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Coalescent theory of migration network motifs
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ABSTRACT Natural populations display a variety of spatial arrangements, each potentially with a distinctive impact on
genetic diversity and genetic differentiation among subpopulations. Although the spatial arrangement of populations can
lead to intricate migration networks, theoretical developments have focused mainly on a small subset of such networks,
emphasizing the island-migration and stepping-stone models. In this study, we investigate all small network motifs: the
set of all possible migration networks among populations subdivided into at most four subpopulations. For each motif,
we use coalescent theory to derive expectations for three quantities that describe genetic variation: nucleotide diversity,
FST , and half-time to equilibrium diversity. We describe the impact of network properties on these quantities, finding that
motifs with a large mean node degree have the largest nucleotide diversity and the longest time to equilibrium, whereas
motifs with small density have the largest FST . In addition, we show that the motifs whose pattern of variation is most
strongly influenced by loss of a connection or a subpopulation are those that can be split easily into several disconnected
components. We illustrate our results using two example datasets—sky island birds of genus Brachypteryx and Indian
tigers—identifying disturbance scenarios that produce the greatest reduction in genetic diversity; for tigers, we also
compare the benefits of two assisted gene flow scenarios. Our results have consequences for understanding the effect of
geography on genetic diversity and for designing strategies to alter population migration networks to maximize genetic
variation in the context of conservation of endangered species.
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1

COALESCENT theory is a powerful tool to predict patterns of2

genetic variation in models of population structure, and3

many studies have investigated the predictions of coalescent4

models about genetic variation under a variety of different as-5

sumptions about the genetic structure of populations (Donnelly6

and Tavaré 1995; Fu and Li 1999; Rosenberg and Nordborg 2002).7

Correctly predicting the effect of connectivity patterns on the8

expected amount of nucleotide diversity and genetic differentia-9

tion is important in a range of settings. In population genetics,10
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such predictions enable descriptions of the impact of migration 11

as one of the main evolutionary forces influencing allele frequen- 12

cies. In molecular ecology, they help evaluate the consequences 13

of abiotic factors such as geographic barriers, and biotic factors 14

such as assortative mating, on levels of genetic diversity and 15

genetic differentiation. In conservation genetics, they can be 16

used to quantify the impact of past and future disturbance, as 17

well as to predict the outcome of management initiatives. 18

The two most frequently examined models of population 19

structure are the island-migration and stepping-stone models. 20

In the island model, individuals can migrate from any subpopu- 21

lation to any other subpopulation, all with the same rate (Wright 22
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Figure 1 All possible network motifs for sets of at most 4 ver-

tices. Purple motif backgrounds highlight motifs that follow

standard models, island or stepping-stone or both. Note that

we take the term “motif” to indicate a specific small undi-

rected graph (rather than a small directed or undirected sub-

graph statistically overrepresented in large empirical net-

works, as in many applications).

1951). In the stepping-stone model, individuals can only migrate23

to neighboring subpopulations (Kimura 1953; Maruyama 1970).24

Stepping-stone models can represent multiple spatial arrange-25

ments. Under the circular stepping-stone model, subpopulations26

are arranged in a circle, so that all individuals can migrate to27

exactly two subpopulations.28

Although the island and stepping-stone models can accom-29

modate a variety of patterns of connectivity among subpopu-30

lations, they represent only some of the possible patterns, or31

network “motifs.” Indeed, these models account for only 7 of32

18 motifs possible for sets of one to four subpopulations (Fig-33

ure 1). Numbering motifs by the classification from Read and34

Wilson (2005, p. 8), motif 1 corresponds to the panmictic pop-35

ulation model, motif 18 to the island model, motifs 6, 14, and36

16 to stepping-stone models, and motifs 3 and 7 to both island37

and stepping-stone models. Although tools of coalescent theory38

to study arbitrary migration models are available (Wilkinson-39

Herbots 1998), to our knowledge, patterns of variation expected40

from the remaining 11 motifs have not been described.41

An objective in the study of spatial arrangements of popu-42

lations is to examine the properties of networks representing43

arbitrary connectivity patterns. The number of patterns grows 44

rapidly with the number of subpopulations, however, and the 45

comprehensive description of networks of arbitrary size is a 46

combinatorial challenge. Because small network motifs are the 47

“building blocks” of large networks (Milo et al. 2002), the deriva- 48

tion of their features can be a step in predicting properties of 49

complex connectivity networks. We thus characterize coales- 50

cent quantities under all possible motifs describing the spatial 51

arrangements of up to four subpopulations. We first derive 52

the expected coalescence times between pairs of lineages sam- 53

pled in each of the subpopulations and pairs sampled from 54

different subpopulations. For each subpopulation, we compute 55

three population-genetic quantities: expected nucleotide diver- 56

sity, expected FST values between pairs of subpopulations, and 57

half-time to equilibrium after a perturbation. For each motif, 58

we compute four network statistics—number of vertices, num- 59

ber of edges, mean degree, and density—correlating them with 60

the population-genetic quantities. Finally, we investigate the 61

nucleotide diversity lost after a connectivity loss or a subpopula- 62

tion loss—a transition between motifs. We interpret the results 63

in relation to problems in conservation genetics, considering two 64

case studies, birds of genus Brachypteryx and Indian tigers. For 65

both examples, we (i) consider genetic data in a network motif 66

framework, and (ii) evaluate the potential impacts of connectiv- 67

ity change on population-genetic variation. 68

Model 69

Population connectivity 70

We consider K haploid or diploid subpopulations of equal size 71

N individuals. We denote by Mij the scaled backward migration 72

rate, representing twice the number of lineages per generation 73

from subpopulation i that originate from subpopulation j. Thus, 74

Mij = 2Nmij for haploids and 4Nmij for diploids, where mij is 75

the probability for a lineage of subpopulation i to originate from 76

subpopulation j in the previous generation. The total scaled 77

migration rate of subpopulation i, or twice the scaled number 78

of lineages that originate elsewhere, is Mi = ∑K
j=1,j 6=i Mij. We 79

further assume that the numbers of migrants from each non- 80

isolated subpopulation are all equal to M, so that for two non- 81

isolated subpopulations i and j, Mi = Mj = M. Time is a 82

continuous variable t, scaled in units of the size of a single 83

subpopulation (N for haploids, 2N for diploids). We focus on 84
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cases with 1 ≤ K ≤ 4, and we consider all possible connectivity85

patterns between subpopulations, where each pattern represents86

a distinct graph on at most four vertices (Figure 1).87

Coalescence88

We consider the fate of two gene lineages drawn from a specific89

pair of subpopulations, either the same or different subpopula-90

tions. We denote the state of the two lineages by (ij), where i91

and j correspond to subpopulations. As the coalescence times92

between two lineages with initial states (ij) and (ji) are the same,93

we consider that (ij) refers to both (ij) and (ji), and we assume94

without loss of generality that i ≤ j. Consequently, the number95

of states for two lineages in K subpopulations is (K
2)+K+1: this96

quantity includes (K
2) states where they are in different subpopu-97

lations, K where they are in the same subpopulation, and 1 state98

where they have coalesced.99

Assuming that events cannot occur simultaneously, the coa-100

lescent process can be described by a continuous-time Markov101

chain (Kingman 1982; Wilkinson-Herbots 1998). The list of all102

possible states of the Markov chain in the case where K = 3 is103

represented in Figure 2.104

The instantaneous rate matrix Q =
(
qij,k`

)
for the Markov105

chain, where qij,k` is the instantaneous transition rate from state106

(ij) to state (k`), is defined by (Wilkinson-Herbots 1998):107

qij,k` =



−1−Mi if i = j, i = k, and j = `

−Mi
2 −

Mj
2 if i 6= j, i = k, and j = `

Mik if i = j, i 6= k, and j = `

Mi` if i = j, i = k, and j 6= `

Mj`/2 if i 6= j, i = k, and j 6= `

Mjk/2 if i 6= j, i 6= k, and i = `

Mik/2 if i 6= j, i 6= k, and j = `

Mi`/2 if i 6= j, i 6= k, j = k, and i 6= `

1 if i = j, k = 0, and ` = 0

0 otherwise.

(1)

It can be seen that the list in eq. 1 covers all cases for (i, j, k, `) by108

noting that by assumption, i ≤ j and k ≤ `.109
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Figure 2 Schematic representation of all states for two lineage

in a population divided into K = 3 distinguishable subpopu-

lations. Lineages appear in white, and subpopulations appear

in black. The two lineages can either be in different subpopu-

lations (states (12), (13), and (23)), in the same subpopulation

((11), (22), and (33)), or they can already have coalesced ((00)).

The transition probabilities between states after a time inter- 110

val of length t are given by 111

P(t) = eQt. (2)

The element pij,k`(t) of P(t) corresponds to the transition proba- 112

bility from state ij to state k` in time t. 113

This general model embeds known models. Setting Mij = 114

M/(K − 1) for all i and j 6= i leads to the finite island model 115

(Notohara 1990; Nei and Takahata 1993). Considering subpop- 116

ulations along a circle and setting Mij = M/2 for all adjacent 117

subpopulations (i = j + 1, i = j − 1, or {i, j} = {1, K}) and 118

Mij = 0 for all non-adjacent subpopulations leads to the circular 119

stepping-stone model (Strobeck 1987). Considering subpopula- 120

tions along a finite line and setting Mij = M/2 for 1 < i < K, 121

M12 = MK,K−1 = M, and Mij = 0 for all non-adjacent subpop- 122

ulations leads to the linear stepping-stone model (Wilkinson- 123

Herbots 1998). 124

Results 125

Expected coalescence time 126

The probability that coalescence has already occurred after time 127

t for two lineages sampled respectively in subpopulations i and 128

j corresponds to the transition probability during time t from 129

initial state (ij) to state (00). This probability is given by element 130

pij,00 from matrix P(t) (eq. 2). Because pij,00(t) is a cumulative 131

probability, the associated density function is 132

fij(t) =
dpij,00(t)

dt
. (3)
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Table 1 Exact mean coalescence times and FST values for 2-

vertex motifs. t̄ij represents the expected coalescence time for

a pair of lineages, one sampled from subpopulation i and one

sampled from subpopulation j (eq. 4). Fij is the value of FST

between subpopulations i and j (eq. 6).

Motif t̄11 t̄22 t̄12 F12

2 1 1 ∞ 1

3 2 2 2(1 + 1
2M ) 1

1+4M

Table 2 Exact mean coalescence times and FST values for 3-

vertex motifs. Owing to symmetries in migration motifs (Fig-

ure 1), t̄22 = t̄33 and t̄12 = t̄13, and thus, F12 = F13.

Motif t̄11 t̄22, t̄33 t̄12, t̄13 t̄23 F12, F13 F23

4 1 1 ∞ ∞ 1 1

5 1 2 ∞ 2(1 + 1
2M ) 1 1

1+4M

6 8
3

8
3

8
3

(
1 + 5

8M
) 8

3

(
1 + 1

M
) 1

1+ 16
5 M

1
1+2M

7 3 3 3(1 + 2
3M ) 3(1 + 2

3M ) 1
1+3M

1
1+3M

The expected coalescence time for two lineages sampled in sub-133

populations i and j is thus134

t̄ij =

∞∫
0

t fij(t) dt. (4)

We derive in Appendix A the system of equations that can be135

solved to obtain the expected coalescence times in cases with136

one to four subpopulations. The expected coalescence times for137

motif 1—one isolated subpopulation—is simply 1. The expected138

coalescence times for the two-vertex motifs (motifs 2 and 3)139

appear in Table 1, for the three-vertex motifs (4 to 7) in Table 2,140

and for the four-vertex motifs (8 to 18) in Table 3.141

The set of all pairwise coalescence times of a motif is informa-142

tive about another quantity of interest: the total coalescence time,143

that is, the coalescence time of two lineages randomly sampled144

in any two K subpopulations, possibly the same one. Indeed, the145

total coalescence time is simply t̄T = (1/K2)∑K
i=1 ∑K

j=1 t̄ij, the146

mean coalescence time across all possible subpopulation pairs.147

The total coalescence times for all motifs presented in Figure 1148

appear in Table S1.149
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∞
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∞
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∞

∞
∞
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Expected within-subpopulation nucleotide diversity150

We next calculate the expected within-subpopulation nucleotide151

diversity, that is, the expected number of differences between152

two nucleotide sequences sampled from the same subpopula-153

tion, assuming an infinitely-many-sites model (Kimura 1969)154

and a scaled mutation rate θ per site per generation. Here, θ155

represents twice the number of mutant lineages per generation156

in a subpopulation (2Nµ for haploids, 4Nµ for diploids, where157

µ is the unscaled per-site per-generation mutation rate). We take158

the mean across all subpopulations of the pairwise coalescence159

time within subpopulations:160

πS = θ

(
1
K

K

∑
i=1

t̄ii

)
. (5)

Note that πS is also informative about total nucleotide diversity161

when M is large, because from Tables 1-3 and S1, the total coales-162

cence time tends to the mean within-subpopulation coalescence163

time across all subpopulations as M→ ∞.164

We analytically computed the within-subpopulation nu-165

cleotide diversities for each motif by substituting the expected166

coalescence time from Tables 1-3 into eq. 5. Nucleotide diversity167

appears in Figure S1 as a function of network metrics.168

Genetic differentiation169

For each motif, we compute expected values of FST between170

pairs of distinct subpopulations i and j, denoted by Fij, from171

pairwise coalescence times. From Slatkin (1991),172

Fij =
t̄ij
T − t̄ij

S

t̄ij
T

, (6)

where t̄ij
S = (t̄ii + t̄jj)/2 is the expected coalescence time of two173

lineages sampled in the same subpopulation, and t̄ij
T = (t̄ij +174

t̄ij
S )/2 is the expected coalescence time of two lineages sampled175

in the total population. We compute eq. 6 using eq. 4.176

For a K-vertex motif, FST has mean177

F =
2

K(K− 1)

K−1

∑
i=1

K

∑
j=i+1

Fij (7)

across subpopulation pairs. We analytically computed the ex-178

pected FST from eq. 7 for each motif for sets of 3 and 4 subpop-179

ulations (Figure 1). The expected pairwise FST values for 2-, 3-,180

and 4-vertex motifs appear in Tables 1, 2, and 4, respectively. FST181

appears in Figure S1 as a function of network metrics.182

Half-time to equilibrium diversity 183

The dynamics of πS and FST are governed by the eigenvalues 184

of matrix Q (eq. 1; e.g., Slatkin 1991). Considering an event that 185

changed the population demography τ time units ago, πS and 186

FST will be at equilibrium in the sense that their values are stable 187

through time if the probability that coalescence occurs at time 188

t > τ is small, and thus, if P(τ) = eQτ ≈ [0, 0, . . . , 0, 1]T , where 189

the last entry corresponds to the coalesced state. 190

Considering the eigendecomposition Q = UΛU−1, where Λ 191

is the diagonal matrix whose elements correspond to the eigen- 192

values of Q and U is the matrix whose columns are the eigenvec- 193

tors of Q, P(τ) = UeΛτU−1. Thus, P(τ) ≈ [0, 0, . . . , 0, 1]T when 194

eΛτ ≈ [0, 0, . . . , 0, 1]T , which requires that eλiτ ≈ 0 for all eigen- 195

values λi except one, for which eλiτ ≈ 1. This condition holds if 196

the largest eigenvalue of Q is 0 and the second-largest—denoted 197

by λ—satisfies eλτ ≈ 0. Because Q is an irreducible instanta- 198

neous rate matrix, its largest eigenvalue is 0 and all other eigen- 199

values are strictly negative (corollary 4.9 in Asmussen 2008). 200

We define the half-time to equilibrium τ as a function of λ, 201

the second-largest eigenvalue of matrix Q, as 202

τ = − ln(2)/λ. (8)

τ corresponds to the time at which eλτ = 1/2. Thus, when 203

t� τ, P(t) ≈ [0, 0, . . . , 0, 1]T , and πS and FST are approximately 204

at equilibrium. The value of τ gives a sense of the time needed 205

for πS and FST to reach equilibrium values after a perturbation, 206

such as after a loss of a connection or a subpopulation. This 207

value depends on subpopulation connectivity patterns. 208

We computed the half-time to equilibrium from eq. 8 for each 209

motif for sets of 1 to 4 subpopulations (Figure 1), numerically 210

evaluating the second-largest eigenvalue of Q. Results appear 211

in Figure S1 as a function of network metrics. 212

Network motifs and patterns of genetic variation 213

To describe the influence of the properties of network motifs on 214

our genetic variation measures, we computed the correlations be- 215

tween four network metrics and the mean within-subpopulation 216

diversity πS, the mean FST across pairs of subpopulations, F, 217

and the half-time to equilibrium diversity τ. 218

Network metrics For a given motif, we denote by V and E its 219

sets of vertices and edges, so that |V| and |E| correspond to the 220

numbers of vertices and edges of the motif. 221
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Table 4 Exact FST values for 4-vertex motifs.

Motif F12 F13 F14 F23 F24 F34

8 1 1 1 1 1 1

9 1 1 1 1 1
1+4M 1

10 1
1+ 16

5 M
1 1

1+ 16
5 M

1 1
1+2M 1

11 1
1+4M 1 1 1 1 1

1+4M

12 1
1+3M 1 1

1+3M 1 1
1+3M 1

13 1
1+3M

1
1+3M

1
1+3M

1
1+2M

1
1+2M

1
1+2M

14 19M+20
60M2+83M+20

3(51M+52)
180M2+329M+156

1
1+ 3

2 M
F14

81M+92
180M2+289M+92 F12

15 1104M2+2783M+1704
2880M3+8370M2+7237M+1704

972M2+2405M+1440
2880M3+8124M2+6709M+1440 F12

2(137M2+340M+204)
480M3+1464M2+1393M+408

1
1+3M F23

16 1
1+ 8

3 M
1

1+2M
1

1+ 8
3 M

1
1+ 8

3 M
1

1+2M
1

1+ 8
3 M

17 295M+306
800M2+1125M+306

1
1+2M F12 F12

1
1+ 8

3 M
F12

18 1
1+ 8

3 M
1

1+ 8
3 M

1
1+ 8

3 M
1

1+ 8
3 M

1
1+ 8

3 M
1

1+ 8
3 M

The first network metric we use is |V|, the motif size, or222

number of subpopulations K; here, |V| ranges from 1 to 4. The223

second metric is |E|, which corresponds to the number of pairs224

of subpopulations between which gene flow occurs; |E| ranges225

between 0 and (|V|2 ) = (K
2). Our third metric is the mean vertex226

degree |E|/|V|, or the number of connections of an average227

subpopulation; it ranges from 0 to K − 1. The fourth network228

metric is the density |E|/(|V|2 ), the number of edges divided by229

the maximum number of edges possible if the motif were a fully230

connected graph; it ranges from 0 to 1.231

Correlations between network metrics and patterns of genetic232

variation Correlations between network metrics and πS, F, and233

τ for motifs with up to four subpopulations appear in Figure 3.234

Diversity πS is positively correlated with all four metrics, most235

strongly with the number of edges |E| (ρ = 0.96 for M = 10;236

Figure 3A) and the mean degree |E|/|V| (ρ = 0.96 for M = 0.1237

and M = 1; Figure 3A). Indeed, the highest values of πS occur238

for motifs 16, 17, and 18, which have the largest mean degree239

(2, 2.5, and 3, respectively), whereas the lowest values occur for240

motifs 1, 2, 4, and 8, which have mean degree 0.241

F correlates negatively with the four metrics, especially the242

density |E|/(|V|2 ) (ρ = −0.92 for M = 10; Figure 3B). Indeed,243

for large M (Figure S1H), the lowest F values occur for the244

densest motifs—3, 7, and 18—which have the maximal number245

of connections. The largest F values occur for the least dense 246

motifs—2, 4, and 8—which have 0 edges. 247

Finally, τ is positively correlated with the four metrics, and 248

most strongly with the mean degree |E|/|V| (ρ = 0.95 for M = 249

10; Figure 3C). For large M (Figure S1I), the largest τ values 250

correspond to the motifs with largest mean degree (16, 17, and 251

18), whereas the lowest τ values occur for the motifs with the 252

lowest degree (1, 2, 4, and 8). 253

Impact of a disturbance event 254

In this section, we focus on the impact of a disturbance event 255

on mean genetic diversity πS. Of the three quantities we 256

computed—πS, F, and τ—this quantity is perhaps the most 257

central to conservation biology. 258

Enumerating outcomes of disturbance events We enumerate 259

all possible outcomes that could follow a disturbance event 260

that removes a connection between two subpopulations or that 261

removes a subpopulation. To do so, we compute a “graph of 262

motifs,” where each vertex represents a motif, and we draw an 263

edge between two motifs if they differ by a single subpopulation 264

or a single connection. We orient edges of this graph from the 265

motif with the larger number of subpopulations or connections 266

toward the motif with the smaller number of subpopulations or 267

connections. We give each edge a weight corresponding to the 268
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Figure 3 Pearson correlations between network metrics and genetic diversity measures. (A) πS, mean within-subpopulation nu-

cleotide diversity (eq. 5). (B) F, mean pairwise FST across subpopulations (eq. 7). (C) τ, half-time to equilibrium diversity (eq. 8).

Network metrics include number of vertices |V|, number of edges |E|, mean number of edges per vertex |E|/|V|, and density of

edges |E|/(|V|2 ). All network motifs in Figure 1 are considered. In each panel, the most strongly correlated metric appears in red.

proportion of within-subpopulation diversity change associated269

with the transition from motif i to j, wij = (π
j
S − πi

S)/πi
S, where270

πi
S is the mean within-subpopulation diversity computed from271

eq. 5 applied to motif i. A negative weight indicates that the272

transition from motif i to motif j induces a loss of mean within-273

subpopulation diversity, whereas a positive weight indicates274

that the transition from motif i to motif j induces a gain of mean275

within-subpopulation diversity. In the case of a vertex loss, we276

consider that the lost subpopulation has diversity 0; for example,277

the transition from motif 3, where two subpopulations each have278

diversity 2 (Table 1), to motif 1, where a single subpopulation279

has diversity 1 and the “other” has diversity 0, leads to a change280

of w20 = [(1 + 0)/2− (2 + 2)/2]/[(2 + 2)/2] = −0.75, that is,281

of 75% of the within-subpopulation diversity.282

Edge losses and vertex losses The graph of motifs appears in283

Figure 4A for edge loss and in Figure 4D for vertex loss. We284

focus on the case of M = 1.285

Loss of an edge can lead to diversity changes ranging from286

a loss of 50% to a gain of 4% (Figure 4B). Interestingly, the tran-287

sitions that lead to the greatest losses all split a motif into dis-288

connected sets of subpopulations (transitions in red, Figure 4B).289

The greatest diversity loss occurs with the transition from motif290

3—which has a single connected pair of subpopulations—to291

motif 2—which has two isolated subpopulations. Surprisingly,292

one edge-loss transition increases the diversity for all migration293

rates in (0, ∞): the transition from motif 17 to motif 16. This tran-294

sition increases the coalescence time for lineages sampled from295

different subpopulations without isolating any subpopulations.296

The impact on diversity of the loss of a vertex ranges from297

a loss of 75% to a loss of 10% (Figure 4E). Similarly to the edge 298

loss case, the vertex losses that lead to the greatest losses gener- 299

ally correspond to a split of the motif into disconnected sets of 300

subpopulations (transitions in red, Figure 4E). For instance, the 301

greatest diversity loss is associated with the transition from motif 302

13—which has a single set of four connected subpopulations—to 303

motif 4—which has three isolated subpopulations. 304

Fragile and robust motifs We can also identify the most “fragile” 305

motifs: the motifs for which disturbance leads to the greatest 306

diversity loss. For each motif, we compute the diversity changes 307

associated with all |E| edge or |V| vertex losses, reporting the 308

mean across the edge or vertex set. Motifs ranked by robustness 309

to an edge loss appear in Figure 4C. The most fragile motifs 310

are those split into disconnected components by an edge loss, 311

whereas the most “robust” motifs are those that are not split. 312

Motifs ranked by robustness to a vertex loss appear in Fig- 313

ure 4F. We can see that the most fragile motifs are motifs 3, 6, and 314

14 (linear stepping-stone models) and motifs 7 and 16 (circular 315

stepping-stone models). The linear stepping-stone motifs are 316

easily split by a vertex loss, producing a disconnection that is 317

expected to reduce diversity. The circular stepping-stone mod- 318

els, however, are not easily split by a vertex loss. Their fragility 319

stems from their high diversity, among the highest of all mod- 320

els, on par with island models (Tables 1, 2, and 3). Any motif 321

transition is thus likely to substantially reduce diversity. 322

Examples 323

We use the results from our network-based model to reinter- 324

pret spatial genetic structure in two animal examples. Using 325
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Figure 4 Change of within-subpopulation nucleotide diversity (π
j
S − πi

S)/πi following a transition from motif i to motif j, for all

possible transitions involving the loss of a single edge or a single vertex. (A) Schematic representation of all possible motif transi-

tions involving an edge loss. Lines connecting motifs represent edge losses and are colored by changes of within-subpopulation

nucleotide diversity: red for loss and blue for gain (see legend). (B) Motif transitions involving an edge loss ranked from the largest

loss to the largest gain of within-subpopulation diversity. (C) Motifs ranked from largest to smallest mean diversity loss follow-

ing edge loss. For each motif, the mean loss or gain is computed across all possible transitions to another motif. For example, for

motif 5, three subpopulations can be lost; loss of the isolated subpopulation produces motif 3, generating a diversity loss of 20%,

and loss of one of the two other subpopulations produces motif 2 and a diversity loss of 60%. Therefore, the mean diversity loss

for motif 5 is (20%+60%+60%)/3 ≈ 46.7%. (D) Schematic representation of all possible motif transitions involving a vertex loss.

Lines connecting motifs represent vertex losses and are colored by changes of within-subpopulation nucleotide diversity. (E) Motif

transitions involving a vertex loss ranked from the largest to the smallest diversity within-subpopulation diversity loss. (F) Motifs

ranked from largest to smallest mean diversity loss following vertex loss. In all panels, (π j
S − πi

S)/πi
S values assume M = 1; in

(B), (C), (E), and (F), black horizontal bars represent minimum and maximum values of (π j
S − πi

S)/πi
S for M in (0, ∞). Values of

πi
S and π

j
S are computed from eq. 5 using coalescence times t̄ii from Tables 1-3; minima and maxima of (π j

S − πi
S)/πi

S are obtained

numerically. Pink shaded bars in (B), (C), (E), and (F) indicate that a fraction of edge losses or vertex losses split a motif: 1/4 for

edge loss from motif 15 or vertex loss from motif 10, 13, or 15, 1/3 for vertex loss from motif 6, and 1/2 for vertex loss from motif

14.
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published spatial and genetic information for each example, we326

propose a network motif that might represent the structure of the327

population. We then ask what types of transitions could result328

in increased or decreased population structure and variation in329

the context of the conservation biology of the species examined.330

Indian sky island birds of genus Brachypteryx331

First, we consider two species of genus Brachypteryx, birds en-332

demic to the Western Ghats sky islands of India: the white-333

bellied and the rufous-bellied shortwings Brachypteryx albiventris334

and B. major. Robin et al. (2015) reported microsatellite data from335

multiple geographically separated subpopulations, sampling336

218 individuals at 14 microsatellite loci. These subpopulations337

have experienced changes in geographic range and gene flow338

on both evolutionary and anthropogenic time scales owing to339

Pleistocene climate change that could have shifted the locations340

of suitable habitat and recent deforestation. Such changes can341

influence numbers of populations and gene flow between them,342

and can be interpreted using our network model.343

Robin et al. (2015) stated that genetic differentiation in the344

pair of species was not quite consistent with a simple island-345

migration model, so that our network approach might provide346

additional insight. Indeed, consistent with geographic barriers,347

Robin et al. (2015) observed genetic differentiation between the348

two species, as well as two subgroups within each species. The349

data generally fit motif 11 (Figure 5A), containing two relatively350

isolated sets of subpopulations, each with two subpopulations351

that exchange migrants. However, FST values between the two352

species sets (Table S3 of Robin et al. 2015) were lower than the353

high values expected under motif 11 (Table 4), potentially as a354

result of a short time scale of fragmentation.355

Under the network model, supposing that the current motif is356

11, we can investigate the future impact of the loss of an edge or357

vertex, representing events possible for an endangered species358

(Figure 5B). The transition from motif 11 to motif 9 is seen as a359

loss of an edge, corresponding to a loss of migration between360

one of the pairs of subpopulations. This event decreases within-361

subpopulation nucleotide diversity (-25%; Figure 4C), and leads362

to increasing FST genetic differentiation between subpopulations,363

particularly within each species. The loss of a subpopulation,364

transitioning from motif 11 to motif 5, similarly leads to a loss of365

within-subpopulation nucleotide diversity (-38%; Figure 4F).366

Note that the losses reported are expected losses in the long 367

term. The half-time to equilibrium τ values for motifs 5 and 368

9 appear in Figure S1C, F, I. Interestingly, they are equal, and 369

correspond to 7.69 for M = 0.1, 1.81 for M = 1, and 1.42 for 370

M = 10, in units of 2N generations. Thus, depending on the 371

migration rate, the future decrease of genetic diversity substan- 372

tially changes. The identical τ values for the two motifs result 373

from the fact that τ is determined by the motif component with 374

the lowest half time to equilibrium, and the two motifs have 375

similar components—a pair of connected subpopulations and 376

either one or two isolated subpopulations. 377

Comparing the edge loss and vertex loss scenarios, a vertex 378

loss transition from motif 11 to motif 5 has a greater negative 379

effect on nucleotide diversity, because it has the largest long- 380

term effects and the equilibrium is reached as quickly as in 381

the edge loss transition. In this case, focusing on preserving 382

subpopulations rather than gene flow is predicted to avoid the 383

most detrimental loss of genetic diversity for the subpopulations. 384

Indian tigers 385

Next, we consider genetic variation for tigers in India, repre- 386

senting 60% of the global wild tiger population (Mondol et al. 387

2009). Natesh et al. (in press) considered the genetic diversity 388

and structure across the Indian subcontinent of tigers, a species 389

that now occupies 7% of its historical range. India’s ∼2,500 390

tigers are distributed across many small groups, with a median 391

size of 19 across recognized groups. Understanding population 392

structure and connectivity is important to tiger conservation. 393

Using 10,184 SNPs, Natesh et al. (in press) identified a north- 394

western subpopulation (dark blue cluster I in Figure 6A), a 395

north/northeastern subpopulation (green cluster II), a central 396

subpopulation (orange cluster III), and a southern subpopula- 397

tion (purple cluster IV). They reported evidence of gene flow 398

between subpopulations III and IV and between subpopula- 399

tions II and III. The exact relationship between subpopulations, 400

however was unclear. From the pairwise FST values reported 401

in Table 2 of Natesh et al. (in press), levels of divergence be- 402

tween subpopulation I and all other subpopulations were high, 403

suggesting isolation with limited gene flow. fastSTRUCTURE 404

analyses performed by Natesh et al. (in press) suggested con- 405

nectivity between subpopulations II and III (Figure 6A). Owing 406

to the large FST between the northeastern subpopulation (II) 407
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Figure 5 Application of the network theory framework to the Indian sky island birds Brachypteryx albiventris and B. major. (A) Map

of the distribution of B. albiventris and B. major in the Indian sky islands of the Western Ghats with sampling locations, and STRUC-

TURE plot. The map and the STRUCTURE plot are adapted from Robin et al. (2015). Colors and roman numerals represent the

four genetic clusters. Two-letter codes indicate the sampling locations. Sampling locations for B. major include BR: Brahmagiri; BN:

Banasura; VM: Vellarimala; SP: Sispara; OT: Ooty; KT: Kothagiri. Sampling locations for B. albiventris include GR: Grasshills; MN:

Munnar; KD: Kodaik-anal; HW: High Wavys; and PR: Peppara. (B) Possible future motif transitions, based on the transitions from

motif 11, which is taken to represent the current state of the population. Numbers on arrows represent predicted losses of mean

nucleotide diversity across subpopulations (Figure 4).

and the southern subpopulation (IV) and between the central408

subpopulation (III) and the southern subpopulation (IV), we409

suggest that the motif most clearly fitting the current population410

structure is motif 9.411

Because of the smaller pairwise FST values between subpopu-412

lations II and IV and between subpopulations III and IV than be-413

tween subpopulations I and IV, we suggest that a recent change414

in network structure occurred from motif 12 to motif 9 (Fig-415

ure 6B), involving recent loss of connectivity between subpop-416

ulation IV and the other subpopulations, and leading to a loss417

of 40% of the within-subpopulation diversity (-10% from the418

transition from motif 12 to motif 10, and then -33% from the419

transition from motif 10 to motif 9). That connectivity loss might420

have occurred recently is supported by previous genetic and421

historical data: an earlier study with 10 microsatellite markers422

suggests an older transition between motif 15 and 12, with con-423

nectivity loss between subpopulations I and II (Mondol et al.424

2013).425

Ongoing perturbations to the network are likely, owing to426

increasing human pressures and land-use changes that reduce427

population sizes and increase fragmentation (Figure 6C). The 428

transition from motif 9 to motif 8, involving the loss of an edge, 429

would decrease within-subpopulation nucleotide diversity by 430

33% (Figures 4C and 6C). The loss of a subpopulation, however, 431

leads to qualitative differences in the genetic structure depend- 432

ing on the subpopulation lost. If the more isolated northwestern 433

subpopulation I or the southern subpopulation IV is lost, then 434

the resulting network is similar to motif 5, with a moderate de- 435

crease in within-subpopulation nucleotide diversity (-17%) and 436

a decrease in differentiation overall because an isolated subpop- 437

ulation is lost (Figures 4D and 6C). By contrast, if one of the 438

connected subpopulations, the central subpopulation III or the 439

northern/northeastern subpopulation II, is lost, then a decrease 440

in diversity is expected (-50%; Figures 4F and 6C). 441

To maintain or restore some of the recently lost genetic di- 442

versity of Indian tigers, Kelly and Phillips (2016) suggested re- 443

connecting isolated subpopulations by assisted migration (Fig- 444

ure 6C). Two such reconnection scenarios can be imagined. The 445

first scenario, which corresponds to restoring lost migration 446

routes (Figure 4B), reconnects the central subpopulation III with 447
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Figure 6 Application of the network theory framework to Indian tigers. (A) Map of the distribution of tigers with sampling loca-

tions, and fastSTRUCTURE plot. The figure is adapted from Natesh et al. (in press). Note that sample sizes for the fastSTRUCTURE

plot include only subsets of individuals from Natesh et al. (in press). (B) Hypothetical sequence of past motif transitions based

on Natesh et al. (in press) and Figure 4. (C) Possible future motif transitions, based on the transitions from motif 9 (Figure 4). For

(B) and (C), motif 9 is taken to represent the current state of the population; percentages correspond to the proportion of within-

subpopulation diversity change following each motif transition (from Figure 4).
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all other subpopulations, producing a transition from motif 9 to448

motif 13. It would lead to an increase of within-subpopulation449

diversity of 100%. Alternatively, a second scenario in which450

subpopulations are reconnected along a line, forming a linear451

stepping-stone, is possible, corresponding to a transition from452

motif 9 to motif 14. This scenario might seem less intuitive, as453

it does not correspond to any previous population structure.454

Interestingly, it leads to a greater increase of diversity (+125% to455

+144%, depending on the amount of gene flow; Table S2).456

Note that the losses and gains of diversity reported are ex-457

pected losses and gains in the long term. The τ values for motifs458

4, 5, 8, 13, and 14—the motifs that are possible as the result of459

the transitions in Figure 6C—appear in Figures S1C, S1F, and460

S1I. τ has the same value of 0.69 for both motifs 4 and 8, because461

they have only isolated subpopulations. τ for motif 5 is 7.69 for462

M = 0.1, 1.81 for M = 1, and 1.42 for M = 10, in units of 2N463

generations. Thus, in addition to being the transition leading to464

the greatest diversity loss, the transition from motif 9 to motif465

4 is also the one that affects diversity the fastest. τ for motif466

13 is 17.76 for M = 0.1, 3.34 for M = 1, and 2.19 for M = 10,467

in units of 2N generations. τ for motif 14 is 29.32 for M = 0.1,468

4.72 for M = 1, and 2.68 for M = 10, in units of 2N generations;469

the time required to restore diversity exceeds the time it takes470

to lose it. Among assisted gene flow scenarios, the transition471

to motif 14 that leads to the larger amount of diversity in the472

long term among the pair of scenarios considered is the one with473

the slower change of diversity. This result suggests a trade-off474

between the magnitude and speed of the transition to long-term475

effects on diversity.476

Discussion477

We have presented a novel framework that combines network478

theory and population genetics to study the impact of popu-479

lation structure on patterns of genetic variation under diverse480

assumptions about population connectivity. Treating a struc-481

tured population as a network containing vertices that represent482

subpopulations and edges that represent gene flow, consider-483

ing all possible population network motifs for sets of one to484

four subpopulations, we have determined motif features that485

correlate with patterns of genetic variation. Among four mo-486

tif statistics, we found that the mean node degree is the most487

strongly correlated with within-subpopulation diversity, and488

that motif density is the most strongly correlated with genetic 489

differentiation between subpopulations. 490

Our framework makes it possible to predict the impact on 491

genetic diversity of disturbances such as loss of a subpopulation 492

or a connection between subpopulations. The effect of the loss of 493

a vertex or edge depends on the context of the disturbance in the 494

population network. Whereas some disturbances that split the 495

network, including edge losses in transitions from motif 3 to 2 496

and from 14 to 11 and the vertex loss in the transition from motif 497

13 to 4, substantially reduce genetic diversity, others such as the 498

transition from motif 17 to 16 instead increase mean diversity 499

across subpopulations (Figure 4). 500

Theoretical advances Our results extend classical coalescent 501

theory results concerning migration models. Among the 18 502

network motifs we studied, 11 correspond to migration models 503

that differ from the standard models. 504

As has been seen previously (Slatkin 1987; Strobeck 1987; 505

Wilkinson-Herbots 2003), for motifs all of whose subpopula- 506

tions are exchangeable and none of whose subpopulations are 507

isolated, we find that the within-subpopulation pairwise coa- 508

lescence times are independent of the migration rate (Table S2). 509

Interestingly, we found that this result on migration rate inde- 510

pendence also holds for motifs with disconnected components 511

(motifs 2, 4, 5, 8-12), even though disconnection leads to viola- 512

tion of the assumption of migration matrix irreducibility used 513

in Slatkin (1987). This result can be explained by the fact that 514

such motifs all involve juxtaposition of smaller motifs, each of 515

which has exchangeable subpopulations, none of which are iso- 516

lated. Consequently, even though motifs 2, 4, 5, and 8-12 do not 517

satisfy the assumptions used in Slatkin (1987), that each compo- 518

nent of the motif satisfies them suffices to ensure the result on 519

migration-rate independence. 520

Motifs 14, 15, and 17, for example, do not have exchangeable 521

vertices, nor can these motifs be decomposed into disconnected 522

components that each have exchangeable vertices. Their within- 523

subpopulation coalescence times do depend on the migration 524

rate (Table S2). Nevertheless, within-subpopulation coalescence 525

times of all motifs vary relatively little with the migration rate: 526

the difference between the maximum and minimum values is 527

less than 15% of the minimum (Table S2). We find that migration 528

rates have only a small effect on within-subpopulation diversity 529
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in many spatial configurations.530

Our results also extend classical theoretical results about ge-531

netic differentiation. Under the island model, FST follows a532

formula 1/(1 + αM), where the constant α > 0 determines the533

relative impact of drift and migration (Wright 1951; Nei and534

Takahata 1993), and it approximately follows 1/(1 + αM) under535

the stepping-stone model (Cox and Durrett 2002). For a fixed536

number of subpopulations K, among networks with all nodes537

connected, α is smallest under the island model and largest538

under the stepping-stone model (Cox and Durrett 2002).539

We exhibit additional models under which pairwise FST fol-540

lows 1/(1+ αM), where α is intermediate between that expected541

under the island and stepping-stone models (Table S3). All mod-542

els with exchangeable vertices or decomposable into compo-543

nents each with exchangeable vertices (motifs 2-5, 7-9, 11, 12,544

16, 18) have FST values that follow this formula. Interestingly,545

motif 13, which does not have exchangeable vertices and is not546

decomposable in this manner, also has an FST that follows such a547

formula, with α = 2 or 3. Its α values lie near those of the island-548

migration motif 18, with α = 8/3, and the linear stepping-stone549

motif 14, with α ranging from 1.129 to 3.2 across population550

pairs and across migration rates, and are also similar to that of551

the circular stepping-stone motif 16 (α = 2 or 8/3), although552

motif 16 has more connections.553

Motifs 15 and 17 also have non-exchangeable vertices and are554

not decomposable, and they have FST values whose expressions555

involve rational functions of M (Table 4). We show in Table S3,556

however, that their FST values approximately follow an expres-557

sion of the form 1/(1 + αM), with α ranging from 1.747 to 2.989;558

in addition, their α values are close to that of motif 16, with559

α = 2 or 8/3. Although motifs 4, 5, and 8-12 have at least two560

disconnected components and thus their global FST is equal to 1561

irrespective of the value of M, their pairwise FST values for con-562

nected subpopulations do follow 1/(1 + αM), with α ranging563

from 2 to 4. Overall, our results highlight that the classical for-564

mula F = 1/(1 + αM) is a helpful approximation for all motifs565

with up to four subpopulations.566

Data applications Our results provide a framework for inter-567

preting empirical patterns of genetic diversity and differentia-568

tion, and for predicting future patterns. We have illustrated how569

they provide insight into two systems of conservation interest,570

Indian sky island birds of genus Brachypteryx and Indian tigers. 571

After suggesting the most appropriate motif for each species and 572

the sequence of transitions that might have led to the current 573

motif, we enumerated future disturbances and highlighted the 574

ones that would have the strongest long-term impact on genetic 575

diversity within subpopulations. For tigers, we enumerated 576

possible assisted gene flow scenarios and highlighted scenarios 577

leading to the greatest long-term genetic diversity increase. 578

Many studies have focused on deducing population networks 579

from genetic data in population genetics; most such applications 580

have focused on clustering using community detection algo- 581

rithms, without using a population-genetic model (Dyer and Na- 582

son 2004; Dyer 2015; Garroway et al. 2008; Rozenfeld et al. 2008; 583

Ball et al. 2010; Munwes et al. 2010; Greenbaum et al. 2016). While 584

these statistical approaches are appealing for making sense of 585

complex datasets, the mechanistic models we consider are useful 586

for providing predictions about genetic diversity patterns. We 587

have demonstrated how simple network motifs can be deduced 588

from cluster analyses and pairwise FST values and can then be 589

used to predict the impact of future disturbances. 590

The network theory framework is promising for the analysis 591

of natural populations whose spatial arrangements do not follow 592

classical migration models. For example, river systems involve 593

subpopulations arranged along a stream, leading to a motif 594

with a linear arrangement such as 3, 6, and 14, or in different 595

streams, leading to a star-shaped motif such as 13 (Morrissey and 596

de Kerckhove 2009). Geographic barriers owing to mountains, 597

valleys, and human occupation can isolate one (motifs 2, 5, 11 598

and 12) or several subpopulations (motifs 4, 8, and 9). Moreover, 599

many landscapes present a specific zone with high resistance, 600

for example owing to low habitat quality, leading to partial 601

isolation of a subpopulation from a strongly connected set of 602

subpopulations (motif 15). 603

Our exhaustive enumeration of motifs ensures that we can 604

confront empirical data with expected patterns of genetic vari- 605

ation under any spatial arrangement. This enumeration can 606

improve our ability to interpret genetic data, especially for threat- 607

ened species, which typically present high fragmentation and 608

are likely to undergo future disturbances resulting from further 609

human-induced habitat loss or from conservation efforts such 610

as assisted gene flow. The framework is also promising for con- 611

servation planning, because it suggests which connections or 612

Coalescent theory of migration motifs 13
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subpopulations are more important in contributing to genetic613

variation. Historical human impacts, ongoing urbanization, and614

habitat fragmentation are leading to species range collapse and615

population decline (e.g. carnivores; Ripple et al. 2014). Some616

species, such as the sky island birds of genus Brachypteryx, are617

specialized to habitats that are naturally patchy and isolated618

(Robin et al. 2015). Understanding the consequences of such619

patchiness from a network perspective can provide insights on620

mitigation for ongoing habitat fragmentation.621

In species such as the Indian tiger, conservation might require622

management strategies that include assisted migration (Kelly623

and Phillips 2016). In such contexts, strategies can be designed624

for maximizing genetic variation, by giving the existing set of625

subpopulations the most favorable connections possible. For626

designing such strategies, our approach provides an alternative627

to spatially explicit landscape-genetic models focused on effects628

in physical space, enabling assessment of the potential genetic629

consequences of alternative network motifs.630

Extensions Several assumptions of our model could be relaxed631

to make it more closely match natural systems. We only con-632

sidered homogeneous subpopulations, with equal sizes and633

similar migration rates in all non-isolated subpopulations, and634

equilibrium genetic variation. Heterogeneous sizes are com-635

mon in environments with varying habitat quality (Dias 1996),636

and migration rate differences are common in species that dis-637

perse passively, such as by currents or wind (Vuilleumier and638

Possingham 2006). Permitting heterogeneity would increase the639

number of motifs possible for fixed numbers of subpopulations,640

potentially introducing source-sink dynamics (Dias 1996). These641

dynamics are expected to influence robustness to loss of a con-642

nection or subpopulation: we expect nucleotide diversity to be643

robust to loss of a connection to a sink subpopulation or loss of644

a sink subpopulation itself, because such subpopulations might645

be small with relatively low nucleotide diversity. Conversely,646

we expect nucleotide diversity to be less robust to the loss of647

a source subpopulation, as these subpopulations are typically648

larger and more diverse.649

Non-equilibrium genetic diversity is common in species that650

face frequent environmental changes, and it can result in tran-651

sient levels of genetic variation that strongly differ from the652

equilibrium and that persist for many generations (Alcala et al.653

2013; Alcala and Vuilleumier 2014). The expected diversities 654

in Tables 1-4 correspond to long-term expectations, and give a 655

sense of the potential of a given spatial configuration to permit 656

large levels of genetic diversity. To assess the impact of a pertur- 657

bation, long-term expectations must be contrasted with the time 658

to reach them. We thus advocate computation of the half-time 659

to equilibrium τ, which gives a sense of the time needed for nu- 660

cleotide diversity and FST to approach their equilibrium values. 661

Interestingly, we find that τ is strongly correlated with the mean 662

vertex degree; it would be worthwhile to assess the potential of 663

|V| as a predictor of τ in larger networks. 664

Conclusion This work is a step toward developing a general 665

theory that links network topology and patterns of genetic vari- 666

ation. Small motifs are the building blocks of complex networks 667

(Milo et al. 2002); thus, for large networks, counting the number 668

of appearances of each 3- or 4-vertex motif can give an initial 669

idea of the fine-scale structure of the population. The results we 670

have derived make it possible to link this fine-scale structure 671

to local patterns of variation. For example, if we find many in- 672

stances of motifs 17 or 18, we might conclude that the network is 673

dense and thus has large diversity, low FST , long time to equilib- 674

rium after a perturbation and a high robustness to perturbation. 675

On the other hand, if we find many instances of lower-density 676

motifs 9, 10, and 14, we might reach the opposite conclusions. 677

The detection of motifs that are overrepresented in certain 678

types of network (e.g. ecological, neural, protein-interaction) has 679

been used to identify network classes that share common prop- 680

erties despite describing different data types (Milo et al. 2002; 681

Alon 2007). Further work could consider motifs that are overrep- 682

resented in population networks, to assess whether population 683

networks have a shared “motif signature” or if certain networks 684

are more common in certain habitats (e.g. marine, river, terres- 685

trial). Such an approach could help identify similarities between 686

population networks and other types of biological networks. 687

Our results can potentially be extended to larger networks, and 688

it could be assessed how global patterns in genetic diversity and 689

FST can be predicted from information on the occurrence of small 690

motifs. Such an extension will become increasingly valuable as 691

more empirical studies sample genomic datasets from broad 692

geographical scales with fine-grained sampling resolution. 693
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Appendix A. Deriving expected coalescence times821

Expected coalescence times can be obtained by first-step analysis.822

The expected coalescence time of all states (ij) (eq. 4), where i823

ranges in [1, 2, . . . , K− 1] and j ranges in [i, i + 1, . . . , K], can be824

decomposed into a sum of expected coalescence times (Notohara825

1990; Wakeley 1998)826

t̄ij = E[tij] +
K

∑
k=1

K

∑
`=k

{k,`}6={i,j}

p∗ij,k` t̄k`, (A.1)

where E[tij] is the expected time before a change of state, and

p∗ij,k` =
qij,k`

K
∑

β=1

K
∑

γ=β
{β,γ}6={i,j}

qij,βγ

,

where q terms are taken from eq. 1. Eq. A.1 describes a system of827

(K
2) + K equations. In the next sections, we describe this system828

of equations in the cases of K = 1 to K = 4.829

1-vertex motif830

The case of one subpopulation has a single possible initial state,831

which is given by classical coalescent results (Kingman 1982):832

t̄11 = 1. (A.2)

This quantity directly gives the expected pairwise coalescence833

time of motif 1.834

2-vertex motifs835

In the case of two subpopulations, M12 = M21 = M1 = M2 =836

M. Eq. A.1 then simplifies to837

t̄11 =
1

M + 1
+

t̄12 M
M + 1

,

t̄22 =
1

M + 1
+

t̄12 M
M + 1

,

t̄12 =
1
M

+
t̄11 M
2M

+
t̄22 M
2M

.

(A.3)

This system and its solution were derived in Nath and Griffiths838

(1993). Setting M = 0 and solving the system for t̄11, t̄22, and t̄12839

gives the expected pairwise coalescence times of motif 2 (Table 1).840

Considering M > 0 and solving the system gives the expected841

pairwise coalescence times of motif 3 (Table 1).842

3-vertex motifs 843

In the case of three subpopulations (Fig. A1), eq. A.1 becomes 844

t̄11 =
1

M1 + 1
+

t̄12 M12
M1 + 1

+
t̄13 M13
M1 + 1

,

t̄22 =
1

M2 + 1
+

t̄12 M21
M2 + 1

+
t̄23 M23
M2 + 1

,

t̄33 =
1

M3 + 1
+

t̄13 M31
M3 + 1

+
t̄23 M32
M3 + 1

,

t̄12 =
1

M1
2 + M2

2

+
t̄11 M21

M1 + M2
+

t̄13 M23
M1 + M2

+
t̄22 M12

M1 + M2
+

t̄23 M13
M1 + M2

,

t̄13 =
1

M1
2 + M3

2

+
t̄11 M31

M1 + M3
+

t̄12 M32
M1 + M3

+
t̄23 M12

M1 + M3
+

t̄33 M13
M1 + M3

,

t̄23 =
1

M2
2 + M3

2

+
t̄12 M31

M2 + M3
+

t̄22 M32
M2 + M3

+
t̄13 M21

M2 + M3
+

t̄33 M23
M2 + M3

.

(A.4)

We set the values Mij to reflect the network motifs of Figure 1, 845

solve the linear system of equation, and report the corresponding 846

expected times in Table 2. For example, for motif 5, M1 = 0, 847

M12 = M21 = M13 = M31 = 0 and M23 = M32 = M2 = M3 = 848

M in all equations, and we obtain the system of equations 849

t̄11 = 1,

t̄22 =
1

M + 1
+

t̄23 M
M + 1

,

t̄33 =
1

M + 1
+

t̄23 M
M + 1

,

t̄12 =
1

M/2
+ t̄13,

t̄13 =
1

M/2
+ t̄12,

t̄23 =
1
M

+
t̄22
2

+
t̄33
2

.

(A.5)

Note that this system is equivalent to considering that the iso- 850

lated subpopulation 1 follows eq. A.2, that subpopulations 2 and 851

3 follow eq. A.3 with labels 2 and 3 in place of 1 and 2, and that 852

coalescence times between subpopulations without migration (1 853

and 2 or 1 and 3) are infinite. 854

We can solve this system using substitution, by first noting 855

that t̄22 = t̄33, and by then substituting the expression for t̄22 856

into the equation of t̄23. We obtain (t̄11, t̄22, t̄33, t̄12, t̄13, t̄23) = 857

(1, 2, 2, ∞, ∞, 2 + 1/M) as reported in Table 2. 858
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4-vertex motifs859

For four subpopulations, eq. A.1 simplifies to860

t̄11 =
1

M1 + 1
+

t̄14 M14
M1 + 1

+
t̄13 M13
M1 + 1

+
t̄12 M12
M1 + 1

,

t̄22 =
1

M2 + 1
+

t̄24 M24
M2 + 1

+
t̄23 M23
M2 + 1

+
t̄12 M21
M2 + 1

,

t̄33 =
1

M3 + 1
+

t̄34 M34
M3 + 1

+
t̄23 M32
M3 + 1

+
t̄13 M31
M3 + 1

,

t̄44 =
1

M4 + 1
+

t̄34 M43
M4 + 1

+
t̄24 M42
M4 + 1

+
t̄14 M41
M4 + 1

,

t̄12 =
1

M1
2 + M2

2

+
t̄14 M24

M1 + M2
+

t̄13 M23
M1 + M2

+
t̄11 M21

M1 + M2
+

t̄24 M14
M1 + M2

+
t̄23 M13

M1 + M2
+

t̄22 M12
M1 + M2

,

t̄13 =
1

M1
2 + M3

2

+
t̄14 M34

M1 + M3
+

t̄12 M32
M1 + M3

+
t̄11 M31

M1 + M3
+

t̄34 M14
M1 + M3

+
t̄33 M13

M1 + M3
+

t̄23 M12
M1 + M3

,

t̄14 =
1

M1
2 + M4

2

+
t̄13 M43

M1 + M4
+

t̄12 M42
M1 + M4

+
t̄11 M41

M1 + M4
+

t̄44 M14
M1 + M4

+
t̄34 M13

M1 + M4
+

t̄24 M12
M1 + M4

,

t̄23 =
1

M2
2 + M3

2

+
t̄24 M34

M2 + M3
+

t̄22 M32
M2 + M3

+
t̄12 M31

M2 + M3
+

t̄34 M24
M2 + M3

+
t̄33 M23

M2 + M3
+

t̄13 M21
M2 + M3

,

t̄24 =
1

M2
2 + M4

2

+
t̄23 M43

M2 + M4
+

t̄22 M42
M2 + M4

+
t̄12 M41

M2 + M4
+

t̄44 M24
M2 + M4

+
t̄34 M23

M2 + M4
+

t̄14 M21
M2 + M4

,

t̄34 =
1

M3
2 + M4

2

+
t̄33 M43

M3 + M4
+

t̄23 M42
M3 + M4

+
t̄13 M41

M3 + M4
+

t̄44 M34
M3 + M4

+
t̄24 M32

M3 + M4
+

t̄14 M31
M3 + M4

.

(A.6)

Similarly to the case of 3-vertex motifs, we set the values Mij861

to reflect the network motifs of Figure 1, solve the system of862

equations using substitution or matrix inversion, and report the863

corresponding expected coalescence times in Table 3.864

11 12 13

22 23

33coalescence

M12

M21/2

M21/2 M12/2

M31/2

M13/2

M12/2M21

M23/2

M23/2

M32/2

M23

M32

M32/2
1

1

1

M13

M31

Figure A1 State diagram of the Markov chain representing

the coalescent process of two lineages sampled in K = 3

subpopulations. States appear in gray and correspond to

those presented in Figure 2; transition rates between states

appear in black. Mij corresponds to the scaled migration rate

between subpopulations i and j. This diagram applies to all

motifs with K = 3 subpopulations—motifs 4 to 6 in Fig-

ure 1. For example, motif 4 corresponds to the case where

M12 = M21 = M13 = M31 = M23 = M32 = 0, and mo-

tif 5 corresponds to the case where M12 = M21 = M and

M13 = M31 = M23 = M32 = 0.
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