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ABSTRACT  20 

Due to improved instrument sensitivity and access, the use of metabolomics is gaining 21 

traction for the study of many organisms and pathogens. For the intracellular malaria 22 

parasite, Plasmodium falciparum, both targeted and untargeted metabolite detection 23 

has improved our understanding of pathogenesis, host-parasite interactions, parasite 24 

response to antimalarials, and impacts of resistance. However, protocols for purification 25 

are not optimized for investigations of intracellular pathogens and noise-limiting analysis 26 

parameters are not well defined. To explore influential parameters, we purified a diverse 27 

set of in vitro grown intra-erythrocytic P. falciparum parasites for untargeted 28 

metabolomics studies. Following metabolite identification, data processing included 29 

normalization to double stranded DNA, total protein, or parasite number to correct for 30 

different sample sizes and stage differences. We found that parasite-derived variables 31 

were most appropriate for normalization as they separate sample groups and reduce 32 

noise within the data set. However, these post-analysis steps did not remove the 33 

contribution from the host erythrocyte, in the form of membrane rich ‘ghosts’, and levels 34 

of technical sample variation persisted. In fact, we found that host contamination is as 35 

influential on the metabolome as sample treatment. This analysis also identified 36 

metabolites with potential to be used as markers to quantify host contamination levels. 37 

In conclusion, purification methods and normalization choices during the collection and 38 

analysis of untargeted metabolomics heavily affect the interpretation of results. Our 39 

findings provide a basis for development of improved experimental and analytical 40 

methods for future metabolomics studies of P. falciparum and other intracellular 41 

organisms.  42 
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Importance: Molecular characterization of pathogens, such as the malaria parasite, can 43 

lead to effective treatment strategies and improved understanding of pathogen biology. 44 

However, the distinctive biology of the Plasmodium parasite, such as its repetitive 45 

genome and requirement of growth within a host cell, hinders progress towards this 46 

goal. Untargeted metabolomics is one promising approach to learn about pathogen 47 

biology and how it responds to different treatments. By measuring many small 48 

molecules in the parasite at once, we gain a better understanding of important pathways 49 

that contribute to this response. Although increasingly popular, protocols for parasite 50 

isolation from the host cell and various analysis options are not well explored. The 51 

findings presented in this study emphasize the critical need for improvements in these 52 

areas to limit misinterpretation due to host metabolites and correct for variations 53 

between samples. This will aid both basic biological investigations and clinical efforts to 54 

understand important pathogens. 55 

 56 

Introduction 57 

Malaria continues to be responsible for hundreds of thousands of deaths annually, most 58 

of which result from infection with the protozoan parasite, Plasmodium falciparum (1). 59 

Characterization of the biology of this important pathogen can lead to improved 60 

treatment strategies. The molecular mechanisms behind interesting P. falciparum 61 

phenotypes are challenging to understand due to a lack of traditional methods of 62 

investigation in this organism, such as forward and reverse genetics. Unbiased ‘omics 63 

approaches (transcriptomics and proteomics) are widely used but the limited annotation 64 

of the parasite genome makes these data sets challenging to interpret. One way to 65 
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alleviate this lack functional knowledge is to use network-based modeling to facilitate 66 

data interpretation (2). Additionally, the measurement of direct mediators of the 67 

phenotype, such as metabolite reactants and products of enzymatic reactions, can 68 

improve our ability to make predictions about cellular function under certain conditions. 69 

For this reason, metabolomics is becoming increasingly popular to study P. falciparum 70 

(3-12). These studies have allowed for a greater understanding of malaria pathogenesis 71 

(13), strain-specific phenotypes (11), and host-parasite interactions (9). Although 72 

metabolomics can successfully identify metabolic signatures that correlate well with 73 

biological function, such as time- and dose-dependent response to antimalarial 74 

treatment (3, 5) and resistance-conferring mutations (12), there are distinct challenges 75 

that need to be considered when performing metabolomic studies in P. falciparum.  76 

Challenges such as host contamination, limited parasite yield, and parasite 77 

stage-specificities arise due to certain properties of this organism (see Table 1). For 78 

example, experimental samples typically have few parasites and abundant host 79 

material. One contributing factor is that parasitemias are limited during in vitro culture 80 

and clinical infections (<5% or five infected erythrocytes per 100 total (14, 15)). 81 

Additionally, P. falciparum is an intracellular parasite during the asexual cycle in the 82 

human blood stream; the host erythrocyte accounts for up to a 10-fold more cellular 83 

material over early state parasites (16, 17). Due to our ability to enrich for late stage 84 

parasites using magnetic purification (18), the study of the larger later stage parasite 85 

has historically allowed for efficient genomic, transcriptomic and proteomic analysis of 86 

parasite biology. These stages have typically been thought of as more metabolically 87 

active than the early stage parasites due to increased activity of well-studied cellular 88 
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pathways, including robust hemoglobin degradation (19), nuclear genome replication, 89 

and protein synthesis (20, 21). The study of the smaller early stage of the parasite is 90 

particularly hard to achieve due to difficulty isolating adequate amounts of parasite 91 

material as a result of few effective enrichment methods (22). Thus, studies must be 92 

designed in a manner to overcome these challenges, limiting sample-to-sample 93 

variation and optimizing metabolite recovery (i.e. total number of metabolites detected).  94 

In this study, we sought to define critical parameters that would help overcome 95 

these challenges and allow the collection of high quality metabolomics data.  We show 96 

that diverse sample groups can be differentiated, but the choice of analytic parameters 97 

for data processing and host cell contamination both heavily influence the parasite 98 

metabolome. In particular, we investigated normalization approaches to assess the 99 

impact of host contamination and found that the adjustment to parasite-derived 100 

variables better remove sample noise.  However, even appropriate normalization fails to 101 

remove host noise completely, as host contamination is as influential on metabolome as 102 

sample treatment. Thus, we propose that the combination of improved purification and 103 

analytic parameters will generate more accurate measures of the metabolome, 104 

increasing the utility of unbiased metabolomics to investigate intracellular parasite 105 

biology.   106 

 107 

RESULTS 108 

Parasite sample groups are metabolically distinct 109 

To ensure our metabolomics approach can identify obvious differences in sample 110 

groups, we compared parasite groups that differed in stage, origin, and growth 111 
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conditions (Fig. 2A). Distinct purification procedures were used for preparation of each 112 

sample group (see Materials and Methods and Fig. 1), resulting in different amounts of 113 

parasite material (Fig. 2B, Table S1).  Replicates of sample group 1, which were merely 114 

lysed from host cells with a mean parasitemia of 1.14%, contained between 1.3-6.9 x 115 

106 total parasites. Sample group 2 was enriched for late stage parasites using 116 

magnetic purification to a mean parasitemia of 53.6% (Table S1). These replicates 117 

contained between 4.7 x 107 to 6.7 x 108 total parasites (up to 100-fold more individual 118 

parasites). Despite these differences, mean protein abundance was insignificantly 119 

different across replicates of each sample group and was more variable in sample 120 

group 2 (group 1 SD: 12.7, group 2 SD: 38.2, see supplementary information for code 121 

and Fig. 2B).  Sample group 1 had a mean of 115.3 µg/ml of protein, and sample group 122 

2 had a mean value of 107.6 µg/ml. Cell number and DNA abundance are positively 123 

correlated, as expected (r = 0.8037, p-value = 0.00002, Fig. 2B); these values are not 124 

perfectly correlated because the late stage parasites in sample group 2 are actively 125 

replicating DNA, and, thus, have increased and variable genome copy number per cell. 126 

Protein does not correlate with parasite number or DNA abundance (data not shown, 127 

see supplementary information for code). 128 

We conducted metabolomics on the samples described above (Fig. 1). Cultured 129 

parasites were lysed from host erythrocytes and analyzed via UPLC-MS. In comparison 130 

1, we detected 375 total metabolites that were annotated by Metabolon, Inc.; 143 of 131 

these were detected in every sample and represented 10 energy associated 132 

metabolites, 159 lipid species, 108 peptides and amino acids, 40 nucleotides, 28 133 

cofactors, 20 carbohydrates, and 10 others (Fig. 2C).  Samples from group 1 contained 134 
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between 182-242 metabolites while those from group 2 contained between 267-368 135 

metabolites (Fig. 2C). Fifteen metabolites are found in every group 1 sample, but not all 136 

group 2 samples, and 111 metabolites are found in every group 2 sample but not all 137 

group 1 samples. Thus, distinct samples, due to parasite origin, stage, growth 138 

conditions, and purification differences, have distinct metabolomes. 139 

 140 

Normalization parameters influence sample variation  141 

Normalization methods can influence results (23), but have not been explored in the use 142 

of metabolomics for Plasmodium nor other intracellular pathogens. To explore the 143 

importance of various normalization approaches, we performed principal component 144 

analysis with all sample metabolomes using either unnormalized data or three 145 

normalization methods: quantification of parasite number, double stranded DNA, and 146 

total protein amount. Each normalization method yields distinct principle component 147 

structures and clearly separates sample groups (Fig. 2D). In all cases, principle 148 

component (PC) 1 primarily represents between group variation, and PC2 represents 149 

within group variation (Fig. 2D). Without normalization, PC 1 and 2 summarize 78.4% of 150 

sample variation. These principal components from parasite number and DNA 151 

normalization summarize 87.7 and 80.6% of sample variation, respectively. With protein 152 

normalization, 79.1% of variation is summarized. PC2 tends to separate sample group 1 153 

better than those samples within group 2 (Fig. 2D). 154 

The metabolites that most contribute to group or sample variation are not the 155 

same with each normalization approach (Table S2). Thus, metabolome differences 156 

between groups are dependent on normalization approach.  Yet, there are several 157 
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striking trends across analyses. For example, the PC structure following protein 158 

normalization closely mimics that of the unnormalized data and, similar metabolites 159 

contribute to PC1 and PC2 in both analyses. Sphingomyelin species contribute to within 160 

group variation (PC2), and orotidine and dipeptides contribute to between group 161 

variation (PC1; Table S2). Upon DNA or parasite number normalization, phenylalanine, 162 

tryptophan, leucine, putrescine, and sedoheptulose 7-phosphate contribute to PC2, or 163 

within group variation (Table S2).  Contrary to protein amount (see Discussion), DNA 164 

and parasite number normalization are parasite-derived and, thus, these two 165 

measurements are preferable for normalization. The choice of which parasite-derived 166 

variable to use for normalization should be based on the experimental question.  167 

Accordingly, we normalize to parasite number during our subsequent comparison of 168 

sample groups 1 (early stage) and 2 (late stage; see Fig. 2); normalization to DNA 169 

amount would not be appropriate because these different stages have known genome 170 

copy number differences (late stage parasites are actively replicating their DNA, 171 

whereas ring stage parasites are haploid). Furthermore, we normalize to DNA content 172 

during our subsequent comparison within a group (i.e. replicates of samples group 1, 173 

see Fig. 3). In this case, normalization to this parasite variable is more appropriate 174 

because these measurements are collected immediately prior to mass spectrometry 175 

metabolite processing (Fig. 1) in our experimental design and are the most 176 

representative of analyzed samples. 177 

 178 

Remnants of the erythrocyte host contribute to metabolite pool 179 

Beyond comparing the metabolomes of artificially distinct samples groups, we explored 180 
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the metabolic changes induced by antimalarial treatment. We collected metabolomics 181 

from treated and untreated early stage parasites that were identical in growth conditions 182 

and purification approach, and were matched for blood batch (Fig. 3A, Table S1, see 183 

Materials and Methods for group 1). Following data processing, the metabolomes of 184 

antimalarial treated and untreated parasites fail to cluster via PCA (Fig. 3B). 185 

Accordingly, univariate statistical analysis revealed no differentially abundant 186 

metabolites between treated and untreated samples (see supplemental information for 187 

code).  188 

When considering possible explanations for this result, microscopy revealed that 189 

parasites lysed from host cells remain embedded in erythrocyte membranes and 190 

washes fail to isolate parasite material (Fig. 3C). This result emphasized that 191 

erythrocyte ‘ghosts’ (cell membranes with associated metabolites) remain abundant in 192 

the sample and heavily contribute to the metabolome (see Discussion).  In fact, 193 

univariate statistical analysis only revealed one metabolite with increased abundance in 194 

one blood batch (1-arachidonoyl-GPE; see supplemental information for code). Thus, 195 

the metabolome is likely influenced by both blood batch and antimalarial treatment, with 196 

the noise induced by each variable overshadowing group differences. 197 

To further explore the host contribution to the metabolome, we built two Random 198 

Forest classifiers to identify metabolites that are associated with either erythrocyte 199 

ghosts or antimalarial treatment. We first built a classifier to predict blood batch in early-200 

stage parasites (Fig. 3A). These samples likely have large host contribution due to the 201 

inability to enrich for erythrocytes infected with early stage parasites. Ninety-five 202 

metabolites (of 298), including AMP, ADP-ribose, aspartate, and sphingosine improved 203 
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classifier accuracy in predicting blood batch (most influential depicted in Fig. 3D, see 204 

supplemental information for code); the remaining metabolites had no effect on 205 

classifier performance or worsened its predictive capabilities, indicating they are not 206 

associated with blood batch due to high variability or association with other features that 207 

differentiate samples.  This classifier predicted blood batch with a 30% error rate. Thus, 208 

a subset of the measured metabolome was predictive of blood batch. 209 

To determine if blood batch is as influential on metabolome as antimalarial 210 

treatment, we built a similar classifier to predict treatment within early stage samples 211 

(Fig. 3A). Early stage parasites were classified into two treatment conditions with a 30% 212 

class error rate. One hundred and eighteen metabolites (of 298) improved classification 213 

accuracy (see most influential in Fig. 3E, and supplemental information for code), 214 

including pipecolate and several dipeptides. Thus, sample metabolome can classify 215 

both blood batch and sample group, indicating sample treatment and blood batch 216 

influence the metabolome.  217 

 218 

DISCUSSION 219 

Here, we explore metabolomics methods used in in vitro study of intraerythrocytic P. 220 

falciparum. The parasite’s intracellular lifestyle introduces challenges in implementing 221 

traditional protocols, predominately due to limited amounts of parasite material and host 222 

metabolite contamination. In our study, we sought to determine critical parameters for 223 

the collection of high quality metabolomics data despite these challenges. In particular, 224 

we investigated normalization approaches and conducted a detailed assessment of the 225 

impact of host contamination. Overall, we found that only parasite-derived variables are 226 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190421doi: bioRxiv preprint 

https://doi.org/10.1101/190421
http://creativecommons.org/licenses/by/4.0/


Influential parameters for P. falciparum metabolomics 11 

best suited to use during normalization. Despite these analytic approaches, host noise 227 

permeates the analysis, as host contamination is as influential on metabolome as 228 

antimalarial treatment. Thus, improvements in both purification and analytic parameters 229 

must be combined to generate accurate metabolomes and increase our ability to learn 230 

more about the parasite’s biology.   231 

Normalization of metabolite levels aims to limit technical or non-biological 232 

variation, thus enhancing interpretation of results. Normalization can be calculated by a 233 

variety of methods and is implemented either before or after analysis (Table 1 (24, 25)). 234 

Often, pre-analysis normalization is conducted by isolating the same number of cells for 235 

analysis (26) but this is not typically used in the study of P. falciparum as generating 236 

adequate biomass can be challenging. Furthermore, sample adjustments following the 237 

use of inaccurate quantification methods may introduce more variability. Post-analysis 238 

normalization methods are also routinely used; these include the use of internal 239 

standards (25, 27), corrections for protein amount (often used for supernatant or cell-240 

free metabolomics (28)), DNA content (an approach validated in mammalian cells (29)), 241 

or cell number (typically used for bacterial populations (30)).  A common approach used 242 

in the study of P. falciparum involves an uninfected erythrocyte control to adjust for the 243 

presence of host metabolites (7, 10, 27, 31-33). However, use of this control without 244 

other forms of normalization led to the misattribution of host metabolites to the parasite 245 

(34). Selecting the correct method of normalization in P. falciparum metabolomics 246 

studies is essential to ensure that parasite-derived metabolites, and not host-derived 247 

metabolites, are measured and interpreted to make conclusions.  248 

We explore three post-analysis normalization approaches: protein, DNA, and 249 
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parasite number. We argue the host erythrocyte heavily contributes to protein 250 

abundance, and, thus, this metric is not solely parasite-derived. In our analysis, this was 251 

most clearly observed when comparing protein abundances between our sample 252 

groups (Fig. 2B). We expected a proportional increase in protein amount as parasite 253 

size increases throughout the intraerythrocytic life cycle (from sample group 1 to 2; early 254 

to late stage); however, this increase was not detected, implicating host erythrocyte 255 

contribution.  Furthermore, heavy host contamination explains the observations that 1) 256 

there is an increased level of protein variability in group 2 (explained by the wider range 257 

in parasitemia level and thus host erythrocyte contribution, Table S1), 2) host/media 258 

metabolites such as kynurinine, phenol red, and HEPES were detected in this analysis 259 

(see below and supplemental data), and 3) protein normalization minimally changes the 260 

PCA data structure and top contributing metabolites (Fig. 2D and Table S2).  261 

In sharp contrast, total DNA amount and parasite count are entirely parasite-262 

derived; mature uninfected erythrocytes are anucleated, without detectable DNA (35), 263 

and are excluded when determining parasite count (see Materials and Methods). When 264 

metabolites were evaluated following DNA and parasite count normalization, more 265 

nuclear material and total parasites were observed in later stages (group 2, Fig. 2B). 266 

These data are not surprising, as late-stage parasites are known to amplify DNA 267 

content up to twenty times during their asexual life cycle (36). A greater cell count in late 268 

stage samples can be attributed to the higher parasitemia that is achieved through 269 

magnetic purification of late stage trophozoites and schizonts (37). To our knowledge, 270 

normalization to parasite-derived material has not been described in detail in previous 271 

metabolomics studies of P. falciparum. We propose that similar to studies in Leishmania 272 
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(38-40), normalization to parasite-derived measurements should become standard 273 

during metabolomics analysis of these intraerythrocytic parasites (Table 1). 274 

Clearly, parasite-to-parasite sample variation can influence metabolomics data, 275 

but we also found host erythrocyte material can heavily impact a sample’s metabolome. 276 

Many studies employ erythrocyte lysis prior to sample purification ((8, 32) and our 277 

current study, see Materials and Methods). However, this approach does not eliminate 278 

the potential for host contamination; host membrane fragments devoid of internal 279 

components, colloquially referred to as erythrocyte “ghosts,” remain in purified samples 280 

(Fig. 3C). Despite this concerted effort to limit host metabolites through lysis, our 281 

studies support heavy erythrocyte contribution to the P. falciparum metabolome. 282 

Several metabolites were detected in group 1 and 2 metabolomes that have not 283 

previously been measured as produced or consumed in Plasmodium. For example, 284 

kynurenine is known to be present in erythrocytes and is derived from the amino acid L-285 

tryptophan (41, 42). Although no known production or consumption has been reported 286 

in the parasite, kynurenine was detected in 13 of our 30 samples, most frequently in the 287 

group 2 (late stage parasites, see supplemental data). This finding indicates some 288 

metabolites may be from the host, not the parasite, or the parasite has greater 289 

metabolic capabilities than previously understood. Similarly, media components such as 290 

phenol red (phenolsulfonphthalein) and HEPES (4-(2-hydroxyethyl)-1- 291 

piperazineethanesulfonic acid) were measured in parasite metabolomes (see 292 

supplemental data). Neither are produced or consumed by the parasite but likely 293 

remained associated with our cells following in vitro culture in media that contains these 294 

metabolites (i.e. RPMI, see Materials and Methods). The abundance of phenol red and 295 
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HEPES, as well as cholesterol (a metabolite excluded from parasite membranes (43, 296 

44)) are correlated prior to normalization, and these correlations persist following 297 

normalization. Moreover, phenol red contributed to the accuracy of our antimalarial 298 

treatment classifier, further confirming that blood batch effects influenced the dataset. 299 

Lastly, lipid species were the major class of metabolites detected in our analysis (Fig. 300 

2C) and contributed heavily to PC2 from un- and protein-normalized data sets (Table 301 

S2), perhaps due to the remaining erythrocyte membranes. These results add to the 302 

overwhelming evidence of host cell and media contamination in untargeted 303 

metabolomics studies of parasites.  304 

Following these observations, we also explored the effect of different blood 305 

batches on metabolome measurements. Because generating sufficient Plasmodium 306 

biomass for adequate biological replicates is time-intensive, many experiments require 307 

multiple batches of human blood donations. To avoid batch effects, we controlled blood 308 

batches across sample groups (Table S1). Prior to these studies, we predicted that the 309 

blood batch would have some effects on the metabolome; we did not anticipate, 310 

however, that it would be as influential as known stressors, like treatment with 311 

antimalarials with established metabolic effects (3, 5). Several results from our analysis 312 

support this observation. First, samples from either treatment group did not cluster via 313 

PCA (Fig. 3B). Second, we detected none-to-few metabolites whose levels were 314 

significantly different between conditions (zero between with and without antimalarial 315 

treatment and 1 between various blood batches). Lastly, classifiers from both treatment 316 

and blood batch predicted samples with equal accuracy (30% error rate, top predictive 317 

metabolites displayed in Fig. 3D and E). Overall, from these analyses, we concluded 318 
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that sample-to-sample variation exceeded variation associated with either group. We 319 

also found 1-arachidonoyl-GPE to be significantly different in abundance across blood 320 

batches, which can be explored as a potential biomarker of host contamination. To 321 

expand on this idea, we were also able to predict a set of metabolites that are most 322 

likely to be host erythrocyte-derived (or influenced by host environment) by identifying 323 

the metabolites that are most predictive of blood batch (Fig. 3D). Additional 324 

investigations are required since these metabolites may be parasite-derived but only 325 

produced when they are in particular environments (e.g. blood batches). Going forward, 326 

it may be possible to use these metabolites to quantify host cell contribution to 327 

metabolome and assess parasite sample purity or control for host contamination during 328 

analysis.  329 

 Overall, the methodology and findings from the current study provide a basis for 330 

the use of more streamlined in vitro metabolomics approaches for the future 331 

investigation of P. falciparum biology. We suggest a set of considerations and 332 

recommendations for enhancing the accuracy parasite metabolomics (presented in Fig. 333 

1 Table 1, and below). First, samples must be better purified away from host material. 334 

Enrichment methods, whether novel or standard, should be used to increase 335 

parasitemia, reducing the number of uninfected host cells. Second, markers of host 336 

contamination must be used to evaluate the level of host contamination and resulting 337 

data. Our studies suggest that visual detection of ghost material (via microscopy) 338 

combined with assessment of host-specific metabolite markers is an effective option to 339 

assess sample purity. Finally, data must be normalized to parasite-derived 340 

measurements to limit remaining host contamination. With these considerations, 341 
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metabolomics has the potential to be a powerful tool in the study of intracellular 342 

parasites, like Plasmodium. 343 

 344 

MATERIALS AND METHODS  345 

Parasite Cultivation 346 

Laboratory-adapted P. falciparum lines were cultured in RPMI 1640 (Roswell Park 347 

Memorial Institute medium, Thermo Fisher Scientific, Waltham, MA) containing HEPES 348 

(Sigma Aldrich, St Louis, MO) supplemented with either 0.5% AlbuMAX II Lipid-rich 349 

BSA (Sigma Aldrich, St Louis, MO) and 50 mg/L hypoxanthine (Thermo Fisher 350 

Scientific, Waltham, MA) (referred to as AlbuMAX media) or 20% v/v pooled human 351 

plasma for generation of complete RPMI (referred to as cRPMI).Parasite cultures were 352 

maintained at 3% hematocrit and diluted with human red blood cells (blood batch noted 353 

in Table S1) to maintain parasitemia between 1-3%, with change of culture medium 354 

every other day (Fig. 1; Step 1). Cultures were incubated at 37oC with 5% oxygen, 5% 355 

carbon dioxide and 90% nitrogen (14). Some samples were treated with antimalarials 356 

with metabolic effects to maximize differences between groups (see below and 357 

Antimalarial treatment in Table S1). 358 

Parasite Isolation 359 

For isolation of sample group 1, two distinct laboratory-adapted clinical isolates of P. 360 

falciparum (BEI Resources, NIAID, NIH: Plasmodium falciparum, Strain IPC 4884/MRA-361 

1240 and IPC 5202/MRA-1238, contributed by Didier Ménard) containing mixed stages 362 

with >50% rings were synchronized using 5% sorbitol (Sigma Aldrich, St Louis, MO) 363 

(45). The resultant early stage cultures were incubated at 37°C in AlbuMAX media to 364 
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allow for the development of a schizont predominant population (see Parasite 365 

Cultivation above). After the late stage population was confirmed using microscopy, 366 

cultures were checked every one to two hours for the development of newly invaded 367 

ring stage parasites. If the parasites were treated with antimalarials, it was performed at 368 

this stage. Fourteen flasks containing early ring-stage parasites (<3 hours post invasion) 369 

were subsequently lysed from the erythrocyte membrane using 0.15% saponin, as 370 

previously described (46) (Fig. 1; Step 3). Prior to lysis, sampling of parasite material 371 

was taken for determination of erythrocyte count (hemocytometer) and parasitemia 372 

(SYBR-green based flow cytometry (47)), which contributed to parasite number 373 

determination (total erythrocytes x % parasitemia yields total parasites).  Additional 374 

samples were obtained following erythrocyte lysis for protein quantification using 375 

Bradford reagent (Sigma Aldrich, St Louis, MO).  A series of three wash steps were 376 

then performed using 1X PBS (Sigma Aldrich, St Louis, MO) using centrifugation at 377 

2000 x g to remove soluble erythrocyte metabolites. Purified material was kept on ice 378 

until flash frozen using liquid nitrogen, followed by storage at -80oC until sent for 379 

analysis. This procedure was performed five times for each parasite line to provide 10 380 

replicates for group 1 metabolomic analysis. Additionally, matched parasites (same 381 

parasite lineage, media type, stage, blood batches, and purification methods) were also 382 

grown without drug treatment (Table S1) to generate 10 additional samples for group 1 383 

untreated (see second comparison in Fig. 3). 384 

 For isolation of sample group 2, two Dd2-derived laboratory-adapted clones of P. 385 

falciparum (courtesy of Pradip Rathod, University of Washington, continuously cultured 386 

in the presence of antimalarial, Table S1) first underwent an initial sorbitol 387 
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synchronization step as above. The resultant early stage parasites were then incubated 388 

at 37°C in cRPMI to allow for the successful transition of P. falciparum to the late 389 

trophozoite and schizont stages, occurring 24 to 30 hours after initial synchronization. 390 

Next, this predominantly late stage population was enriched through magnetic 391 

purification using a MACS quad-magnet and MACS multistand (Miltenyi Biotech, 392 

Bergisch Gladbach, Germany), as previously described (18) (Fig. 1; Step 2). Briefly, 393 

parasite cultures were passed through LS columns with attached sterile syringe needles 394 

(BD Biosciences, San Jose CA) at a rate of 2-3 seconds per drop. A series of two to 395 

three column washes were performed with 5 ml of warmed cRPMI. To elute the desired 396 

material, the column was removed from the magnet prior to adding 5 ml of cRPMI. 397 

Column flow-through from 5 flasks containing late stage parasites was allowed to 398 

recover in cRPMI for 30 min at 37o C prior to saponin lysis, as described above (Fig. 1; 399 

Step 3). Determination of parasite count and protein quantification, as well as 400 

subsequent sample washing and freezing, were performed as described above for 401 

sample group 1. This procedure was performed five times for each parasite line to 402 

provide 10 samples for group 2 metabolomic analysis.  403 

Metabolite Preparation, Analysis, and Identification  404 

Metabolites were identified using Ultrahigh Performance Liquid Chromatography-Mass 405 

Spectroscopy (UPLC-MS) by Metabolon, Inc. (Durham, NC). All sample preparations 406 

and metabolite identifications were performed according to Metabolon, Inc, standard 407 

protocols. Briefly, double stranded DNA was quantified in all samples using the Quant-it 408 

Picogreen dsDNA Assay Kit (Thermo Fisher, Waltham, MA) according to the 409 

manufacturer’s instructions and proteins were precipitated with methanol and 410 
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centrifuged for extraction (Fig. 1; Step 4). Sample extracts were dried and reconstituted 411 

in solvents containing standards (see below) at fixed concentrations to ensure injection 412 

and chromatographic consistency. Waters AQUITY ultra-performance liquid 413 

chromatography (UPLC) and Thermo Scientific Q-Exactive high resolution/accurate 414 

mass spectrometer were used for metabolite detection (Fig. 1; Step 5). Controls that 415 

were analyzed in conjunction with the experimental samples included a pooled matrix of 416 

all included samples. Internal and recovery standards were used to assess variability 417 

and to verify performance of extraction and instrumentation, as routinely performed by 418 

Metabolon, Inc.   419 

Raw data was extracted using hardware and software developed by Metabolon, 420 

Inc. Metabolites were quantified using area-under-the-curve and identified by 421 

comparison to a library of several thousands of pre-existing entries of purified standards 422 

or recurrent unknown compounds. Each library standard was uniquely authenticated by 423 

retention time/indexes, mass to charge ratios, and chromatographic data. Named 424 

metabolites corresponded to library standards or were predicted with confidence 425 

according to Metabolon, Inc standard protocols. 426 

Data Analysis 427 

Following the analytical protocol outlined in (48), we first preprocessed metabolite 428 

abundances for each sample by imputing missing values with half of the lowest 429 

detectable metabolite abundance. Next, we normalized metabolite abundances by 430 

sample features, followed by normalization using metabolite features with log 431 

transformation, centering, and scaling (49). To limit inter-sample variability, metabolite 432 

abundances for each replicate were normalized to sample value for double stranded 433 
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DNA, protein, or parasite number. To limit inter-metabolite variability, metabolite 434 

abundances were log transformed, centered to median (50), and scaled by standard 435 

deviation (Fig 1; Step 6). Resultant processed metabolite abundances were used for 436 

univariate and multivariate statistics, as well as classification. All analyses were 437 

conducted using R (51-59). Welch’s t-tests were used to compare group means for 438 

differential abundance determination, assuming unequal variance and normal 439 

distribution, and p-values were adjusted using a false discovery rate. The significance 440 

cutoff is 0.05. See supplementary information for code and detailed analysis. 441 

Microscopy 442 

Laboratory adapted P. falciparum clones (BEI Resources, NIAID, NIH: Plasmodium 443 

falciparum, Strain Patient line E/MRA-1000 or IPC 4884/MRA-1238, contributed by 444 

Didier Ménard) at >50% rings were lysed using 0.15% saponin, as previously described 445 

(46). Samples were washed twice using 1X PBS (Sigma Aldrich, St Louis, MO) and 446 

centrifugation at 2000 x g for 5 minutes. Samples were then stained on slides with either 447 

DAPI at 1:20,000 (Sigma Aldrich, St Louis, MO) and CD235a-PE antibody at 1:100 448 

(Thermo Fisher Scientific, Waltham, MA) for fluorescence microscopy or with Giemsa 449 

stain (Sigma Aldrich, St Louis, MO) for bright field microscopy. Fluorescent images were 450 

acquired using the EVOS FL Cell Imaging System (Thermo Fisher Scientific, Waltham, 451 

MA). Bright field images were acquired using a Nikon Eclipse Ci Upright Microscope 452 

(Nikon, Melville, NY) equipped with a DMK23U274 camera (The Imaging Source, 453 

Charlotte, NC) and NIS Elements Imaging Software (Nikon, Melville, NY). 454 
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TABLES AND FIGURE 652 

Table 1. Parameters in metabolomics analysis of intracellular parasites, including 653 

Plasmodium. Note: most parameters do not have strict recommendations, as they are 654 

dependent on experimental design. Grey highlights indicate methods that were 655 

employed and evaluated during this study. 656 

Parameter Options Factors to consider 
Growth conditions Ring stage -Limited biomass (1-2µm, Figs. 2A and 3A), haploid genome 

-Few enrichment options 
 Late stage -Larger in size (3-10µm, Fig. 2A), polyploid genome 

-Can use magnetic enrichment (Fig. 1) 
 Mixed stages -Effects of stage variation on data 

 Media batches -Relevant if using serum-based media formulations 

 Blood batches -Must be recorded and ideally matched within comparisons (Table S1) 
-Useful to assess host contamination levels (Fig. 3D) 

Additional controls Uninfected 
erythrocytes 

-Use to identify host metabolites  
-Does not replace normalization 

Enrichment 
methods 

Saponin, other 
lytic reagents 

-Compatible with all stages (Fig. 1) 
-Parasites remain in ghosts (Fig. 3C) 
-Need improved methods that isolate parasite from host cell 

 Magnetic 
purification 

-Increases parasite to host ratio (Fig. 1) 

Metabolite 
Detection 

NMR -Limited metabolite detection but higher confidence 

 Mass 
Spectrometry 

-Industry standard for broad detection 

Pre-analysis 
normalization 

Cell number 
normalization 

-Can be combined with any post-analysis normalization but requires 
sample manipulation 

Post-analysis 
normalization 

Parasite-derived 
parameters 

-Selection requires knowledge of experimental design (i.e. parasite 
number or DNA amount) 

 Parameters with 
mixed derivation 
(host, parasite) 

-Can fail to remove undesired noise (Fig. 2) 

 Internal standards -Dependent on metabolomics facilities 

Centering Mean -Standard centering  

 Median -Less sensitive to outliers 

 Other -See (23) for summary of alternative approaches 

Scaling Within group SD -Requires no additional samples  

 Z-scoring -Requires control samples (can use uninfected erythrocytes) 

Statistical analysis Univariate -Requires multiple comparison corrections 

 Multivariate -Reveals group differences based on multiple variables  

 Machine learning 
(Random Forest) 

-Classification is more stringent than univariate tests, but can identify 
nonlinear effects 
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 657 

 658 

Figure 1. Metabolite purification and analysis pipeline. 1) Laboratory-adapted P. 659 

falciparum clones are cultured in host erythrocytes. 2) If enrichment of late stage 660 

parasites is desired (dotted line), cultures can be passed through a magnetic column to 661 

retain paramagnetic late stage-infected erythrocytes (black dots inside red circles). 662 

Samples for parasite count determination were collected at steps 1 and 2, depending on 663 

the sample group (see Materials and Methods). 3) Erythrocytes (infected and 664 

uninfected) are lysed using saponin, but parasites remain intact (black dots). Wash 665 

steps are used to remove hemoglobin and other intracellular erythrocyte contents (red 666 

material). Samples for total protein determination were collected at this step. 4) Soluble 667 

metabolites (purple dots) are extracted from precipitated protein (grey pellet) using 668 

methanol (droplets). Samples for DNA content determination were taken at this step, 669 

prior to methanol extraction. 5) Metabolites are detected by liquid chromatography 670 

followed by mass spectroscopy. Metabolites are identified by comparison to a library of 671 

authenticated standards. 6) Abundance data for each metabolite is normalized to an 672 

appropriate parameter (i.e. DNA content or parasite number), log transformed, centered 673 

to median, and scaled to variance, prior to employing statistical comparisons. 674 
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Figure 2. Comparison 1: Metabolomes are distinct and influenced by 675 

normalization approach.  A. Comparison made throughout Figure 2. Group 1 676 

contains ten samples of early-stage parasites grown in AlbuMAX-based media in three 677 

blood batches, treated with antimalarial (see Materials and Methods and Table S1). 678 

These parasites were isolated at a low parasitemia and purified from host material using 679 

saponin lysis. Group 2 contains ten samples of late-stage parasites grown in a human 680 

serum-based media in four blood batches, treated with antimalarial (see Materials and 681 

Methods and Table S1). Group 2 parasites were purified magnetically to achieve high 682 

parasitemia and lysed from host cells with saponin.  B. Sample characteristics. 683 
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Samples (group 1 in circles and group 2 in triangles) were evaluated for DNA, parasite 684 

count, and protein amount prior to analysis. C. Summary of detected metabolites. Not 685 

all metabolites were detected in each sample. The majority of metabolites detected 686 

were lipid species. Sample groups are color coded with group 1 in red and group 2 in 687 

blue. A full list of identified metabolites are listed in supplemental data (see Github). D. 688 

Normalization affects measured metabolome. Principle component (PC) analysis 689 

was performed prior to normalization (left), as well as using three different normalization 690 

methods (left to right, total protein, parasite number, and DNA). Circles indicate group 1 691 

samples and triangles indicate group 2 samples. For PC decompositions, see Table S2. 692 

  693 
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Figure 3. Comparison 2: Blood batch and antimalarial treatment influence 694 

metabolomes. A. Comparison made throughout Figure 3. All samples were grown in 695 

AlbuMAX-based media in three blood batches and purified from host material using 696 

saponin lysis during the early stage. Group 1 was treated with antimalarial for 6 hours 697 

and group 1, untreated, did not undergo treatment (see Table S1); samples were 698 

matched for blood batch.  B. Metabolome principle component analysis. PCA of 699 

DNA normalized, median-centered metabolomes of early stage parasites from 700 
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Comparison 2. Squares indicate antimalarial treated samples and triangles indicate 701 

untreated samples. Blood batches are indicated by color.  C. Visualization of 702 

erythrocyte ghosts containing parasites. Fluorescent imaging (40X) reveals 703 

parasites (blue, DAPI) retained within erythrocyte ghosts (red, phycoerythrin conjugated 704 

CD235a antibody) following saponin treatment. Scale bar represents 10µm. D. 705 

Metabolites predictive of blood batch. Top ten most predictive variables in the blood 706 

batch Random Forest classifier. E. Metabolites predictive of antimalarial treatment. 707 

Top ten most predictive variables in the antimalarial treatment Random Forest classifier. 708 
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