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Abstract 

Genetic contributions of Neandertals to the modern human genome have been evidenced 

by comparative analyses of present day human genomes and paleogenomes. The Neandertal 

introgression differs in European, East Asian and African lines of descent, and is higher in 

Asians and Europeans and lower in Africans. Neandertal signatures in extant human genomes are 

attributed to intercrosses between Neandertals and ancient Homo sapiens lineages, or 

Anatomically Modern Humans (AMH) that migrated from Africa into the Middle East and 

Europe in the last 50,000 years. It has been proposed however that there is no contribution of 

Neandertal mitochondrial DNA to contemporary human genomes. Here we show that the 

modern human mitochondrial genome contains 75 Neandertal signatures of which 11 are 

associated with diseases such as cycling vomiting syndrome and depression and 3 associated 

with intelligence quotient. Principal component analysis and bootscan tests suggest rare 

recombination events. Also, contrary to what is observed in the nuclear genome, African 

mitochondrial haplogoups have more Neandertal signatures than Asian and European 

haplogroups. Our results suggest that although most intercrosses occurred between Neandertal 

males and Anatomically Modern Humans (AMH) females, crosses between AMH males and 

Neandertal females were extremely rare with also rare recombination events thus leaving few 

marks (75 out of 16,565bp) in present day mitochondrial genomes of human populations. 

 

Keywords: Mitochondrial genome, Human evolution, Neandertal intercrosses. Mitochondrial 

recombination, Mitochondrial haplogroups. 
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Neandertal genetic contributions to the modern makeup of the human genome have been 

evidenced by comparative analyses of present day human genomes and paleogenomes (1–4). 

These contributions are differential in European, East Asian and African lines of descent, with a 

higher frequency of Neandertal segments in Asians and Europeans and lower frequencies in 

Africans  (1). The presence of Neandertal signatures in extant human genomes are attributed to 

intercrosses between Neandertals and ancient Homo sapiens lineages, or Anatomically Modern 

Humans (AMH) that migrated from Africa into the Middle East and Europe in the last 50,000 

years (2, 3). The spatio-temporal overlap of Neandertals and AMH is estimated to be 

approximately 22,000 years since the first AMH arrived in Europe around 50,000 years ago and 

the last Neandertal remains (in Spain) date back to 28,000 years (5, 6). It has been proposed 

however that there is no contribution of Neandertal mitochondrial DNA to contemporary human 

genomes (7). Because of mtDNA matrilineal inheritance this implies that the all intercrosses 

occurred between Neandertal males and AMH females. Another possibility is that crosses 

between AMH males and Neandertal females were either extremely rare or yet, produced such 

unfavorable traits, via mitonuclear incompatibility (8), that none of its descendants left marks in 

present day human populations.  

 To investigate the proposed absence of Neandertal mitochondrial contribution in extant 

humans we compared mitochondrial genomes of extant human mitochondrial haplogroups, 

ancient AMH Homo sapiens and Neandertals. The whole mitochondrial genome alignment 

dataset revealed 918 polymorphic positions within the 16,565bp mtDNA. Within these 918 

positions, 75 contained variants that were identical between present day humans and Neandertals 

at the exclusion of ancient AMH (Fig. 1). There are 175 positions in which 1 or more 

Neandertals are different from all other sequences. In 4 positions the modern humans are 

identical to Neandertals although there are 1 or 2 Ancient H. sapiens positions identical to 

Neandertals. There are 11 positions in which 1 or more Ancient H. sapiens are different from all 

other sequences. There are 10 positions in which 1 to 3 Ancient H. sapiens are identical several 

modern humans.  
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 Single position cladograms of five representative polymorphic positions depict this 

pattern, which represents 10% of all polymorphic positions in the human mitochondrial genome. 

Here we show the pattern of position 2,706 (12S rRNA) (Fig. 1). The patterns of positions 1,018 

(12S rRNA gene), 3,010 (16S rRNA gene), 3,594 (NADH dehydrogenase 1 - ND1), 5,460 

(NADH dehydrogenase 2 – ND2) and 16,519 in D-loop are in the Supplementary data (figs. S1-

S5). It has been reported that mtDNA positions 3,010  and  5,460 contains a G to A transition 

associated with Cyclic Vomiting Syndrome (9–11) and Alzheimer's & Parkinson's Diseases (12, 

13) respectively (Table 1). It can be observed that the distribution of the clusters of modern 

human haplogroups with Neandertals vary among human haplogroups (Fig. 1).  

Haplogroup L3 is more related to Eurasian haplogroups than to the most divergent 

African clusters L1 and L2" (14). L3 is the haplogroup from which all modern humans outside of 

Africa derive. The distribution of Neandertal specific signatures along the mitochondrial genome 

is compiled in Fig. 2. Columns represent each individual gene and rows correspond to 

mitochondrial haplogroups. Intergenic regions, at the exception of the Control Region, or D-

loop, are not depicted because they are virtually absent in the human mitochondrial genome. 

Apart from the D-loop there is only one intergenic region, a 24bp segment between the end of 

COX2 and start of tRNA-Lys. This analysis reveals that the Neandertal specific signatures are 

more frequent in the African haplogroups (L0, L1, L2, L3, L4, L5 and L6), then South East 

Asians, Native Australians (M), Native Americans (C) and lastly in Europeans (U, X, W, K and 

H). Unexpectedly this pattern is the opposite as observed in the nuclear genomes. The Neandertal 

signatures are more frequent in the highly divergent D-loop and among coding regions, in 

NADH dehydrogenase subunit 4 (ND4) and Cytochrome B (CYTB) (Fig. 2). The 3’ half of the 

genome contains significantly more Neandertal signatures than the 5’ half. The central region of 

the mtDNA corresponds to a breakage-repair point where deletions occur (15). Therefore this is 

Neandertal signature 2706G shared with modern European haplogroups U5a7a2, H1a1, H3, H15 

and H2a2a1 (rCRS) but not with any of the Ancient H. sapiens sequences or the other modern 

haplogoups here analyzed. 

Principal component analysis (PCA) of the whole mitochondrial genome shows four 

clusters: (1) the modern haplogroups including the ancient H. sapiens (table S2), (2) the L 
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haplogroup cluster, (3) the Neandertal Altai-Mezmaskaya L-like cluster (table S3) and (4) the 

Neandertal group (Fig. 3). However the PCA of segment corresponding to the ribosomal RNA 

gene proximal half produces a pattern that approximates the L haplogroup cluster to the 

Neandertal Altai-Mezmaskaya L-like cluster suggesting the introgression point. The PCA of 

ribosomal RNA gene distal half suggests an opposite pattern with L cluster closer to Neandertal 

although not as close as shown in Fig. 3B. 

Several Neandertal signatures are associated with disease and in particular the 15,043 

G>A transition associated with major depression, a trait associated with Neandertal introgression 

in modern humans (16) (Table 1). Five Neandertal signatures correspond to SNPs associated 

with cycling vomiting syndrome with migraine, a condition known for its maternal inheritance 

(17) although never associated with Neandertal introgression (2) (Table 1). Also, among 21 

SNPs belonging to the MspI mutation associated with Caucasians (18) three are Neandertal 

signatures (table S4). These mitochondrial genome SNPs have been associated with variation in 

intelligence quotient (IQ) in positions 16,189, 16,278 and 16,298 and are the same SNPs found 

in Neandertals (table S4). 

It can be argued that the Neandertal signatures are in fact character states conserved since 

the last common ancestor of Neandertals and present day Homo sapiens (e.g. Homo erectus) but 

this would not be consistent with the absence of these signatures in ancient H. sapiens 

mitochondrial genomes (Fig. 1). Alternatively, the Neandertal signatures here described could be 

a consequence of random events. Because the random chance of the same nucleotide in a given 

position is 0.25 and there are 918 polymorphic positions in which 75 are Neandertal specific, it 

would roughly fit the 0.08 chance expectation. However, the chance that the 75 positions are 

simultaneously identical by chance alone would be roughly 0.25
75

 which is far less than observed 

here.  

A back to Africa hypothesis has been proposed in which humans from Eurasia returned to 

Africa and impacted a wide range of sub-Saharan populations (19). Our data shows that 

Neandertal signatures are present in all major African haplogroups thus confirming that the Back 

to Africa contribution to the modern mitochondrial African pool was extensive. 
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Our observations suggest that crosses between AMH males and Neandertal females left 

significantly less descendants than the reverse crosses (Neandertal males and AMH females), 

which seems to be the dominant pattern. Although it is generally accepted that recombination 

does not occur in the human mitochondrial genome there is a controversy over reported evidence 

on mitochondrial recombination (20, 21). A scenario with complete absence of recombination 

presents a problem to explain how the human mitochondrial genome would escape the Miller 

ratchet and therefore avoiding its predicted “genetic meltdown” (22). It has been shown that even 

minimal recombination is sufficient to allow the escape from the Miller ratchet (23) and this 

could be the case of the human mitochondrial genome. We tested potential recombination in our 

dataset using bootscan (fig. S6). The bootscan analysis indicates that there are potential 

recombination points. Upon deeper analysis we observed that bootscan considers the Neandertal 

specific signatures, such as in L haplogroups, as recombination points. Although the bootscan 

putative recombination segments are above the bootstrap threshold we do not consider this as 

definitive evidence of recombination since the segments between the Neandertal signatures are 

almost identical. Bootscan analysis did exclude Human-Neandertal recombintation in rCRS 

sequence (fig. S7). Sensivity of bootscan to substitution models and alignment methods was 

assessed by comparing the same set query-parentals with different parameters (fig. S8), revealing 

minor profile alterations. The alignment parameters are not so critical in this case because the 

sequences are extremely conserved (918 polymorphic positions in 16,565bp). Although indels 

are present in the alignments, 99% are located near the H promoter in the D-loop region. These 

are automatically excluded in phylogeny inference algorithms and therefore have no weight in 

bootscan results. The "positional homology" is therefore solid, particularly in coding domains 

and regions without repeats in non-coding domains. The Neandertal signatures are in 

unambiguously aligned segments. 

Our data is compatible with a scenario in which the AMH-Neandertal crosses occur in 

Europeans, East Asians and African lines of descent. However, in the African haplogroups the 

crosses between AMH males and Neandertal females would have a higher frequency than in 

European lines of descent, where the reverse crosses would be predominant. Based on the 

comparison of Neandertal signatures in nuclear and mitochondrial genome haplogroups we 

hypothesize that the African lines of descent would have a higher female Neandertal contribution 
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whereas European lines of descent would have higher male Neandertal contribution. The fact 

that AMH and Neandertals crossed and produced fertile descendants is evidence that they belong 

to the same species (4) and thus indicate that Homo sapiens emerged independently in Africa, 

Europe and Asia (24). The intercrosses of these three Homo sapiens subgroups, and other even 

deeper ancestors such as Denisovans, in its different proportions and specific signatures, 

produced the extant human genomes. 

Analyses presented here suggest that Neandertal genomic signatures might have been a 

product of rare mtDNA recombination events. Although there is evidence supporting mtDNA 

recombination its weight in phylogenies remain controversial. Some authors contend that due to 

its high mutation rate reverse compensatory mutations can be confounded with recombination in 

mtDNA. Our data supports a mtDNA recombination scenario in which recombination events are 

extremely rare thus producing a small number of Neandertal signatures. 

Materials and Methods 

Comparative analysis of the mitochondrial DNA from present day humans, ancient Homo 

sapiens and Neandertals, 52 sequences of modern human mtDNA, representing all major 

mitochondrial haplogroups (table S1), were selected from the PhyloTREE database (25) and 

downloaded from GenBank. Six ancient H. sapiens mtDNA and eight Neandertal mtDNA 

sequences were downloaded from GenBank (tables S1-S3). The Ust-Ishim sequence was 

assembled using reads downloaded from Study PRJEB6622 at the European Nucleotide Archive 

(EMBL-EBI) and assembled using the CLC Genomics Workbench 7 program 

(https://www.qiagenbioinformatics.com). To maintain the reference numbering, sequences were 

aligned to the revised Cambridge Reference Sequence (rRCS; GenBank accession number 

NC012920) (26), totalizing 68 sequences using the map to reference option implemented in 

Geneious 10 program (27). Variants were called using Geneious 10 program. A total of 918 

polymorphic positions were found. From this, 75 were present in both Neandertals and present 

day human and 4 in Neandertals, ancient and modern humans. 175 polymorphic positions were 

exclusive to Neandertal sequences and 11 were present only in ancient human sequences. The 

remaining changes were present only in modern humans. Variants present in either Neandertals 
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and modern humans or Neandertals, ancient and modern humans (79 positions) were screened 

for disease associations at MitoMap (http://www.mitomap.org/MITOMAP) (28). 

Position specific similarities between modern haplogroups and Neandertals were depicted 

by cladograms for each of the single 75 variant positions present only in Neandertals and modern 

humans and excluding Ancient H. sapiens, were generated using parsimony heuristic search 

implemented in PAUP v4.1a152 with the default parameters (29). Proximity of mitochondrial 

haplogoups in Ancient H. sapiens and Neandertals were inferred using Haplogrep 2.1.0 (30). 

Potential recombination between Neandertals and ancient H. sapiens sequences was 

inferred by a phylogenetic based method implemented by manual bootscan in the Recombination 

Detection Program (RDP) v.4.87. Parameters for bootscan analysis were: window size = 200; 

step size = 20; bootstrap replicates = 1,000; cutoff percentage = 70; use neighbor joining trees; 

calculate binomial p-value; model option = Kimura 1980 (31). For each analysis, a single 

alignment was created which included the modern haplogroup, all 9 Neandertal and all 6 Ancient 

H. sapiens sequences. When rCRS was used as query, two sets of possible parental sequences 

were selected: either Neandertals Mezmaiskaya and Altai and ancient H. sapiens Fumane and 

Ust Ishim or only Neandertals Feldhofer1, Mezmaiskaya and Vindija 33.16. For haplogroups 

L0d1a and L3d3b possible parental sequences were Neandertals Feldhofer1, Mezmaiskaya and 

Vindija 33.16 and Ancient H. sapiens Kostenki 14, Fumane, Doni Vestonice 14 and Tianyuan. 

For haplogroups M29a and R0a possible parental sequences were Neandertals Mezmaiskaya and 

Altai and Ancient H. sapiens Kostenki 14 and Doni Vestonice 14. For haplogroup N1b1a3 

possible parental sequences were Neandertals Feldhofer1 and Vindija 33.16 and Ancient H. 

sapiens Kostenki 14 and Doni Vestonice 14. 

Variants calling and Principal Component Analysis of mitogenomes. Three different 

datasets were used for the variant calling: (1) the whole mitogenome from the 68 sequences 

alignment; (2) the 128 to 315bp fragment and (3) the 6,950 to 7,660 fragment of the same 

alignment. All fasta alignments were processed using the MSA2VCF software to generate the 

VCF files (32). The options used on msa2vcf were: --haploid --output. To convert the VCF files 

to Plink format we used the vcftools package (33). Whole mitogenome alignment with 68 
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sequences had 785 SNPs (positions containing gaps in at least one sequence were excluded from 

the analysis). Both 128 – 315 and 6,950-7,660 fragments had 24 SNPs. 

 Principal component analysis was performed using the PLINK software v1.90b4 (34). 

PCA figure plotting was made using Genesis PCA and admixture plot viewer 

(http://www.bioinf.wits.ac.za/software/genesis/). The first two principal components were 

chosen for the Neandertal - H. sapiens comparison. 
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Table 1. Neandertal signatures in human mitochondrial genomes associated with disease. BD = 

Bipolar disorder, AD = Alzheimer`s disease, PD = Parkinsons`s disease, DM = Diabetes 

Mellitus. Disease associated information was obtained from MITOMAP 

(http://www.mitomap.org/MITOMAP) (28). References of SNPs disease associations in Table 1 

are in Supplementary Data (42-131). (*) indicate signatures shared with only one Ancient H. 

sapiens sample.  

(Table in next page). 
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Position 195 3,010 5,460 5,821 10,398 15,043 16,093 16,129* 16,183 16,189* 16,519 

Region / gene D-loop 16S rRNA ND2 tRNA-Cys ND3 CYTB D-loop D-loop D-loop D-loop D-loop 

DNA change T > C G > A G > A G > A A > G G > A T > C G > A A > C T > C T > C 

Type Transition Transition Transition Transition Transition Transition Transition Transition Transversion Transversion Transition 

Codon position - - 1 - 1 3 - - - - - 

Codon effect 
- - 

Non 

synonymous 
- 

Non 

Synonymous 
Synonymous - - - - - 

Codon change - - GCC > ACC - ACC > GCC GGG > GGA - - - - - 

Protein change - - Ala > Ter - Thr > Ala No change - - - - - 

Disease associations Bipolar 

disorder / 

melanoma 

patients 

Cyclic 

Vomiting 

Syndrome with 

Migraine 

Alzheimer`s 

disease / 

Parkinson`s 

disease 

Deafness 

helper 

mutation 

Invasive Breast 

Cancer risk 

factor; AD; PD; 

BD lithium 

response; Type 

2 DM, PD 

protective factor 

/ longevity / 

altered cell pH / 

metabolic 

syndrome / 

breast cancer 

risk 

Major 

depressive 

disorder 

Cyclic 

Vomiting 

Syndrome 

Cyclic 

Vomiting 

Syndrome with 

Migraine 

Melanoma 

patients 

Diabetes / 

Cardiomyopathy / 

Endometrial 

cancer risk / 

mtDNA copy 

number / 

Metabolic 

Syndrome / 

Melanoma 

patients / Cyclic 

Vomiting 

Syndrome with 

Migraine / 

metastasis  

Cyclic Vomiting 

Syndrome with 

Migraine 

/metastasis / 

glioblastoma, 

gastric, lung, 

ovarian, prostate 

tumors 

Modern haplogroups L2a1f, 

L4a1, 

L5a1a, 

L6a, W1, 

K, J2a2a, 

M2b 

H1a1, J1c, D4 L0a1b1, L4a1, 

W1, Q1 

C7 L0a1b1, L1c3a, 

L2a1f, L3d3b, 

L4a1, L5a1a, 

L6a, J1c, I1, 

J2a2a, K, K1, 

C1a, C4, C7, 

D4, E1, G1a1, 

M20, M29a, 

M2b, M3b, 

M8a1, M9a, Q1, 

Y1, Z1 

U6a7a2, 

U1a1d, I1, C1a, 

C4, C7, D4, 

E1, G1a1, 

M20, M29a, 

M2b, M3b, 

M8a1, M9a, 

Q1, Z1 

L4a1, R0a, 

K1, H3, 

T1, A, C1a 

L0a1b1, 

L1c3a, L5a1a, 

I1, F1a1, M20, 

N9a1, Q1, 

Oberkassel* 

X1a, X3, 

U1a1d, B2, 

M2b, M29a, O 

L0a1b1, L1c3a, 

L2a1f, L5a1a, T1, 

U1a1d, X3, X1a, 

R0a, O, M29a, 

M2b, B2, 

Tianyuan* 

L1c3a, L2a1f, 

L6a, H15, H1a1, 

H3, I1, K, K1, 

K2a2a, R0a1a3, 

R1a, U2c, V1a, 

W1, X1a, X3, 

B2, C4, C7, E1, 

F1a1, G1a1, 

M20, M29a, 

M2b, M3b, 

N1b1a3, N2a, 

O, P2 

Neandertal Altai  Altai  Altai  Altai  Altai  Altai  Feldhofer1 Altai  El Sidron 1253 El Sidron 1253 Altai  

  El Sidron 1253 El Sidron 1253 El Sidron 1253 Vindija 33.16 El Sidron 1253 Vindija 

33.25 

Feldhofer 1 Feldhofer 1 Feldhofer 1 El Sidron 1253 

  Feldhofer 1 Feldhofer 1 Feldhofer 1 Vindija 33.17 Feldhofer 1  Feldhofer 2 Feldhofer 2 Feldhofer 2 Feldhofer 1 

  Feldhofer 2 Feldhofer 2 Feldhofer 2 Vindija 33.19 Feldhofer 2  Mezmaiskaya1 Mezmaiskaya1 Mezmaiskaya1 Feldhofer 2 

  Mezmaiskaya1 Mezmaiskaya1 Mezmaiskaya1 Feldhofer 1 Mezmaiskaya1  Vindija 33.16 Vindija 33.16 Vindija 33.16 Mezmaiskaya1 

  Vindija 33.16 Vindija 33.16 Vindija 33.16 Feldhofer 2 Vindija 33.16  Vindija 33.17 Vindija 33.17 Vindija 33.17 Vindija 33.16 

  Vindija 33.17 Vindija 33.17 Vindija 33.17 El Sidron 1253 Vindija 33.17  Vindija 33.19 Vindija 33.19 Vindija 33.19 Vindija 33.17 

  Vindija 33.19 Vindija 33.19 Vindija 33.19 Vindija 33.25 Vindija 33.19  Vindija 33.25 Vindija 33.25 Vindija 33.25 Vindija 33.19 

    Vindija 33.25 Vindija 33.25 Vindija 33.25 Mezmaiskaya1 Vindija 33.25         Vindija 33.25 
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Fig. 1. Cladogram of mitochondrial genome position 2,706 (in the 16S rRNA gene) depicting the 

character states (G and A) in the respective clusters. This genetic signature (Neandertal signature 

2706G) is present in all Neandertal sequences (Red branches) and in European haplogroups U 

(U5a7a2) and H (H1a1, H3, H15), including the Revised Cambridge Reference Sequence (rCRS, 

haplogroup H2a2a1). The Neandertal signature 2706G is absent in all of the Ancient H. sapiens 

(Anatomically Modern Humans from Europe in temporal overlap with Neandertals - Blue 

branches) and other modern mitochondrial haplogroups. Position numbering corresponds to 

rCRS positions. 
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Fig. 2. Distribution heatmap of Neandertal signatures along the mitochondrial genome in 

different haplogroups. The color scale indicates the number of Neandertal signatures present in 

modern human mitochondrial haplogoups. These signatures are absent in Ancient H. sapiens 

whose time range overlapped with Neandertals in Europe (from approximately 50,000 to 28,000 

years ago, Supplementary Table S2). AFR=African, ASI=Asian, MDE=Middle East, 

NAM=Native American, OCE=Oceania and EUR=European. 
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Fig. 3. Principal Component Analysis (PCA) of Human and Neandertal mitochondrial genomes. 

In (A) PCA results for 68 mitogenomes using 9 Neandertals (green square for H-like sequences 
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and purple square for L-like sequences), 6 Ancient H. sapiens (blue circle) and 53 modern H. 

sapiens haplogroups (red triangle). X-Axis denotes the value for PC1, while y-Axis denotes 

values for PC2. Each dot in the figure represents one or more individuals. In (B) PCA results for 

the 128 to 315 segment extracted from the 68 mitogenome alignment. Sequences were 9 

Neandertals (green square for H-like sequences and purple square for L-like sequences), 6 

Ancient H. sapiens (blue circle) and 53 modern H. sapiens haplogroups (red triangle). X-Axis 

denotes the value for PC1, while y-Axis denotes values for PC2. Each dot in the figure represents 

one or more individuals. In (C) PCA results for the 6,950 to 7,660 segment extracted from the 68 

mitogenome alignment. Sequences were 9 Neandertals (green square for H-like sequences and 

purple square for L-like sequences), 6 Ancient H. sapiens (blue circle) and 53 modern H. sapiens 

haplogroups (red triangle). X-Axis denotes the value for PC1, while y-Axis denotes values for 

PC2. Each dot in the figure represents one or more individuals. 
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Supplementary data 

Table S1. Accession numbers of present day H. sapiens mitogenomes used in this study. 

Haplogroup - Present-day H. sapiens from Phylotree data base (25) Genbank number 

L0a1b1 AF381988 

L1c3a AF381992 

L2a1f AY195776 

L3d3b AF381998 

L4a1 FJ460531 

L5a1a DQ341060 

L6a EU092773 

N1b1a3 AY195756 

N9a1 HM589048 

N2a JF904935 

A AP013225 

B2 EF648602 

F1a1 NA17963 

M29a DQ137407 

M2b EU443512 

M3b FJ383523 

M8a1 KF148510 

M9a HM346891 

M20 JX289112 

G1a1 HM460792 

E1 KF540505 

D4 JQ704974 

C1a EU007858 

C4 FJ951604 

C7 FJ951594 

P2 AY289088 

S1 AF346963 

Q1 AY289090 

Z1 AY519493 

O AY289059 

Y1 KF540727 

R0a JX153281 

R0a1a3 GU592021 

R1a KC985147 

I1 JQ245776 

W1 EU558696 

X1a EU600318 

X3 EF177437 

U1a1d EF692533 

U2c AY714010 

U6a7a2 AF382008 

K AF382005 

K1 EU073969 

K2a2a EU327986 

H1a1 EU007858 

H3 EU150187 

H15 KC911292 

J1c EU547187 

J2a2a EF660967 

T1 JQ797976 

V1a JQ702026 

V2 JQ703647 
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Table S2. Accession numbers, dating and references of Ancient H. sapiens mitogenomes 

used in this study. Oberkassel998 haplogroup full designation is U5b1+16189+@16192. 

W. Siberia = West Siberia, Czech Rep. = Czech Republic. Quality % is the quality of 

haplogroup inference as calculated by Haplogrep 2 program (30). *=The Ust-Ishim 

sequence was assembled using reads downloaded from Study PRJEB6622 at the European 

Nucleotide Archive (EMBL-EBI) and assembled using the CLC Genomics Workbench 7 

program (https://www.qiagenbioinformatics.com/). 

Ancient H. 

sapiens 

Genbank/ENA* Age 

(years) 

Location Haplogroup Quality 

% 

Reference  

Ust-Ishim PRJEB6622* 45,000  W. Siberia R 87.89 (35)  

Fumane 2 KP718913 41-39,000  Italy R 94.43 (35)  

Tianyuan KC417443 40,000  China B4'5 91.17 (35, 36)  

Kostenki 14 FN600416 39-36,000  Russia U2 92.69 (35)  

Doni Vestonice 

14 

KC521458 31,000  Czech 

Rep. 

U5 100 (35, 37)  

Oberkassel998 KC521457 14,000  Germany U5b1+ 99.45 (35)  

 

 

Table S3. Accession numbers, dating and references of Neandertal mitogenomes used in 

this study. Quality % is the quality of haplogroup inference as calculated by Haplogrep 2 

program (30). 

H. Neandertalensis Genbank  Age (years) Location Haplogroup Quality % Reference  

Mezmaskaya 1 FM865411 65,000  Russia L1'2'3'4'5'6 55.12 (35, 38)  

Altai KC879692 50,000  Siberia L1'2'3'4'5'6 55.96 (3)  

Feldhofer 1 FM865407 40,000  Germany H1as 52.84 (38)  

Feldhofer 2 FM865408 40,000  Germany H1e 52.81 (38)  

El Sidron 1253 FM865409 39,000  Spain H1e 52.81 (35, 38)  

Vindija 33.16 AM948965 38,000  Croatia H1e 52.74 (39)  

Vindija 33.17 KJ533544 Not dated  Croatia H1e 52.75 (40)  

Vindija 33.19 KJ533545 Not dated  Croatia H1e 52.74 (40)  

Vindija 33.25 FM865410 Not dated  Croatia H1as 52.84 (38)  
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Table S4. Neandertal genomic signatures associated with variation in intelligence quotient 

(IQ) (41).  

Position Sequences Change 

16,189 O, M29a, M2b, B2 (Asian) 

T1, U1a1d, X3, X1a, R0a (European) 

L0a1b1, L1c3a, L2a1f, L5a1a (African)  

Vindija 33.16, Vindija 33.17, Vindija 33.19 (Neandertals)  

Vindija, 33.25, Feldhofer 1, Feldhofer 2  (Neandertals) 

Mezmaiskaya 1 (Neandertal) 

Tianyuan (Ancient H. sapiens) 

T > C 

 

16,278 L0a1b1, L1c3a, L2a1f, L5a1a, L6a (African) 

X3, U2c (European) 

P2 (Asian) 

All Neandertals 

C > T 

16,298 V1a, V2 (European) 

M8a1, C1a, C4, C7, Z1 (Asian)  

Altai Neandertal 

T > C 
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Fig. S1. Cladogram of position 1,018 in the 12S rRNA gene (Neandertal signature 1018A). 

This SNP is a transition (A-G) present in all of the Archaic H. sapiens sequences (Blue) but 

ansent in all Neandertal sequences (Red) and modern African haplogoups L5, L6 and 

European haplogroups W, Y, K, T, N, G and S. 
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Fig. S2. Cladogram of position 3,010 in 16S rRNA gene (Neandertal signature 3010A). 

This SNP is a transition (A-G) present in all of the Archaic H. sapiens sequences (Blue) but 

absent in all Neandertals (Red) the European haplogroup H, Middle Eastern haplogroup J 

and the Asian haplogroup D.  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190363doi: bioRxiv preprint 

https://doi.org/10.1101/190363


 

Fig. S3. Cladogram of position 3,594 in the NADH dehydrogenase 1 (ND1) gene 

(Neandertal signature 3594T). This SNP is a T-C transition in the third codon position 

leading to the synonymous codon change GTT>GTC. This SNP is present in all of the 

Archaic H. sapiens sequences (Blue) but is not present in Neandertals (Red) and African 

haplogroups L0, L1, L2, L5 and L6. 
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Fig. S4. Cladogram of position 5,460 in NADH dehydrogenase 2 (ND2) gene (Neandertal 

signature 5460A). This transition (A-G) in the first codon position leads to a non-

synonymous codon change ACC>GCC causing the amino acid change Thr>Ala. This 

transition is present in all Archaic H. sapiens sequences (Blue) but absent in all Neandertal 

sequences (Red) and in modern haplogroups L0, L4 (African), W and Q 
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Fig. S5. Cladogram of position 16,519 in the D-loop (Neandertal signature 16519C). This 

SNP is a transition (C-T) present in all of the Archaic H. sapiens sequences (Blue) but 

absent in all Neandertals (Red) the European haplogroups U, K, X, W, I, V, H, African 

haplogroups L1, L2, L6 and Asian haplogroups N, F, B, M, G, E, C, P and O. 
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Fig. S6. Bootscan analysis of different modern haplogroups as queries and Ancient H. 

sapiens or Neandertals as putative parental sequences. 
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Fig. S7. Bootscan analysis of the rCRS sequence (haplogroups H2a2a1) using Ancient 

H.sapiens and Neandertals as putative parentals. 
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Fig. S8. Bootscan/RDP analysis of haplogroup L0d1a showing the consistency of the 

recombination profile regardless the alignment algorithm or bootscan model option. (A) 

Map to reference aligment and Felsenstein model on bootscan; (B) MAFFT alignment with 

Kimura two parameters model on bootscan; (C) Map to reference aligment and Kimura two 

parameters model on bootscan (same as panel A in figure S6). Neandertal sequences from 

haplogroup L (black line) and haplogroup H (blue line) and Ancient H. sapiens from 

haplogroup R (green line),  haplogroup U (red line) and haplogroup B (orange line) were 

used as parentals. Neandertal sequences were Feldhofer 1, Mezmaiskaya and Vindija33_16 

and ancient H. sapiens sequences were Kostenki, Fumane, Doni Vestonice 14 and 

Tianyuan. 
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