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ABSTRACT 10 

Balanced excitation and inhibition contributes to clamping excitability, input gating, and dynamic 11 

range expansion in many brain circuits. However, it is unknown if the balancing mechanism 12 

operates at the level of networks, ensembles or individual projections. We optogenetically 13 

stimulated hippocampal CA3 neurons in hundreds of different combinations, and monitored CA1 14 

neuron responses in mouse brain slices. We observed that all arbitrary input combinations from 15 

CA3, from tens of synapses to the order of single synapses, elicited excitation followed by tightly 16 

proportional inhibition. CA1 neurons summed these complementary inputs and exhibited gain 17 

control in the form of subthreshold divisive normalization (SDN). Biophysically, SDN emerged 18 

because inhibitory onset advanced toward excitatory onset with increasing input strength. This 19 

caused clipping of peak amplitudes and faster peak times, resulting in shared input information 20 
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coding between the two. Our results suggest that SDN may be a general gain and timing control 21 

mechanism in balanced feedforward networks. 22 

INTRODUCTION 23 

Excitation and Inhibition (E and I) are normally closely balanced throughout the brain1–4. This 24 

EI balance implies that the ratio of excitatory and inhibitory inputs to a cell remains invariant5. 25 

Clinically, imbalance of excitation and inhibition is linked with several pathologies, including 26 

epilepsy, autism spectrum disorders and schizophrenia6. Computationally, individual neurons 27 

integrate incoming excitation and inhibition to perform subtraction, division, and normalization of 28 

inputs7,8. This has functional consequences such as preventing runaway excitation, gain 29 

control9, maximizing sensitivity to various stimuli, and attentional modulation10. 30 

 31 

Strong EI correlations have been seen in several brain regions in response to various 32 

stimuli, for instance, series of tones in auditory cortex2,11,12, whisker stimulation in 33 

somatosensory cortex13, during cortical up states in vitro14 and in vivo15, during gamma 34 

oscillations in vitro and in vivo4, and during spontaneous activity3. However, the presynaptic 35 

origin of balance is not well understood. It remains to be established if this balance results from 36 

a single presynaptic population, summation of multiple presynaptic populations, or from complex 37 

temporal dynamics of multiple presynaptic layers. 38 

 39 

In the context of temporal dynamics and presynaptic granularity two key classifications of EI 40 

balance have been theoretically explored: ‘loose’ vs. ‘tight’16 (in the time domain), and ‘global’ 41 

vs. ‘detailed’17 (in the domain of granularity of input combinations). Neurons in loosely balanced 42 

EI networks are balanced only on slow timescales (~100 ms), leading to chaotic dynamics and 43 

unreliable spike times16,18,19. Conversely, neurons in tightly balanced EI networks receive input 44 
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balanced at fast (<10 ms) timescales, and have reproducible spike times, making them good 45 

temporal coders16.  46 

 47 

In the domain of granularity of input, there is a distinction between global and detailed 48 

balance. Global balance implies that neurons exhibit EI balance on average (for example, 49 

responses averaged over sensory inputs), whereas detailed balance implies that all subsets of 50 

input neurons elicit balanced responses17. Based on the latter, neurons can effectively gate 51 

several inputs by reporting I/E ratio imbalances on arbitrary subsets of inputs, constituting an 52 

instantaneous  information channel17,20. When detailed balance is also temporally tight, it is 53 

referred to as precise balance21.  54 

 55 

In this study we address two key open questions in the field. First, does EI balance arise 56 

even from single presynaptic networks, and if so, at what granularity of network subsets do 57 

postsynaptic cells experience balanced excitation and inhibition?  Second, how do excitation 58 

and inhibition integrate to encode and communicate information at the postsynaptic neuron? We 59 

addressed these questions in vitro, to isolate the hippocampal network from background activity 60 

and to precisely control the stimulus. We stimulated channelrhodopsin-2 (ChR2) expressing 61 

CA3 neurons with tens to hundreds of optical patterns, and measured responses in CA1. We 62 

found that all randomly chosen subsets of CA3 neurons provided tightly coupled excitatory and 63 

feedforward inhibitory inputs to CA1 cells, thus, for the first time demonstrating precise 64 

balance21 in the brain. We further examined the arithmetic form of the integration performed by 65 

this tightly balanced feedforward inhibitory network. Surprisingly, we found that integration of 66 

excitation and feedforward inhibition leads to divisive normalization at subthreshold potentials. 67 

Moreover, this novel gain control operation encodes input information in both amplitude and 68 

timing of the CA1 response.  69 
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RESULTS 70 

Patterned optical stimuli in CA3 elicit subthreshold responses in CA1 71 

 72 

To provide a wide range of non-overlapping stimuli, we projected patterned optical 73 

stimuli onto channelrhodopsin-2 (ChR2) expressing CA3 neurons in acute hippocampal slices. 74 

We used CA3-cre mice to achieve CA3-specific localization of ChR2 upon injection of a Lox-75 

ChR2 virus (Fig. 1a, Methods). We used a Digital Micromirror Device (DMD) projector 76 

(Methods, Supplementary Fig. 1) to generate spatiotemporal optical patterns in the form of a 77 

grid of several 16um x 16um squares, each square approximating the size of a CA3 soma22 78 

(Fig. 1d). This grid was centered at the CA3 cell body layer, and extended to the dendritic layer 79 

(Fig. 1a). Each optical pattern consisted of 1 to 9 such randomly chosen grid squares, 80 

presented to CA3 cells as stimulus, at an inter-stimulus interval of 3 seconds (Fig. 1a, 1d, 81 

Methods). In a typical experiment, several randomly chosen stimulus patterns with different 82 

number of input squares were delivered to CA3, in 3 successive repeats. We first characterized 83 

how CA3 responded to the grid stimulation (Fig. 1b,e,f,g). We confirmed that CA3 neurons fired 84 

reliably with a <2ms jitter, calculated as the standard deviation of the time of first spike (Fig. 1f) 85 

(n = 8 CA3 cells, inputs = 52, median = 0.44 ms, N = 1 to 9 squares). No desensitization 86 

occurred during the timeframe of an experiment, and the probability of spiking remained 87 

constant between the 3 repeats (Fig. 1g) (n = 7 CA3 cells, N =  1 to 9 squares). Thus, we could 88 

stimulate CA3 with hundreds of distinct optical stimuli in each experiment.  89 

We then recorded postsynaptic potentials (PSPs) evoked at patched CA1 neurons while 90 

optically stimulating CA3 cells (Fig. 1c,h,i,j). A wide range of stimulus positions in CA3 excited 91 

CA1 neurons (Fig. 1c). Stimulation of CA3 elicited excitation and feedforward inhibition at CA1 92 

(Fig. 1a, Supplementary Fig. 3). Most stimuli elicited subthreshold responses (N = 1 to 9 93 
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squares). Action potentials occurred in only 0.98% of trials (18,668 trials, from 38 cells, N = 1 to 94 

9 squares). This helped rule out any significant feedback inhibition from CA1 interneurons for all 95 

our experiments. Restriction of ChR2 to CA3 pyramidal cells, coupled with the fact that ~99% of 96 

all recorded CA1 responses were subthreshold, ensured that the recorded inhibition was largely 97 

feedforward (disynaptic)(Fig. 1a). Responses to the same 1-square stimulus were consistent, 98 

84.74% responses showed less than 0.5 variance by mean (695 stimuli, 3 repeats each, n = 28 99 

cells, N = 1 square) (Fig. 1i). Notably, the distribution of all 1 square responses had a mode at 100 

0.25 mV, which is close to previous reports of a 0.2mV somatic response of single synapses in 101 

CA1 neurons23(8845 trials, n = 38 cells, N = 1 square) (Fig. 1j).   102 
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 103 

 104 

Figure 1: Delivering hundreds of CA3 input combinations to each CA1 neuron using patterned 105 

optical stimulation 106 

(a) Top, schematic of the CA3-CA1 circuit with direct excitation and feedforward inhibition from CA3 to 107 

CA1. Bottom, image of a hippocampus slice expressing ChR2-tdTomato (red) in CA3 in a Cre-dependent 108 

manner. In a typical experiment, the optical stimulation grid (not drawn to scale) was centered at the CA3 109 

cell body layer and CA1 neurons were patched. 110 

(b) Heat map of CA3 neuron responses with 1 grid square active at a time. A CA3 neuron was patched 111 

and optically stimulated, in random temporal order, on the grid locations marked with a gray boundary. 112 

There were 24 such 1 square stimuli in the stimulus set. This cell spiked in response to 5 of the squares, 113 

marked with numbers inside, which were inferred to be closest to the cell body. Numbers in grid squares 114 
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represent the count of trials (out of a total of 4 trials) in which a spike occurred. Color in grid squares 115 

represents peak subthreshold membrane potential change from baseline, averaged over trials when a 116 

spike did not occur. Locations where the cell spiked all 4 times are in white due to lack of subthreshold 117 

depolarizations. 118 

(c) Heat map of CA1 responses while CA3 neurons were being stimulated by optical grid with 1 square 119 

active at a time. Colormap represents the peak subthreshold membrane potential, averaged over 3 120 

repeats. 121 

(d) Schematic of patterned optical stimuli used for stimulating CA3. Examples of input combinations of N-122 

square stimuli (in columns), where N could be 1, 2, 3, 5, 7 or 9 (in rows). 123 

(e) Spikes in response to 4 repeats for the square marked with a red circle, in b. Spike times are marked 124 

with a black tick, showing variability in peak times due to optical stimulation. Blue trace at the bottom 125 

marks the stimulus duration, as measured by a photodiode. 126 

(f) Distribution of jitter in spike timing (SD) for all squares for all CA3 cells (n=8 cells). 127 

(g) Probability of spiking of all CA3 cells tracked over successive repeats within a stimulus epoch of a 128 

single recording session. Randomization of the stimulus pattern prevented desensitization of the ChR2 129 

expressing cell. Probability was calculated as the fraction of times a spike happened for a given repeat of 130 

all stimuli presented within the epoch. Circles colored as in d, depict probability of a spike for one 131 

presentation of an N-square stimulus set (n = 7 cells, epochs = 24). Connecting lines track the same input 132 

over 3 repeats. 133 

(h) PSPs in response to 3 repeats for the square marked with a red circle in c. Peak times are marked 134 

with an asterisk. Blue trace at the bottom marks the stimulus duration, as measured by a photodiode. 135 

(i) Distribution of peak PSP amplitude variability (variance/mean) for all 1-square responses from all cells. 136 

(n = 28 cells, stimuli = 695) 137 

 (j) Histogram of peak amplitudes of all PSPs elicited by all 1-square stimuli, over all CA1 cells (n =38 138 

cells, trials = 8845). Gray dotted line represents the mode of the distribution. 139 

  140 
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Excitation and inhibition are tightly balanced for all arbitrarily chosen CA3 inputs 141 

to a CA1 cell 142 

 143 

To examine the relationship between excitation and inhibition, we voltage clamped CA1 144 

neurons, first at the inhibitory (-70 mV) and then at the excitatory (0 mV) reversal potential to 145 

record Excitatory and Inhibitory Post Synaptic Currents (EPSCs and IPSCs) respectively. We 146 

first presented 5 different patterns of 5 squares each, at both of these potentials, and recorded 147 

EPSCs and IPSCs. We found strong proportionality between excitation and inhibition for every 148 

stimulus pattern (Fig. 1d, 2a, b, c). This suggested that inputs from even random groups of CA3 149 

neurons may be balanced at CA1. Repeats with the same stimulus pattern gave consistent 150 

responses, but different patterns evoked different responses (Fig. 2a). This indicated that the 151 

optically-driven stimuli were able to reliably activate different subsets of synaptic inputs on the 152 

target neuron. Next, we asked, in what range of input strengths does random input yield 153 

balance? We presented 5 different patterns for each of 1, 2, 3, 5, 7 or 9 square combinations at 154 

both recording potentials. Surprisingly, all stimuli to a cell elicited proportional excitatory and 155 

inhibitory responses, irrespective of response amplitude (Fig. 2b, c) (n = 13 CA1 cells, area 156 

under curve, mean R2 = 0.89+/- 0.06 SD, Supplementary Figure 2). Given that the mode of 157 

single-square responses was ~0.25 mV, close to single synapse PSP estimates23 (Fig. 1j), we 158 

estimate that the granularity of the balance may be of the order of a single synapse. The slope 159 

of the regression line through all stimulus-averaged responses for a CA1 cell was used to 160 

calculate the Inhibition/Excitation (I/E) ratio for the cell. IPSC/EPSC ratio will be here onwards 161 

referred to as I/E ratio, unless explicitly mentioned otherwise. This ratio was typically between 2 162 

and 5 (Fig. 2f). The high R2 values for all cells showed tight proportionality for all stimuli (Fig. 163 

2g). The R2 also remained roughly the same for increasing numbers of spots, again showing 164 

that they were not affected by the number of stimulus squares presented (Fig. 2d,e). While 165 
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feedforward inhibition is expected to increase with excitation, convergence of I/E ratios for 166 

randomly chosen inputs to a cell to a single number was unexpected. Overall, we found a 167 

stimulus-invariant proportionality of excitation and inhibition for any randomly selected input, 168 

over a large range of stimulus strengths, suggesting that there is detailed balance17 in the CA3-169 

CA1 circuit. Since balanced inhibition followed excitation within a few milliseconds(Fig. 6f,g), we 170 

concluded that the CA3-CA1 feedforward circuit exhibits precise (both detailed and tight) 171 

balance21.  172 
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 173 

 174 

Figure 2: Excitation and inhibition are tightly balanced for all stimuli to a CA1 cell 175 

(a) Monosynaptic excitatory postsynaptic currents (EPSCs, at -70mV) and disynaptic inhibitory 176 

postsynaptic currents (IPSCs, at 0mV) in response to 5 different stimulus combinations of 5 squares 177 

each. All combinations show proportional excitatory and inhibitory currents over 6 repeats. Top: 178 

schematic of 5 square stimuli.   179 

(b) Proportional EPSCs and IPSCs in response to 6 repeats of 1 combination each, from 1 square to 9 180 

square stimulus sets, for the same cell as in a. Top, schematic of the stimuli. 181 

(c) Area under the curve for EPSC and IPSC responses, obtained by averaging over 6 repeats, plotted 182 

against each other for all stimuli to the cell in a, b. Error bars represent SD over repeats. 183 

(d,e) Plot of residuals for all inputs (colored by N-square as shown in b) of all cells, normalized by their 184 

standard deviation, are symmetrically distributed across the regression line at 0. The normalized residuals 185 

are normally distributed, as shown in e, overlaid with standard normal distribution (red). All responses lie 186 
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within two standard deviations, showing absence of outliers. Different N-squares are equally distributed in 187 

the different bins in e, showing that value of N did not affect the spread of the response.    188 

(f) Summary of I/E ratios for all cells (n = 13 cells).  189 

(g) Summary for all cells of R2 values of linear regression fits through all points. Note that 11 out of 13 190 

cells had R2 greater than 0.9, implying strong proportionality.  191 
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Combinatorial CA3 inputs sum sublinearly at CA1 192 

 193 

We next asked how CA3 inputs, that lead to balanced excitatory and feedforward 194 

inhibitory conductances, transform into membrane potential change at CA1 neurons. Based on 195 

anatomical studies, CA3 projections are likely to arrive in a distributed manner over a wide 196 

region of the dendritic tree of CA1 pyramidal neuron24 (Fig. 3a). While pairwise summation at 197 

CA1 has been shown to be largely linear in absence of inhibition25, the degree of heterogeneity 198 

of summation in response to distributed excitatory and inhibitory synaptic inputs is not well 199 

understood (except, see 26). To avoid biases that may arise from a single response measure 200 

during input integration27, we examined PSPs using four different measures (Fig. 3c). These 201 

were peak amplitude, area under curve (AUC), average membrane potential and area under 202 

curve till peak (Fig. 3c). 203 

 204 

We looked at input integration by presenting stimulus sets of 5 input squares to a given 205 

cell, with each stimulus set ranging from 24 to 225 combinations of inputs. We also recorded the 206 

responses to all squares of the grid individually (1 square input). The 1 square PSP response 207 

amplitude with inhibition intact (control) was not distinguishable from that with inhibition blocked 208 

(GABAzine) (Methods, Supplementary Fig 3). The ‘observed’ response for a given square 209 

combination was plotted against the ‘expected’ response, obtained by linearly summing 210 

responses of the individual squares constituting that combination (Fig. 3b, d). In the absence of 211 

inhibition, a multi-square combination of inputs would elicit the same response as the sum of the 212 

responses to the individual squares (dotted line, Fig. 3d). Figure 3e shows responses of a 213 

single cell stimulated with 126 distinct 5-square combinations. The ‘observed’ response was 214 

sublinear as compared to the ‘expected’ summed response, for most stimuli (Fig. 3e). For all 215 

the four measures in 3c, CA3 inputs summed sublinearly at CA1 (Fig. 3e, Supplementary Fig 216 

3). The sublinear summation suggested that inhibition divisively scales excitation, which was 217 
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intuitive, given that excitatory and inhibitory conductances were proportional for all stimuli. For 218 

all responses measured over all cells, 93.35% responses were individually sublinear, with 219 

distribution having mean 0.57± 0.31 (SD) (Fig. 3f). The slope of the regression line, which 220 

indicated the extent of sublinearity, varied between cells, with mean 0.38 ± 0.22 (SD) (n = 33 221 

cells) (Fig. 3g). 222 

Thus, we found that the CA3-CA1 network exhibits sublinear summation over a large 223 

number of inputs.  224 
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 225 

 226 

Figure 3: Excitatory and feed-forward inhibitory inputs from CA3 integrate sublinearly at CA1 227 

(a) Schematic of a neuron receiving synaptic input distributed over its dendritic tree.  228 

(b) Schematic of input integration. Top, five 1-square stimuli presented individually, and a single 5-square 229 

stimulus comprising of the same squares. Bottom, PSPs elicited as a response to these stimuli. 5-square 230 

PSP can be larger (supralinear, orange), equal (linear, black), or smaller (sublinear, gray) than the sum of 231 

the single square PSPs. 232 

(c) A PSP trace marked with the 4 measures used for further calculations. PSP peak, PSP area, area to 233 

peak and mean voltage are indicated.  234 

(d) Schematic of the input integration plot. Each circle represents response to one stimulus combination. 235 

‘Observed’ (true response of 5 square stimulation) on Y-axis and ‘Expected’ (linear sum of 1 square 236 

responses) is on X-axis. 237 

(e) Most responses for a given cell show sublinear summation for a 5-square stimulus. The 4 panels show 238 

sublinear responses for 4 different measures (mentioned in c) for the same cell. The grey dotted line is 239 
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the regression line and the slope of the line is the scaling factor for the responses for that cell. For peak 240 

(mV), area (mV.ms), average (mV), and area to peak (mV.ms); slope = 0.27, 0.23, 0.23, 0.18; R2 0.57, 241 

0.46, 0.46, 0.26 respectively. The responses to AUC and average are similar because of the similarity in 242 

the nature of the measure. 243 

(f) Distribution of Observed/Expected ratio of peaks of all responses for all 5-square stimuli (mean= 0.57, 244 

SD = 0.31), from all recorded cells pooled. 93.35% responses to 5-square stimuli were sublinear (2513 245 

PSPs, n = 33 cells). 246 

(g) Distribution of slopes for peak amplitude of 5-square stimuli (mean = 0.38, SD =0.22). Regression 247 

lines for all cells show that all cells display sublinear (<1 slope) summation (n = 33 cells). 248 

CA3-CA1 network performs Subthreshold Divisive Normalization (SDN) 249 

 250 

We then tested how summation sublinearity scaled with a larger range of inputs. We 251 

noted that nonlinear functions can be observed better with a large range of inputs27, and 252 

therefore increased the stimulus range (Supplementary Fig 4,5). Inhibition interacts with 253 

excitation to perform arithmetic operations like subtraction, division, and normalization28. We 254 

created a composite model to fit and test for the above three possibilities of EI integration: 255 

subtractive inhibition, divisive inhibition, and divisive normalization (Eqn. 1). Eqn. 1 describes 256 

how inhibition controls the ‘observed’ response (O) as a function of ‘expected’ response (E), for 257 

the above three operations. Alpha (α) can be thought to be a subtractive inhibition parameter, 258 

beta (β) as a divisive inhibition parameter, and gamma (γ) a normalization parameter (Fig. 4a).  259 

 260 

𝑂 = 𝐸 −
𝛽𝐸

𝛾 + 𝐸
𝐸 − 𝛼 (1) 

 261 

Using the framework of Eqn. 1, we asked what computation was performed at the CA3-262 

CA1 network. We recorded from CA1 cells while stimulating CA3 with many combinations of 2, 263 
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3, 5, 7 or 9 squares (Fig. 4b). We selected cells with at least 50 input combinations, and pooled 264 

responses from all stimuli to a cell. Then, we fit equation 1 to the PSP amplitudes (Fig. 4b). 265 

From visual inspection, the subtractive inhibition model, 𝑂 = 𝐸 − 𝛼 (fixing β, γ=0) was a bad fit, 266 

since intercepts (𝛼) were close to 0 (Fig. 4a).  267 

 268 

By fixing γ and α to 0 in Eqn. 1, we obtained the Divisive Inhibition (DI) model. In this form, β 269 

can be thought of as inhibition/excitation ratio. Increasing β decreases the observed response 270 

(O) (Fig. 4a). 271 

 272 

𝑂 = 𝐸 −  𝛽𝐸 (2) 

 273 

Similarly, β was fixed to 1 and α to 0 to get the Divisive Normalization (DN) model. This form of 274 

the equation was inspired by the analogous canonical divisive normalization equation for firing 275 

rates28. Here, decrease in γ implies increase in normalization (Fig. 4a). 276 

 277 

𝑂 = 𝐸 −
𝐸

𝛾 + 𝐸
𝐸 

(3) 

We used least-squares polynomial regression to fit DI and DN models to our data. The 278 

goodness of fit for all cells was tested by comparing BIC (Bayesian Information Criterion) (Fig. 279 

4c) and reduced chi-squares of the models (Supplementary Fig 6, Methods). DN (α = 0, β = 1) 280 

was better than DI (α = 0, γ = 0) model in explaining the data (BIC: Two-tailed paired t-test, P< 281 

0.00005, reduced chi-square: Two-tailed paired t-test, P< 0.00005, n = 32 cells).  282 

 283 

Subthreshold Divisive Normalization (SDN) can be clearly seen in Figure 4b, where 284 

observed responses to stimuli with 5 mV and 15 mV expected responses are very similar. This 285 

shows that SDN allows CA1 cells to integrate a large range of inputs before reaching spike 286 
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threshold. Thus, testing with a larger range of inputs showed that the initial finding of constant 287 

I/E ratios from Figure 2 needed to be elaborated based on the observed response saturation 288 

with increasing input strength. We examine mechanisms for this below (Figure 5, 6). In 289 

summary, we observed SDN as an outcome of integration of precisely balanced inputs in the 290 

CA3-CA1 network.   291 
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 292 

 293 

 294 

Figure 4: Over a wide input range, integration of CA3 excitatory and feed-forward inhibitory input 295 

leads to SDN at CA1 296 

(a) Three models of how inhibition interacts with excitation and modulates membrane potential: (left to 297 

right) Subtractive Inhibition (SI), Divisive Inhibition (DI) and Divisive Normalization (DN). Note how 298 

parameters α, β and γ from Eqn. 1 affect response output. 299 

(b) Divisive normalization seen in a cell stimulated with 2, 3, 5, 7 and 9 square combinations. DN and DI 300 

model fits are shown in purple and green respectively. 301 
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(c) Difference in Bayesian Information Criterion (BIC) values for the 2 models - DI and DN. Most 302 

differences between BIC for DI and DN were less than 0, which implied that DN model fit better, 303 

accounting for the number of variables used. Insets show raw BIC values. Raw BIC values were 304 

consistently lower for DN model, indicating better fit (Two-tailed paired t-test, P< 0.00005, n = 32 cells). 305 

(d) Distribution of the parameter γ of the DN fit for all cells (median = 7.9, n = 32 cells). Compare with a, b 306 

to observe the extent of normalization. 307 

(e) Distribution of the parameter beta of the DI fit for all cells (mean = 0.5, n = 32 cells). Values are less 308 

than 1, indicating sublinear behaviour. 309 

CA3 feedforward inhibition is necessary for subthreshold divisive normalization 310 

We first verified our hypothesis that SDN results from feedforward inhibition from CA3, 311 

and not from intrinsic properties of the CA1 neuron. We thus blocked inhibition and repeated the 312 

above experiment. We expected that SDN would be lost and linearity would be reinstated upon 313 

blocking inhibition. 314 

We recorded responses of CA1 cells to our array of optical stimuli (Fig. 1d, 5a), then 315 

applied GABAzine to the bath and repeated the stimulus array (Fig. 5b). We found that when 316 

inhibition was blocked, summation approached linearity (Fig. 5b, c). We compared the scaling 317 

parameter γ of the divisive normalization model fit, for the above two conditions (Eqn. 3). The 318 

values of γ were larger with inhibition blocked, indicative of approach to linearity (Wilcoxon rank-319 

sum test, P<0.05, n = 8 cells) (Fig. 5c). The cells with inhibition blocked showed some residual 320 

sublinearity at high stimulus levels, which has been previously attributed to IA conductance in 321 

CA1 neurons25. Thus, we confirmed that blocking inhibition reduced sublinearity, attenuating 322 

SDN. 323 

  324 
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Precise balance is also seen at resting membrane potential 325 

 326 

Then, we hypothesised that the membrane potential change evoked by inhibitory 327 

synaptic currents could be increasing non-linearly with increasing CA3 input. In this scenario, 328 

even though the I/E ratio of conductances would be consistent across the range of input 329 

strengths, IPSP/EPSP amplitudes would increase nonlinearly. To address this, we compared 330 

responses to identical patterns before and after GABAzine application. For a given cell, for each 331 

pattern, we subtracted the initial control response with inhibition intact from the corresponding 332 

response with inhibition blocked. This gave us the inhibitory component or ‘derived inhibition’ for 333 

each stimulus pattern (Fig. 5d, inset). We found that all stimuli to a cell evoked proportional 334 

excitation and inhibition even when recorded at resting potential (Fig. 5d, e). Thus, we rejected 335 

our hypothesis of non-linear increase in inhibitory post-synaptic potential with excitatory post-336 

synaptic potential at resting membrane potential. Over the population, the median slope of the 337 

proportionality line was around 0.7, indicating that the EI balance was slightly tilted towards 338 

higher excitation than inhibition (Fig 5f). IPSP/EPSP ratios (Fig. 5f) were smaller than 339 

IPSC/EPSC ratios (Fig. 2f) due to proximity of inhibition to its reversal (~-70mV), than excitation 340 

to its reversal (~0mV), at resting membrane potential (~-65mV). Overall, we saw precise 341 

balance in evoked excitatory and inhibitory synaptic potentials for >100 combinations per 342 

neuron.  343 
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 344 

 345 

Figure 5: Blocking balanced inhibition at resting membrane potential attenuates SDN 346 

(a) Top, schematic of experiment condition. Bottom, a cell showing divisive normalization in control 347 

condition. 348 

(b) Top, schematic of experiment condition with feedforward inhibition blocked (2uM GABAzine). Bottom, 349 

responses of the same cell with inhibition blocked. The responses are much closer to the linear 350 
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summation line (dashed). The blue lines in a, b are the fits of the DN model. The value of γ of the fit 351 

increases when inhibition is blocked. 352 

(c) The γ of the DN fits were calculated for both control and GABAzine case. Most cells had larger γ with 353 

GABAzine in bath (Wilcoxon rank sum test, P<0.05, n = 8 cells), implying lower normalization. 354 

(d) Excitation versus derived inhibition for all points for the cell shown in a (area under the curve) (Slope = 355 

0.97, r-square = 0.93, x-intercept = 3.75e-5 mV.ms). Proportionality was seen for all responses at resting 356 

membrane potential. ‘Derived inhibition’ was calculated by subtracting control PSP from the excitatory 357 

(GABAzine) PSP for each stimulus combination. 358 

(e,f) R2 (median = 0.8) and slope values (median = 0.7) for all cells (n = 8 cells), showing tight 359 

IPSP/EPSP proportionality, and slightly more excitation than inhibition at resting membrane potentials. 360 

 361 

Advancement of inhibitory onset timing with increasing input explains 362 

subthreshold divisive normalisation 363 

We made a single compartment conductance model (Fig. 6a, Eqn. 5) to analyze the 364 

mechanism of SDN. We fit a function of difference of exponentials (Methods) to our voltage 365 

clamp data to extract the peak amplitudes and kinetics of excitation and inhibition currents 366 

(Methods). We used these and other parameters from literature (Supplementary Table 1 and 367 

2), and constrained the model to have EI balance, i.e. have maximum excitatory (𝑔𝑒𝑥𝑐) and 368 

inhibitory conductance (𝑔𝑖𝑛ℎ) proportional to each other, with a given I/E ratio. To test for SDN, 369 

we simulated our model in the range of experimentally determined I/E ratios, ranging from 0-5. 370 

We observed that EI balance with constant EI delay is consistent with the divisive 371 

inhibition model (Fig. 6b). On the other hand, subthreshold divisive normalization implies 372 

progressively smaller changes in peak PSP amplitude with increase in excitatory input. We 373 

surmised that without changing EI balance, SDN should result if the inhibitory onset delays were 374 
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an inverse function of the excitation (Fig. 6d, Eqn. 4). Hence, we simulated the model with 375 

different values of inhibitory delay (𝛿𝑖𝑛ℎ) as a function of the excitation. 376 

 377 

𝛿𝑖𝑛ℎ = 𝛿𝑚𝑖𝑛 +  𝑚𝑒
−𝑘𝑔𝑒𝑥𝑐  (4) 

 378 

Here 𝛿𝑚𝑖𝑛 is the minimum synaptic delay between excitation and inhibition, k sets the 379 

steepness of the delay change with excitation, and m determines the maximum synaptic delay. 380 

In Fig. 6c, we show that SDN emerged when we incorporated delays changing as a function of 381 

the total excitatory input to the model neuron. 382 

 383 

We then tested this model prediction. From the EPSC and IPSC fits (Methods), we 384 

extracted excitatory and inhibitory onsets, and subtracted the average inhibitory onsets from 385 

average excitatory onsets to get inhibitory delay (𝛿𝑖𝑛ℎ) for each stimulus combination. We saw 386 

that 𝛿𝑖𝑛ℎ indeed varied inversely with total excitation (𝑔𝑒𝑥𝑐) (Fig. 6e, f). Notably, the relationship 387 

of delay with conductance with data from all cells pooled, seems to be a single inverse function, 388 

and might be a network property (Fig. 6f, Supplementary Fig 8c). This input dependent 389 

change in inhibitory delay could be attributed to delayed spiking of interneurons with small 390 

excitatory inputs, and quicker firing with larger excitatory inputs. Similar relationship between EI 391 

latency and strength has been seen in other brain regions29. Thus, inhibition clamps down the 392 

rising EPSP, resulting in saturation of PSP amplitude when excitation is increased (Fig. 6c, 8). 393 

 394 

We then examined the sensitivity of SDN to proportionality, and delay between excitation 395 

and inhibition. To test if balance and predicted inhibitory delay relationship are required for SDN, 396 

we shuffled the balanced 𝑔𝑖𝑛ℎ in relation with 𝑔𝑒𝑥𝑐, and separately shuffled the relationship of 397 
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𝛿𝑖𝑛ℎ and 𝑔𝑒𝑥𝑐. In both cases, SDN was strongly attenuated, implying that both EI balance and 398 

inverse scaling of inhibitory delay were necessary for SDN (Supplementary Fig 8a, b).  399 

 400 

Thus our analysis of a conductance model suggests that SDN could be a general 401 

property of balanced feedforward networks, due to two characteristic features: EI balance and 402 

inhibitory kinetics. Each of these variables may be subject to plasticity and modulation to attain 403 

different amounts of normalization (Fig. 8c,d, Supplementary Fig 9).  404 
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 405 

Figure 6: Conductance model predicts Excitatory-Inhibitory delay as an important parameter for 406 

divisive normalization. 407 

(a) Equivalent circuit for the conductance model showing capacitive, excitatory, inhibitory, and leak 408 

components. 409 

(b) PSP peak amplitude with both excitatory and balanced inhibitory inputs is plotted against the EPSP 410 

peak amplitude with only excitatory input. Model showed divisive inhibition for I/E proportionality ranging 411 

from 0 to 5 when the inhibitory delay was kept constant. Different colours show I/E ratios (P). 412 

(c) Same as in b, except the inhibitory delay was varied inversely with excitatory conductance (as shown 413 

in d).  Subthreshold Divisive Normalization (SDN) was observed, and the normalization gain was 414 

sensitive to the I/E ratio. 415 

(d) Inverse relationship of E-I delays with excitation. Inhibitory delay was varied with excitatory 416 

conductance in Eqn. 4 with 𝛿𝑚𝑖𝑛 = 2 ms, k = 2 /nS, and m = 13 ms. 417 

(e) Data from an example cell showing the relationship of E-I delays with excitation. The relationship is 418 

similar to the prediction in e. 419 
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(f) Data from all cells showing delay as a function of excitation. Different colours indicate different cells (n 420 

= 13 cells). Grey lines are linear regression lines through individual cells. 421 

(g) Traces showing the decreasing excitatory inhibitory delay with increasing amplitude of PSCs. Each 422 

trace is an average of 6 repeats. 423 

 424 

Stimulus information is encoded both in amplitude and time 425 

 426 

What does SDN mean for information transmission in balanced networks? While SDN 427 

allowed the cell to integrate a large range of inputs before reaching spiking threshold, it also 428 

resulted in saturation of PSP peaks at larger inputs (Fig. 4b). This implied that information about 429 

the input was partially ‘lost’ from the PSP amplitude. However, we observed that due to the 430 

decreasing EI delay (𝛿𝑖𝑛ℎ) with increasing excitation (𝑔𝑒𝑥𝑐) (Fig. 6d), PSP times to peak became 431 

shorter, preserving some information about the input in time (Fig 7a, b, Fig. 8b). In contrast, 432 

while the peak amplitudes seen with GABAzine predicted the input more reliably, peak times of 433 

EPSPs did not change much with input (Fig. 7c,d). Thus, PSP peak time may carry additional 434 

information about stimulus strength, when EI balance is maintained. 435 

 436 

We quantified this using an information theoretical framework30. We took linear sum of 1 437 

square PSP peak amplitudes (Expected sum), as a proxy for input strength. We then calculated 438 

the mutual information between Expected sum and peak PSP amplitudes of the corresponding 439 

N-squares, and between Expected sum and PSP peak timing (Methods). Using this, we asked, 440 

how is the information about the input divided between PSP peak amplitude and timing?  We 441 

found that peak timing had more information in presence of inhibition (control), and peak 442 

amplitude had more information in absence of inhibition (GABAzine) (Fig. 7f). The total mutual 443 

information of both peak amplitude and peak timing with expected sum was slightly lesser in the 444 
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presence of inhibition, but this difference was statistically not significant (Fig. 7e) (Wilcoxon 445 

Rank sum test (< 0.05), P = 0.4, n = 7 cells). Further, we asked, how better can we predict the 446 

input, with the knowledge of peak timing, when the peak amplitude is already known? We found 447 

that in the presence of inhibition, peak amplitude carried only a part of the total information 448 

about the input, and further knowledge of peak time substantially increased the total information. 449 

In contrast, in the absence of inhibition, peak amplitude carried most of the information about 450 

input, and there was very little gain in information with the knowledge of peak times (Fig. 7f) 451 

(Wilcoxon Rank sum test (< 0.05), n = 7 cells).  452 

Overall, these results suggest that with inhibition intact, input information is shared 453 

between amplitude and time, and knowledge of peak time and amplitude together contains 454 

more information about input than either of them alone.  455 
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 456 

 457 

Figure 7:  CA3 input strength is encoded in both amplitude and peak time of CA1 PSPs in 458 

presence of feedforward inhibition 459 

(a,c) The peak arrives earlier as input gets larger in control case (black), but not with GABAzine in bath 460 

(red). Averaged traces for an example cell, control (black) and with GABAzine in bath (red). Each trace is 461 

averaged over all PSPs within a bin of ‘expected sum’ strength. Bin centres are as per y axis in panel c. 462 

(b) Averaged peak Vm (PSP amplitude) and peak time plotted against Expected Vm. Both amplitude and 463 

time change as a function of input (Expected sum). 464 

(d) Same as b, but in the presence of GABAzine. As a function of Expected sum, amplitude changes 465 

more than control, but time changes less than control. 466 
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(e) Total mutual information of peak amplitude and peak timing with expected sum is not significantly 467 

different between Control and GABAzine case (Wilcoxon Rank sum test (< 0.05), P = 0.4, n = 7 CA1 468 

cells). 469 

(f) Normalized mutual information between Expected Vm and peak time, Expected Vm and peak 470 

amplitude, and conditional mutual information between Expected Vm and peak time, given the knowledge 471 

of peak amplitude. Normalized information was calculated by dividing mutual information by total 472 

information (e) for each cell. Peak times carry more information in the presence of inhibition, and peak 473 

amplitudes carry more information in the absence of inhibition. There is higher gain in information about 474 

the input with timing if the inhibition is kept intact (Wilcoxon Rank sum test (P< 0.05), n = 7 CA1 cells).  475 
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 476 

 477 

 478 

Figure 8: Emergence of SDN from balanced excitation and inhibition, coupled with dynamic EI 479 

delays 480 
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(a) Schematic showing precisely balanced EPSPs (blue) and corresponding IPSPs (red) summing to 481 

produce PSPs (purple). The EPSPs and IPSPs increase in equal input steps. 482 

(b) Zooming into the portion in the rectangle in a. Excitation onset is constant, but inhibition onset 483 

changes as an inverse function of input or conductance (𝑔𝑒𝑥𝑐), as shown in Figure 6e. With increasing 484 

input, inhibition arrives earlier and cuts into excitation earlier for each input step. This results in smaller 485 

differences in excitatory peaks with each input step, resulting in SDN. The timing of PSP peaks (purple) 486 

becomes progressively advanced, whereas the timing of EPSP peaks (blue) does not, consistent with our 487 

results in Figure 7. 488 

(c,d) Normalization as a function of the two building blocks – EI balance (I/E ratio) and EI delays 489 

(interneuron recruitment kinetics, k), as predicted by the model. Larger values of both imply greater 490 

normalization and increased gating. Colors of the SDN curves depict the value of gamma (γ), as shown in 491 

the phase plot in d. 492 

 493 

DISCUSSION  494 

This study describes two fundamental properties of the CA3-CA1 feedforward circuit: 495 

balanced excitation and inhibition from arbitrary presynaptic CA3 subsets, and an inverse 496 

relationship of excitatory-inhibitory delays with CA3 input amplitude. By optogenetic 497 

photostimulaton of CA3 with hundreds of unique stimulus combinations, we were able to 498 

observe precise EI balance at individual CA1 neurons for every input combination presented. 499 

Stronger stimuli from CA3 led to proportional increase in excitatory and inhibitory amplitudes at 500 

CA1, and a decrease in the delay with which inhibition arrived. Consequently, larger CA3 inputs 501 

had shorter inhibitory delays, which led to progressively smaller changes in CA1 membrane 502 

potential. We term this gain control mechanism subthreshold divisive normalization (SDN). This 503 
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reduction in inhibitory delay with stronger inputs contributes to a division of input strength coding 504 

between PSP amplitude and PSP timing. 505 

Precise balance in the hippocampus 506 

 507 

We found that arbitrary subsets of synaptic inputs from CA3 to a given CA1 neuron were 508 

balanced (Fig. 2, 5d,e) and inhibition followed excitation at millisecond timescales (Fig 6e,f,g). 509 

By targeted optogenetic stimulation of CA3 pyramidal neurons, we eliminated non-specific 510 

monosynaptic stimulation of interneurons. This ensured the isolation of the canonical 511 

feedforward inhibitory microcircuit in a slice. Our findings demonstrate that precise EI balance is 512 

maintained by arbitrary combinations of neurons in the presynaptic network, despite the 513 

reduced nature of the slice preparation, with no intrinsic network dynamics. This reveals 514 

exceptional structure in the connectivity of the network. Theoretical analyses suggest that 515 

networks can achieve detailed balance with inhibitory Spike Timing Dependent Plasticity 516 

(iSTDP) rules21,31,32. Such an iSTDP rule has been observed in the auditory cortex33. Given that 517 

balance needs to be actively maintained34, we suspect that similar plasticity rules21 may also 518 

exist in the hippocampus. Moreover, the change in inhibitory delay with increasing excitatory 519 

input may have interesting consequences for any STDP rule such as the inhibitory plasticity rule 520 

suggested theoretically31.  521 

Precisely balanced networks, with all input subsets balanced, are well suited for input 522 

gating 21,35. The finding that most CA1 cells can be converted to place cells predicts the 523 

existence of an input gating mechanism 36, but the exact nature of this mechanism has 524 

remained unknown. Precise balance at all inputs suggests that although synaptic inputs for 525 

several place fields may be sent to a CA1 cell, no place specific activity is observed because all 526 

inputs are balanced or gated ‘off’ in default state. Evoked depolarizations36 or dendritic plateau 527 

potentials37,38, which potentiate the subset of active synapses, ie change I/E ratio39, can flip the 528 

gate ‘on’ for the specific subset of inputs, thereby converting a silent cell to a place cell for that 529 
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specific place field. This reasoning corroborates the observation of homogenous inhibition 530 

suppressing out-of-field heterogeneously tuned excitation39, while providing a finer/synaptic 531 

scale view of the gating mechanism. 532 

 533 

EI delays and temporal coding 534 

 535 

In several EI networks in the brain, inhibition is known to suppress excitation after a 536 

short time delay, leaving a “window of opportunity” for spiking to occur2,40,41. We have shown 537 

that balanced inhibitory input arrives with a delay modulated by the excitatory input in a 538 

feedforward circuit. This helps encode the input information in both amplitude and timing of the 539 

PSP (Fig. 7), thus partially decoupling spiking probability from spike timing. In other words, 540 

large inputs can be represented with fewer spikes, while conserving input information in spike 541 

timing, when naively it would seem that increasing the number of spikes might be the way to 542 

represent increasing input. Similar dual encoding has been observed in somatosensory cortex 543 

42. In CA1, a classic example of dual coding is theta phase precession43. In addition, spike times 544 

during sharp wave ripples, gamma oscillations and time cell representations are also precise up 545 

to ~10ms, which is the range of the dynamic “window of opportunity” we observe. Notably, as 546 

the window changes in an excitation dependent manner, the neuron can transition from 547 

temporal integration mode at small input amplitudes to coincidence detection at large input 548 

amplitudes2,41,44.  549 

 550 

 551 

Subthreshold Divisive Normalization (SDN): a novel gain control mechanism 552 

 553 

EI balance and dynamic EI delays together give rise to SDN, which modulates synaptic 554 

summation gain at single neuron level and determines how much input gets gated to change 555 
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postsynaptic membrane potential. SDN expands the dynamic range of inputs that a neuron can 556 

accommodate before reaching spike threshold (Supplementary Fig 10). This is particularly 557 

useful for temporally coding, sparse spiking neurons like CA145. Our study was uniquely able to 558 

observe SDN because of the large range of inputs possible in our experiments. A narrow range 559 

of inputs, similar to what has been used earlier for pairwise summation experiments, is not well 560 

suited for characterizing summation nonlinearities, and this limitation has been pointed out by 561 

computational analyses27. 562 

 563 

So far, analogous gain control by divisive normalization has only been observed for firing 564 

rates of neurons28. Hence, the timescales of gain change in DN are averaged over longer 565 

periods, over which rates change. As opposed to this, in SDN, gain of every input is normalized 566 

at synaptic (millisecond) timescales. Our results add a layer of subthreshold gain control in 567 

single neurons, to the known suprathreshold gain control at the population level in CA146 This 568 

two-step gain control implies that the dynamic range of the population may be higher than 569 

previously estimated. 570 

 571 

Moreover, while most experimental observations of firing rate gain change have been 572 

explained by the phenomenological divisive normalization equation, the mechanistic basis for 573 

normalization has been unclear. We demonstrate with a clear biophysical model how SDN 574 

emerges from interaction of balanced excitatory and inhibitory inputs, connecting our 575 

phenomenological model with known biophysics. In our phenomenological SDN model, the 576 

parameter γ represents summation gain, or the extent of input gating at CA1 (Eqn. 1, Fig. 4a). γ 577 

is controlled by the following two biophysical quantities: I/E ratio; and the recruitment kinetics of 578 

the interneurons (k) (Eqn. 4, Fig. 8c,d, Supplementary Fig 9), which can control the amplitude 579 

and temporal gate respectively. Dynamic regulation of EI delay has been theoretically explored 580 
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in balanced networks20,47 for temporal gating of inputs, where both amplitude and temporal 581 

gates can be independently modulated, and transient inputs can also be gated.  582 

 583 

I/E ratio can be changed by neuromodulation48,49, by short term plasticity mechanisms50–584 

52 and by disinhibition53. Although we show that EI delays are input amplitude dependent, they 585 

may be modulated by external signals, or behavioural states, such as attention54 to gate the 586 

output of individual neurons (Fig. 8c,d). For example, interneuron recruitment based changes 587 

have been shown to exist in thalamocortical neurons44
 . Thus, temporal gating by EI delays20, 588 

combined with the amplitude gating by detailed balance17 could be a powerful mechanism for 589 

gating signals20 in the hippocampal feedforward microcircuit. 590 

  591 

Several studies point towards the existence of precise EI balance in the cortex2–4,11–13, 592 

and here we have shown it in the hippocampus. We propose that input strength dependent 593 

inhibitory delay change may be a general property of feedforward network motifs. Together, 594 

these suggest that precisely balanced feedforward networks are elegantly suited for controlling 595 

gain, timing and gating at individual neurons in neural circuits.  596 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2017. ; https://doi.org/10.1101/190298doi: bioRxiv preprint 

https://doi.org/10.1101/190298
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

36 

METHODS 597 

Animals 598 

All experimental procedures were approved by the National Centre for Biological 599 

Sciences Institutional Animal Ethics Committee (Protocol number USB–19–1/2011), in 600 

accordance with the guidelines of the Government of India (animal facility CPCSEA registration 601 

number 109/1999/CPCSEA) and equivalent guidelines of the Society for Neuroscience. CA3-cre 602 

(C57BL/6-Tg (Grik4-cre) G32-4Stl/J mice, Stock number 006474) were obtained from Jackson 603 

Laboratories. The animals were housed in a temperature controlled environment with a 14-h 604 

light: 10h dark cycle, with ad libitum food and water.  605 

Virus injections 606 

21-30 days old male transgenic mice were injected with Lox-ChR2 607 

(AAV5.CAGGS.Flex.ChR2-tdTomato.WPRE.SV40) virus obtained from University of 608 

Pennsylvania Vector Core. Injection coordinates used were -2.0mm RC, +/-1.9mm ML, -1.5mm 609 

DV. ~300-400nl solution was injected into the CA3 region with brief pressure pulses using 610 

Picospritzer-III (Parker-Hannifin, Cleveland, OH, USA). Animals were allowed to recover for at 611 

least 4 weeks following surgery. 612 

Slice Preparation 613 

8-6 week (4-8 weeks post virus injection) old mice were anesthetized with halothane and 614 

decapitated post cervical dislocation. Hippocampus was dissected out and 350um thick 615 

transverse hippocampal slices were prepared. Slices (350 microns) were cut in ice-cold high 616 

sucrose ASCF containing (in mM) - 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 75 sucrose, 617 

10 glucose, 0.5 CaCl2, 7 MgCl2. For cut slice control experiments, CA3 was removed at this 618 

stage. Slices were stored in a holding chamber, in artificial cerebro-spinal fluid (aCSF) 619 
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containing (in mM) - 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 0.4 NaH2PO4, 26 NaHCO3, and 620 

10 glucose, saturated with 95% O2/5% CO2. After at least an hour of incubation, the slices were 621 

transferred to a recording chamber and perfused with aCSF at room temperature. 622 

Electrophysiology 623 

Whole cell recording pipettes of 2-5MO were pulled from thick-walled borosilicate glass 624 

on a P-97 Flaming/Brown micropipette puller (Sutter Instrument, Novato, CA). Pipettes were 625 

filled with internal solution containing (in mM) 130 K-gluconate, 5 NaCl, 10 HEPES, 1 EGTA, 2 626 

MgCl2, 2 Mg-ATP, 0.5 Na-GTP and 10 Phosphocreatinine, pH adjusted to 7.3, osmolarity 627 

~285mOsm. The membrane potential of CA1 cells was maintained near -65mV, with current 628 

injection, if necessary. GABA-A currents were blocked with GABAzine (SR-95531, Sigma) at 629 

2uM concentration for some experiments. Cells were excluded from analysis if the input 630 

resistance changed by more than 25% (measured for 15/39 cells) or if membrane voltage 631 

changed more than 2.5mV (measured for 39/39 cells, maximum current injected to hold the cell 632 

at the same voltage was +/-15 pA) of the initial value. For voltage clamp recordings, the K-633 

gluconate was replaced by equal concentration Cs-gluconate. Cells were voltage clamped at 634 

0mV (close to calculated excitation reversal) and -70mV (calculated inhibition reversal) for IPSC 635 

and EPSC recordings respectively. At 0mV a small component of APV sensitive inward current 636 

was observed, and was not blocked during recordings. Cells were excluded if series resistance 637 

went above 25MO or if it changed more than 30% of the initial value, with mean series 638 

resistance being 15.7MO +/- 4.5MO std (n=13). For CA3 current clamp recordings, the cells 639 

were excluded if the Vm changed by 5mV of the initial value. For whole-cell recordings, neurons 640 

were visualized using infrared microscopy and differential interference contrast (DIC) optics on 641 
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an upright Olympus BX61WI microscope (Olympus, Japan) fitted with a 40X (Olympus 642 

LUMPLFLN, 40XW), 0.8NA water immersion objective. 643 

Data Acquisition  644 

Recordings were acquired on a HEKA EPC10 double plus amplifier (HEKA Electronik, 645 

Germany) and filtered 2.9 kHz and digitized at 20 kHz. All analysis was done using custom 646 

written software in Python 2.7.12 and Matlab R2012b.  647 

Optical stimulation setup 648 

Optical stimulation was done using DMD (Digital Micromirror Device) based Optoma 649 

W316 projector (60Hz refresh rate) with its color wheel removed. Image from the projector was 650 

miniaturized using a Nikon 50mm f/1.4D lens and formed at the focal plane of the tube lens, 651 

confocal to the sample plane. The white light from the projector was filtered using a blue filter 652 

(Edmund Optics, 52532), reflected off of a dichroic mirror (Q495LP, Chroma), integrated into the 653 

light path of the Olympus microscope, and focused on sample through a 40X objective. This 654 

arrangement covered a circular field of around 200 micron diameter on sample. 2.5 pixels 655 

measured 1 micron at sample through the 40X objective. Light intensity, measured using a 656 

power meter, was about 150mW/mm2 at sample surface. Background light from black screen 657 

usually elicited no or very little synaptic response at recorded CA1 cells. A shutter (NS15B, 658 

Uniblitz) was present in the optical path to prevent the slice from being stimulated by 659 

background light during the inter-trial interval. The shutter was used to deliver stimulus of 10-660 
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15ms per trial. A photodiode was placed in the optical path after the shutter to record 661 

timestamps of the delivered stimuli. 662 

Patterned optical stimulation 663 

Processing 2 was used for generating optical patterns. All stimuli were 16 micron 664 

squares sub sampled from a grid. 16 micron was chosen since it is close to the size of a CA3 665 

soma. The light intensity and square size were standardized to elicit typically 1 spike per cell per 666 

stimulus. The number of spikes varied to some extent based on the expression of ChR2, which 667 

varied from cell to cell. The switching of spots from one trial to next, at 3 sec inter trial interval, 668 

prevented desensitization of ChR2 over successive trials (Fig. 1g). 669 

 670 

For a patched CA1 cell, the number of connected CA3 neurons stimulated per spot was 671 

estimated to be in the range of 1 to a maximum of 50 for responses ranging from 0 to 2mV. 672 

These calculations were done assuming a contribution of 0.2mV per synapse23 and release 673 

probability of ~0.255. This number includes responses from passing axons, which could also get 674 

stimulated in our preparation.  675 

 676 

We did not observe any significant cross stimulation of CA1 cells. CA1 cells were 677 

patched and the objective was shifted to the CA3 region of the slice, where the optical patterns 678 

were then projected. CA1s showed no response to optical stimulation because of (i) ChR2 was 679 

restricted to CA3 cells, (ii) physical shifting of the objective away from CA1 also made sure that 680 

any leaky expression, if present, did not elicit responses. 681 

 682 

We used 4 different stimulus grids (Supplementary Fig 11). All squares from a grid 683 

were presented individually (in random order) and in a stimulus set - randomly chosen 684 
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combinations of 2, 3, 5, 7, or 9, with 2 or 3 repeats of each combination. The order of 685 

presentation of a given N square combination was randomized from cell to cell. 686 

 687 

Data Analysis 688 

 Data analysis was done using Python, numpy, scipy, matplotlib and other free libraries. 689 

All analysis code is available as a free library at (https://github.com/sahilm89/linearity). 690 

 691 

Pre-processing 692 

PSPs and PSCs were filtered using a low pass Bessel filter at 2 kHz, and baseline 693 

normalized using 100 ms before the optical stimulation time as the baseline period. Period of 694 

interest was marked as 100 ms from the beginning of optical stimulation, as it was the typical 695 

timescales of PSPs. Timing of optical stimulation was determined using timestamp from a 696 

photodiode responding to the light from the projector. Trials were flagged if the PSP in the 697 

interest period were indistinguishable from baseline period due to high noise, using a 2 sample 698 

KS test (p-value < 0.05). Similarly, action potentials in the interest period were flagged and not 699 

analyzed, unless specifically mentioned. 700 

 701 

Feature extraction 702 

A total of 4 measures were used for analyzing PSPs and PSCs (Fig. 3c). These were 703 

mean, area under the curve, average and area to peak. This was done to be able to catch 704 

differences in integration at different timescales, as suggested by Poirazi et al27. Trials from CA1 705 

were mapped back to the grid locations of CA3 stimulation for comparison of Expected and 706 
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Observed responses. Grid coordinate-wise features were calculated by averaging all trials for a 707 

given grid coordinate. 708 

 709 

Subthreshold Divisive Normalization model  710 

Different models of synaptic integration: Subtractive Inhibition, Divisive Inhibition, and 711 

Divisive Normalization models were obtained by constraining parameters in Equation 1. The 712 

models were then fit to the current clamp dataset using lmfit. Reduced chi-squares 713 
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(Supplementary Fig 6) and Bayesian Information Criterion (Fig 4c) were used to evaluate the 714 

goodness of fits of these models to experimental data. 715 

 716 

Single compartment model  717 

A single compartment conductance based model was created in Python using sympy 718 

and numpy. The model consisted of leak, excitatory and inhibitory synaptic conductances 719 

(Eqn.5, Fig 6a) to model the subthreshold responses by the CA1 neurons. 720 

 721 

𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡

=  𝑔𝑙𝑒𝑎𝑘(𝑉𝑚 − 𝐸𝑙𝑒𝑎𝑘) + 𝑔𝑒𝑥𝑐(𝑉𝑚 − 𝐸𝑒𝑥𝑐) + 𝑔𝑖𝑛ℎ(𝑉𝑚 − 𝐸𝑖𝑛ℎ) (5) 

 722 

The parameters used for the model were taken directly from data, or literature 723 

(Supplementary Table 2). The synaptic conductances 𝑔𝑒𝑥𝑐(𝑡), and 𝑔𝑖𝑛ℎ(𝑡) were modeled as 724 

difference of exponentials (Eqn. 6 and 7): 725 

 726 

𝑔𝑒𝑥𝑐(𝑡) =  𝑔̅𝑒𝑥𝑐 

(

 
 𝑒

(
–𝑡

𝜏𝑑𝑒𝑐𝑎𝑦
)
  –  𝑒

(
–𝑡

𝜏𝑟𝑖𝑠𝑒
)

– (
𝜏𝑟𝑖𝑠𝑒

𝜏𝑑𝑒𝑐𝑎𝑦
)

𝜏𝑑𝑒𝑐𝑎𝑦

𝜏𝑑𝑒𝑐𝑎𝑦 – 𝜏𝑟𝑖𝑠𝑒  +   (
𝜏𝑟𝑖𝑠𝑒

𝜏𝑑𝑒𝑐𝑎𝑦
)

𝜏𝑟𝑖𝑠𝑒
𝜏𝑑𝑒𝑐𝑎𝑦 – 𝜏𝑟𝑖𝑠𝑒

)

 
 

 (6) 

 727 

 728 

𝑔𝑖𝑛ℎ(𝑡) =  𝑔̅𝑖𝑛ℎ 

(

 
 𝑒

(
𝛿𝑖𝑛ℎ–𝑡

𝜏𝑑𝑒𝑐𝑎𝑦
)
  –  𝑒

(
𝛿𝑖𝑛ℎ–𝑡

𝜏𝑟𝑖𝑠𝑒
)

– (
𝜏𝑟𝑖𝑠𝑒

𝜏𝑑𝑒𝑐𝑎𝑦
)

𝜏𝑑𝑒𝑐𝑎𝑦

𝜏𝑑𝑒𝑐𝑎𝑦  –  𝜏𝑟𝑖𝑠𝑒  +   (
𝜏𝑟𝑖𝑠𝑒

𝜏𝑑𝑒𝑐𝑎𝑦
)

𝜏𝑟𝑖𝑠𝑒
𝜏𝑑𝑒𝑐𝑎𝑦 – 𝜏𝑟𝑖𝑠𝑒

)

 
 

 (7) 

   729 
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 For the divisive normalization case, the inhibitory delays (𝛿𝑖𝑛ℎ) were modelled to be an 730 

inverse function of 𝑔𝑒𝑥𝑐(𝑡) (Eqn.4). In other cases, they were assumed to be constant and 731 

values were taken from Supplementary Table 2. 732 

 733 

Fitting data 734 

Voltage clamp data was fit to a difference of exponential functions (Eqn.8, 735 

Supplementary Fig 7) by a non-linear least squares minimization algorithm using lmfit, a freely 736 

available curve fitting library for Python. Using this, we obtained amplitudes (𝑔), time course 737 

(𝜏𝑟𝑖𝑠𝑒,𝜏𝑑𝑒𝑐𝑎𝑦) and onset delay from stimulus (𝛿𝑜𝑛𝑠𝑒𝑡) for both excitatory and inhibitory currents. 738 

We then calculated inhibitory onset delay (𝛿𝑖𝑛ℎ ) by subtracting onset delayof excitatory from 739 

inhibitory traces.  740 

 741 

𝑔(𝑡) =  𝑔

(

 
 𝑒

(
𝛿𝑜𝑛𝑠𝑒𝑡  –  𝑡

𝜏𝑑𝑒𝑐𝑎𝑦
)
  –  𝑒

(
𝛿𝑜𝑛𝑠𝑒𝑡  –  𝑡

𝜏𝑟𝑖𝑠𝑒
)

– (
𝜏𝑟𝑖𝑠𝑒

𝜏𝑑𝑒𝑐𝑎𝑦
)

𝜏𝑑𝑒𝑐𝑎𝑦

𝜏𝑑𝑒𝑐𝑎𝑦  –  𝜏𝑟𝑖𝑠𝑒  +   (
𝜏𝑟𝑖𝑠𝑒

𝜏𝑑𝑒𝑐𝑎𝑦
)

𝜏𝑟𝑖𝑠𝑒
𝜏𝑑𝑒𝑐𝑎𝑦 – 𝜏𝑟𝑖𝑠𝑒

)

 
 

 (8) 

Onset detection 742 

 Onsets were also detected using 3 methods. Since we propose onset delays to be a 743 

function of the excitation peak, we avoided onset finding methods such as time to 10% of peak, 744 

which rely on peaks of the PSCs. We used threshold based (time at which the PSC crossed a 745 

threshold), slope based (time at which the slope of the PSC onset was the steepest) and a 746 

running window based methods. In the running window method, we run a short window of 0.5 747 

ms, and found the time point at which distributions of two consecutive windows became 748 
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dissimilar, using a 2 sample KS test. Ideally, with no input, the noise distribution across two 749 

consecutive windows should remain identical. All 3 methods gave qualitatively similar results. 750 

Mutual Information calculation 751 

Mutual information was calculated by the histogram method. The calculated linear sum 752 

from one square PSP peak amplitude responses, measured N-square peak amplitudes and 753 

time were binned with equal number of bins. The bins were calculated using Sturges’ Rule. Bin 754 

frequencies were divided by the total number of responses to get the probability of 755 
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occurrence𝑝(𝑥) of each bin. Mutual Information was then calculated for all pairs of combinations 756 

between linear sum, peak amplitude and time using Eqn.9 and 10. 757 

 758 

𝑀𝐼(𝑋, 𝑌) =  𝐻(𝑋) +  𝐻(𝑌) −  𝐻(𝑋, 𝑌) (9) 

 759 

Where Shannon’s entropy𝐻(𝑋) for a variable 𝑋, is given as: 760 

 761 

𝐻(𝑋) = ∑ − 𝑝(𝑥) log2 𝑝(𝑥)

𝑥 ∈ 𝑋

 (10) 

 762 

Further, conditional mutual Information was calculated to measure gain in information about 763 

input (linear sum) by knowledge of peak timing when peak amplitude is already known. It was 764 

calculated using Equation 11. 765 

 766 

𝐼 (𝑋 ; 𝑌|𝑍) =   𝐻 (𝑋, 𝑍) +  𝐻(𝑌, 𝑍) −  𝐻(𝑋, 𝑌, 𝑍) −  𝐻(𝑍) (11) 

 767 

Normalized mutual information was calculated by dividing mutual information between pairs of 768 

variables by the total information between all three variables (Equation 12). 769 

 770 

𝐼 (𝑋; 𝑌, 𝑍) =   𝐻 (𝑍) +  𝐻(𝑋, 𝑌) −  𝐻(𝑋, 𝑌, 𝑍) (12) 

 771 

  772 
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