogranin-A (CGA), Aβ1−42 (AB42), Eotaxin
3, and Apolipoprotein E (APOE). This combination of protein levels, together with APOEε4 is denoted as BP5. Figure 2
indicates how each variable influences the model predictions after we have accounted for the influence of the other four variables.
As expected, the strongest relationship with CSF Aβ1−42 is with APOEε4 carrier status, where being a carrier (APOEε4 = 1)
leads to a low predicted Aβ1−42 level. While the relationships between the proteins and CSF Aβ1−42 are non-linear (a common
outcome given the nature of RFs), the overall correlation with CSF Aβ1−42 is positive for CGA, Plasma Aβ1−42, and APOE
protein levels and negative for Eotaxin 3.

3.3 Validation of clinical utility
To demonstrate the utility of our modeling on unseen data, we conducted a survival analysis over the validation cohort (n=198),
evaluating the probability of baseline MCI individuals transitioning to AD diagnosis over 120 months, stratified by predicted
CSF Aβ1−42 status from either the B, BP or reduced BP5 model. These survival distributions could then be compared to those
of the real Aβ1−42 status observed over the training cohort. Given the demographic similarity of the two cohorts, we would
expect to see strong similarities in rates of conversion.

From Figure 3, we observed that in all cases, the predicted low CSF Aβ1−42 group transitioned to AD significantly faster
than the Aβ1−42 normal group. Comparing the predictions from the BP, BP5 and B models on the validation cohort to the
actual CSF Aβ1−42 status on the training cohort, we find that there is no significant difference between the survival distributions
for either the normal (log-rank test p = 0.19,0.2,0.21) or abnormal (log-rank test p = 0.97,0.31,0.23) survival distributions,
respectively, reflecting the overlapping confidence intervals of the hazard ratios. However, it can be observed that due to
differences in the thresholding of the Aβ1−42 levels, fewer individuals are deemed as CSF Aβ1−42 ‘normal’ in the actual
data (n=53), compared with any of the three models applied to the validation datasets (n=95, 73, and 71 for BP, BP5, and
B models respectively), highlighting the well-recognized issues of defining standardized cutoff values across studies33. The
significant differences in conversion rates between the predicted normal/low strata, especially from the more parsimonious BP5
model, together with their similarity to the survival distributions of the actual CSF measures, provide strong evidence that our
blood-based model can help stratify individuals based on their risk of developing clinical AD (Table 1).

3.4 Concordance with PET Aβ1−42 status
To further validate and quantify our model’s performance, we have explored the relationship between the predicted CSF Aβ1−42
scores and PET imaging status. Confirming that the PET and CSF Aβ1−42 status are correlated, we find that they differed
in only 7 out of 108 individuals for whom both CSF and PET amyloid status were available. As such, evaluating our model
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Figure 3. Kaplan-Meier curves for a) the training cohort stratified by actual CSF Aβ1−42 status, and the validation cohort
stratified by predicted CSF Aβ1−42 status from the b) B model, c) BP model and d) BP5 model. The bands along the curves
represent the 95% confidence intervals. Hazards ratios and 95% confidence intervals for the abnormal group compared to the
normal are shown in the bottom left of each subplot. In all cases, the low CSF Aβ1−42 group transitioned to AD diagnosis
significantly faster then the normal group (p = 3.97×10−7,7.89×10−6,9.96×10−4,1.65×10−3 for the four plots left-right).
CN individuals were not included in this analysis because there were no CN individuals present in the validation cohort.

against the PET Aβ1−42 status should provide a conservative estimate for the AUC on the validation cohort, despite the lack of
CSF measures.

The resulting ROC curves in Figure 4 provide further evidence that the BP and BP5 models are able to predict Aβ1−42
status, with AUCs against PET Aβ1−42 on the validation cohort of 0.78 and 0.8 for the BP and BP5 models respectively. These
results are similar to those from predicting CSF status from the training data (Figure 1), with a small expected drop due to the
inherent differences between CSF and PET amyloid. Interestingly, we observe stronger performance for the reduced BP5 model
compared to the full BP model, with both models significantly improving upon the baseline model of age and APOEε4 status.

4 Discussion
The most positive results from AD trials to date have been found in patients with early forms of the disease, leading to an
increasing awareness that treatments are likely to be most successful if applied at the earliest stages of AD8. Some AD clinical
trials are enriching pre-symptomatic AD individuals with PET screening. However, recent findings that shifts in CSF amyloid
can be observed up to a decade before those from PET may indicate that CSF positive individuals are even more suitable
for clinical trial enrichment 34. Direct measurement of CSF biomarkers is too invasive to be used in such a screening test35

motivating the development of a minimally-invasive, low-cost solution that provides the same type of information to overcome
these limitations.

This current study evaluates the utility of a blood-based signature of CSF Aβ1−42 status using a Random Forest approach.
We demonstrated that CSF Aβ1−42 normal/abnormal status using age, APOEε4 carrier status, and protein levels can be predicted
with a high AUC, sensitivity and specificity of 0.84, 0.78 and 0.73 respectively. Compared to the base model (age and APOEε4
genotype) the inclusion of the plasma analytes improved the performance (AUC) by 6%. To make the model more suitable
for clinical application, we identified four plasma analytes which, together with APOEε4 carrier status, still achieved a high
AUC, sensitivity, and specificity of 0.81, 0.81 and 0.64 respectively. These predictive models were then validated on a separate
cohort of individuals to demonstrate that MCI subjects with predicted abnormal CSF Aβ1−42 (low) levels transitioned to an
AD diagnosis at a significantly higher rate than those predicted with normal CSF Aβ1−42 levels. Furthermore, these rates
were similar to those observed in a demographically similar cohort of MCIs using actual CSF Aβ1−42 levels. This is a strong
validation of our modeling as the blood-based biomarkers for CSF Aβ1−42 status is only useful if they can replicate the behavior
of the actual Aβ1−42 status for clinically relevant endpoints for individuals that were not used to build the predictive model.
Strong predictive power of PET Aβ1−42 status on the validation cohort provides further evidence for the generalizability and
robustness of our modeling.

A number of studies have previously investigated the use of blood analytes to predict the burden of amyloid in the neocortex,
as measured by PET 15, 16, 18–20, 22, 23. Some of these studies showed similar performance metrics to those reported in this
work (> 0.80 AUCs15, 23–25 or > 0.78 accuracy17), indicating that prediction of PET and CSF Aβ1−42 status are of similar
difficulty. PET Aβ is directly related to brain fibrillar amyloid, whereas CSF amyloid is a marker of soluble Aβ1−42 and they
may, therefore, give different insights into AD progression and mechanisms. For example, CSF Aβ1−42 has been shown to be
associated with APOEε4 whereas PET Aβ1−42 has been shown to have a greater association with tau36. Thus, the development
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Figure 4. ROC curves comparing different sets of features to determine PET-based Aβ1−42 status on the a) training and b)
validation cohorts. Different colours of lines correspond to different feature sets with corresponding AUCs indicating in the
legend under each plot. Results in the training cohort are more useful as a measure of similarity between the tasks of predicting
CSF and PET Aβ1−42 status given that this was the data used to train the CSF model and hence the AUC are upwardly biased,
especially for more complex models (e.g. BP).

of a blood-based screening test for CSF Aβ1−42 levels is a complementary approach to existing blood-based biomarkers of PET
amyloid status.

Of the above studies, the study by Nakamura et. al.25 showed a very high AUC in discovery and validation datasets for PET
Aβ1−42 status (AUC 0.94 and 0.96 respectively) as well as a strong performance for predicting abnormalities in CSF Aβ1−42
levels (AUC 0.88%), in a small cohort (n=46) of their validation set. While these results are promising, the automation of
the novel technique used (IP-MALDI-TOF-MS), and hence transfer to a clinical setting, is non-trivial, motivating the search
for complementary approaches. The protein signature presented in this study, based on a multiplex immunoassay, is likely
to require a far shorter timeframe for clinical translation given the high level of automation that already exists for multiplex
immunoassays, and that biomarkers from such platform have already been used in commercially available diagnostic tests that
have been approved by the FDA.

The use of metabolites appeared to be of limited utility for predicting CSF Aβ1−42. In both the regression and binary tasks,
models containing metabolites achieved equivalent or worse AUCs than models without. These findings can be contrast with
the utility of metabolites in predicting PET Aβ1−42 positivity22 and their association with AD more broadly37. Alternative
methods for integrating this source of data38 may be required in order to find robust associations with CSF Aβ1−42 status.

The subset of features used in our BP5 model included APOEε4 genotype and plasma levels of Chromogranin-A (CGA),
Eotaxin 3, Aβ1−42 (AB42), and Apolipoprotein E (APOE). Several of these identified proteins have known associations with
Alzheimer’s disease. Unsurprisingly, the levels of plasma APOE are associated with CSF amyloid levels. APOEε4 is the
strongest genetic risk factor for AD. APOE is involved in the clearance of Aβ1−42

39–41 and there is a strong relationship
between APOEε4 genotype and APOE plasma levels, where APOEε4 carriers have lower plasma levels42, 43. Plasma Aβ1−42
showed a positive relationship in our model for CSF Aβ1−42, in line with a prior observation44. This is interesting as the link
between alterations of Aβ1−42 levels in the blood and the progression of the disease is still controversial and studies assessing
the Aβ1−42 concentration in blood of AD patients have produced conflicting results44–50. Chromogranin A (CGA) is associated
with synaptic function and has traditionally been used as an indicator of neuroendocrine tumors51. More recent work has shown
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that CGA has a degree of co-localisation with amyloid plaques in the brain52, 53. However, levels of CGA in the CSF and blood
serum do not appear to be correlated54 and serum CGA has not previously been linked to AD. Eotaxin 3, also known as C-C
chemokine ligand 26 (CCL26), plays an important role in the innate immune system and has been found to be dysregulated in
AD patients55. CSF Eotaxin 3 has been shown to be significantly elevated in patients with prodromal AD, however, Eotaxin 3
levels in plasma or the CSF has not been shown to correlate with rates of disease progression55, 56

This study has several limitations. The training and validation cohorts are both composed of individuals in the ADNI study
and thus all measures were conducted on the same platforms. Hence further cross-cohort and cross-platform replication is
required. This remains an ongoing issue within the development of all AD biomarkers relating to early screening and requires
significant future investment57. Furthermore, the current cohort is neuropathology biased, i.e. 84% of the cohort have MCI or
AD, and thus likely to have neuronal damage, potentially confounding the analysis of CSF Aβ1−42 status. Finally, it needs to be
noted that there are other medical conditions that are known to affect CSF Aβ1−42 levels and it is unclear whether these affect
any of the patients in our cohort.

The early identification of AD disease is paramount and a major global focus as the success of disease-modifying or
preventative therapies in AD may depend on detecting the earliest signs of abnormal amyloid-beta load. The differences
between CSF Aβ1−42 and PET Aβ1−42 in preclinical stages of AD are likely to have implications for clinical trial enrichment.
Blood-based biomarkers of amyloid can serve as the first step in a multistage screening procedure, similar to those that have
been clinically-implemented in cancer, cardiovascular disease, and infectious diseases57. In-conjunction with biomarkers for
neocortical amyloid burden, the CSF Aβ1−42 biomarkers presented in this work may help yield a cheap, non-invasive tool for
both improving clinical trials targeting amyloid and population screening.
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