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Abstract

The number of simultaneously recorded electrodes in neuroscience is steadily increasing, providing

new  opportunities  for  understanding  brain  function,  but  also  new  challenges  for  appropriately

dealing with the increase in dimensionality. Multivariate source-separation analysis methods have

been particularly effective at improving signal-to-noise ratio while reducing the dimensionality of the

data, and are widely used for cleaning, classifying, and source-localizing multichannel neural time

series  data.  Most  source-separation methods  produce  a  spatial  component  (that  is,  a  weighted

combination  of  channels  to  produce  one  time  series);  here,  this  is  extended  to  apply  source-

separation to a time series, with the idea of obtaining a weighted combination of successive time

points, such that the weights are optimized to satisfy some criteria. This is achieved via a two-stage

source-separation procedure,  in  which  an  optimal  spatial  filter  is  first  constructed,  and  then  its

optimal  temporal  basis  function  is  computed.  This  second  stage  is  achieved  with  a  time-delay-

embedding matrix, in which additional rows of a matrix are created from time-delayed versions of

existing rows. The optimal spatial and temporal weights can be obtained by solving a generalized

eigendecomposition of covariance matrices. The method is demonstrated in simulated data and in an

empirical  EEG  study  on  theta-band  activity  during  response  conflict.  Spatiotemporal  source

separation has several  advantages,  including defining empirical  filters  without the need to apply

sinusoidal narrowband filters.
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Population neural activity measured through the electroencephalogram (EEG) or local field potential

(LFP)  is  often rhythmic  (Buzsáki  and Draguhn,  2004).  These rhythms can be grouped into bands

according  to  dominant  frequency  characteristics  (e.g.,  delta,  theta,  alpha,  gamma),  and  reflect

oscillations  in  population-level  excitability  (Wang,  2010).  Neural  oscillations  have  been  linked  to

myriad neural and cognitive functions over the past century. Although questions remain regarding

the precise origins and computational roles of oscillations, it is undeniable that neural oscillations are

robust markers of neurocognitive phenomena and can be used to link findings across species and

spatial scales  (Klimesch, 1999; Le Van Quyen and Van Quyen, 2011; Buzsáki et al.,  2013).  Neural

oscillations  are  also  increasingly  being  linked  to  brain  disorders  ranging  from  Schizophrenia  to

Parkinson’s to depression to anxiety (Uhlhaas and Singer, 2010; Başar, 2013; Oswal et al., 2013).

In some cases, neural oscillations can be identified solely by qualitative visual inspection (Cole and

Voytek, 2017). However, these cases tend to be the exception rather than the rule. Instead, most

investigations  require  signal  processing  methods  before  interpretations  can  be  made.  Signal

processing is necessary because electrodes measure activity from multiple sources simultaneously,

because the signal-to-noise characteristics of the data can be low, and because neural oscillations

have nonlinearities such as bursting that can limit their detectability when using signal-processing

methods  that  are  optimized  for  stationary  signals  (e.g.,  the  Fourier  transform).  Therefore,  it  is

important to be able to identify neural oscillations in potentially noisy data with potentially weak

signals.

The most commonly used analysis method for identifying neural oscillations is to apply temporal

filters such as Morlet wavelets or narrowband FIR filters, and then extract estimates of time-varying

power and phase values (Cohen, 2014a). However, such narrowband filters impose sinusoidality on

time series data, thus biasing the results to identifying sinusoid-looking features of the data. It is

therefore of theoretical and practical interest to be able to identify important temporal features of

data without imposing any specific waveform shape on the results.

A promising approach for decomposing multichannel EEG data into different potential contributing

sources  is  source-separation analyses,  which have the goal  of  finding weighted combinations of

activity across different electrodes, where the weights are defined according to some criteria, and

where the linear weighted sum of activity across all  electrodes is used to generate a single time

series vector (the component time series). Depending on the goal of the analyses, the criteria can be
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anatomical  (e.g.,  dipole  fitting  or  distributed  localization  in  minimum-norm  or  beamforming;

(Hillebrand  and  Barnes,  2005),  signal-distribution  independence  (e.g.,  independent  components

analysis;  Jung  et  al.,  2001),  or  contrasts  between  two  features  of  the  data  (e.g.,  generalized

eigendecomposition;  Parra  et  al.,  2005).  Regardless,  the  result  of  the  source  separation  is  a

component time series that comprises a linear combination of data at all  electrodes. From here,

researchers often apply standard temporal filters such as wavelets or narrowband FIR filters. This

means that only the spatial features are optimized for different sources of variance, not the temporal

features.

The purpose of this paper is to extend existing methods for identifying spatiotemporal features of

multichannel electrophysiology data. The method involves combining source separation techniques

with time-delay-embedding to identify prominent features of neural  signals  without the need to

impose a sinusoidal filter. Instead, the optimal filter kernel is computed directly from the data (the

filter  is  “optimal”  in  that  it  maximizes  researcher-specified  criteria).  This  multivariate  approach

facilitates separating multiple spatiotemporal sources, providing those sources have differentiable

projections onto the recording electrodes. It is perhaps best suited for task-related data, in which one

compares  an  experiment  condition  against  a  baseline  time  period  or  a  baseline  condition.  The

method  is  applied  to  simulated  data  and  to  empirical  human  EEG  data.  Issues  of  practical

implementation are also discussed.

Methods

Broad overview of the spatiotemporal filter

The  source  separation  method  presented  here  involves  two  stages  (see  Figure  1  for  a  visual

overview). First, an optimal spatial filter is constructed with the goal of reducing the dimensionality

of the data from M channels to C components, where C<<M. Each component is a linear combination

of all electrodes that maximizes some user-specified objective function (e.g., a comparison between

conditions). The spatially filtered time series data are then time-delay-embedded, and a temporal

source  separation  is  applied  to  that  delay-embedded  matrix.  The  result  of  this  second  source

separation is  an empirically  derived filter  that  can be applied to  the data,  to  which time series

analyses can be applied such as time-domain averaging or applying the Hilbert transform to extract

power and phase estimates. Note that at no point in this procedure are narrowband temporal filters

such as wavelets, FIR filters, or FFT-based filters imposed on the time series data.
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Figure 1. The ten-step procedure for obtaining the spatiotemporal filter. (a) Raw data showing two
regions containing the signal of interest (Xs) and reference (Xr). (b) Channel covariance matrices are
computed  for  each  of  these  time  windows,  (c)  which  are  then  used  in  a  generalized
eigendecomposition. (d) A spatial filter is selected (column of W) and the filter forward model can be
visualized as a topographical map. (e) The weighted combination of all electrodes is a time series
(Hann-tapered  here  for  visibility).  Most  source-separation  methods  stop  at  this  step,  but  the
important temporal features of this component time series can be better extracted via a second
source separation stage. (f) The time series data are delay-embedded, which means new rows of the
data  matrix  are  created  from  delayed  versions  of  the  original  row(s).  (g)  The  time  covariance
matrices from time windows to be maximized (S) vs. minimized (R) are used to form two covariance
matrices,  (h)  on which a generalized eigendecomposition is performed. The eigenvector with the
largest  eigenvalue  (i)  is  the  optimal  basis  vector  that  separates  S from  R,  and  is  used  as  an
empirically defined temporal filter kernel that can be applied to the data from panel e, which (j)
creates the spatiotemporally filtered data. Note that steps a-e and steps f-j are the same except for
the application to the spatial or temporal domains. Data in panels d, i, and j can be pooled and
compared across individuals.

Geometric and analytic explanations of the spatiotemporal filter

EEG  data  are  often  conceptualized  as  a  mixture  of  electrical  fields  produced  by  several  neural

sources. Key to multivariate decomposition methods is the assumption that this mixture is linear

because the electrical fields propagate simultaneously (within measurement capabilities) from all

sources  to  all  electrodes  (Nunez  and  Srinivasan,  2006).  Thus,  the  electrode-level  data  can  be

conceptualized as

X = AS (1)

where X is the observed channels  time matrix,  ⨯ S is the underlying sources of activity, and A is a

transformation matrix.  A and  S are  a priori unknown, which presents  a  challenge for  scientists.
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Therefore, the goal of multivariate source-separation methods is to make assumptions about A and S

in attempt to best estimate an appropriate A-1 that could left-multiply X to gain insights into S. These

assumptions  can  be  based  on  independence  and  non-Gaussian  distributions  (e.g.,  independent

components analysis), or on frequency characteristics, anatomical locations, or differences between

experiment conditions or time periods. The latter approach is taken here.

Geometrically, the recorded data in  X occupy an M-dimensional space, where M is the number of

electrodes. Each basis vector in this space is defined by each electrode, and each time point of data

can be thought of as a point in this space, with the projection along each basis vector i equal to the

microvolt value recorded at electrode Mi.

The purpose of the first source separation stage is to find a better set of spatial basis vectors with the

goal of reducing the dimensionality of the data from M to C, where C<<M (for convenience, C is often

1, but multiple sources can be extracted by allowing C>1, as will be shown in the second simulation

below)  and  C  is  defined  to  optimize  the  multivariate  power  ratio  between  two  experiment

conditions, or between two time periods.  Let  the covariance matrices for the two conditions be

matrix S (the “signal” to be maximized) and matrix R (the “reference” data):

S = n-1XsXs
T (2)

R = n-1XrXr
T

where X is the mean-centered channels  time (MxN) data matrix, ⨯ T is the matrix transpose, n is the

number of time points, and subscripts  s and  r indicate subsets of the data corresponding to time

periods to maximize and minimize (signal vs. reference). For a trial-based experiment, the covariance

matrices should be computed per trial and then averaged over all trials.

Finding a set of M weights (in vector  w) such that the weighted sum of activity at all electrodes

maximizes the distance (or power ratio) between S and R can be obtained by the Rayleigh Quotient:

(3)

Note  that  wTSw  is  a  single  number  representing  the  “energy”  in  matrix  S along  direction  w.

Therefore, the goal is to find the M 1 vector ⨯ w such that along direction w, the ratio between S and
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R is maximized (λ is the value of that ratio). For a complete set of weights (M M 1 vectors), this can⨯

be solved as

(4)

(5)

(6)

In other words, the problem of separating data represented by covariance matrices S and R can be

solved via generalized eigenvalue decomposition. This insight has inspired many source separation

applications in neuroscience (Parra et al., 2005; Tomé, 2006; Blankertz et al., 2008), and in this sense,

the method presented here follows directly from this tradition. Equation 5 is perhaps a more intuitive

way  to  conceptualize  this  mechanism  of  source  separation  (eigendecomposition  of  the  matrix

“division”  S/R),  although  equation  6  is  closer  to  the  implementation  in  Matlab  using

[W,L]=eig(S,R) where M M matrix  ⨯ W contains the eigenvectors in the columns, and M M⨯

matrix  L (this  is  Λ  in  equation  6)  contains  the  corresponding  eigenvalues  in  the  diagonal.  The

eigenvector associated with the largest eigenvalue is the basis vector that maximally separates  S

from R.

Note  that  although  both  S and  R are  symmetric  positive  semidefinite  matrices,  the

eigendecomposition is implemented on the matrix product R-1S, which is not symmetric. Therefore,

the  eigenvectors  in  matrix  W are  not  constrained  to  be  orthogonal  as  they  are  in  principal

components analysis.  In practical applications, data matrices are often positive semi-definite (not

positive definite) because standard EEG preprocessing reduces the rank of the data. Reduced-rank

matrices are not problematic for the method presented here because generally one is interested in

only  those  components  with  the largest  eigenvalues;  eigenvectors  with  repeated or  zero-valued

eigenvalues can be ignored. The weights themselves mix suppressing irrelevant electrodes (or time

points for the temporal  separation stage described below) and boosting relevant electrodes,  and

therefore they can be difficult to interpret directly. Instead, the “forward model” (sometimes also

called “activation pattern”) of the filter is interpreted and averaged across subjects, and is computed

as  (SW)(WTSW)-1 (this  can  be  shortened  to  W-T for  full-rank  matrices)  (Haufe  et  al.,  2014).  The

important  part  of  this  formula  is  Sw,  in  other  words,  multiplying  the  covariance  matrix  by  the

eigenvector used to filter the data; the multiplication by (WTSW)-1 is a scaling factor.
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Regularization was added as 0.1% of the variance to the diagonal of the R matrix as follows:

Rii = Rii + xxT/1000 (7)

where x is the mean-centered time series data from channel i (as a row vector) and T is the vector

transpose.  Various  levels  of  regularization  were  examined;  this  amount  of  regularization  either

improved slightly  or  did  not appreciably affect  the results.  There are  also several  algorithms for

regularization, including Thikonov, eigenvalue shrinkage, and so on. These were not systematically

explored here, although it is likely that the small amount of regularization would not be appreciably

different for different regularization methods.

Geometrically, one can think of the eigenvectors in W as providing a new set of basis vectors in the

data  space  such  that  the  basis  vector  defined by  the  column in  W with  the  largest  associated

eigenvalue maximizes the power ratio between  S and  R.  Projecting the channel data  X onto the

largest eigenvector (in practice, this is achieved by computing the weighted sum of all electrodes, or

y=wTX)  is  the  component  time series  that  maximizes  the  researcher-specified  criteria  that  were

defined when creating matrices S and R.

Now the data have been reduced from dimensionality M to dimensionality C. That completes the

first stage of the method. The second stage is to use that component to create a new multivariate

space  by  time-delay-embedding  the  data,  thus  expanding  the  dimensionality  to  CD  dimensions

(where D is the number of delay embeds). In practice, it may be easier to delay-embed separately

each  component  c C,  thus  creating  C  D-dimensional  delay  embedded  matrices.  Time-delay∊

embedding means adding rows to a matrix that are defined by time-delayed versions of the original

data (see Figure 1f).

Yi,j = xi+j-1 (8)

where x is the component time series vector (Figure 1e) and i and j correspond to row and column

indices. This can be implemented using a for-loop or, because the delay-embedded matrix is a form

of  a  Hankel  matrix,  the  Matlab  command  hankel.  Because  subsequent  time  points  are  not

redundant  (assuming  the  number  of  embeds  is  less  than  the  number  of  time  points,  which  is

generally the case for EEG data), matrix Y has a rank equal to its embedding dimension. The purpose
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of creating the delay-embedded matrix is to apply a source-separation decomposition on the time

series data. The weights created for each row in the matrix reflect weights for successive time points.

It  thus follows that taking the weighted combination of the delayed time series is  equivalent to

applying a temporal filter to time series data. The main difference is that the temporal weights can

be defined according to eigenvectors computed from the data, rather than, e.g., a Morlet wavelet

that would be applied to the data for narrowband filtering. For example, a single embedding would

produce a 2xN matrix, and row weights of [-1 1] would correspond to the first derivative of the time

series. The number of embeds should be at least as large as the expected empirical filter kernel.

The geometric interpretation of this step is an expansion of the one-dimensional subspace identified

in the first source-separation phase to a D-dimensional space in which each basis vector is defined by

each time point. Thus, the purpose of this second source separation is to identify a new set of basis

vectors in this space that maximizes the same researcher-specified criteria as described for the first

stage. The primary difference is that instead of obtaining a spatial filter, these eigenvectors produce a

temporal filter (based on the output of the optimally spatially filtered data).

The weighted combination of the delay-embedded data in matrix  Y is a time series to which time

series  analyses  can  be  applied.  The  primary  analysis  applied  here  is  time-frequency  analysis,

implemented by taking the magnitude of the Hilbert transform of the time series.

The sign of an eigenvector is often not meaningful—the eigenvector points along a dimension; that

dimension  can  be  equally  well  indicated  regardless  of  whether  the  vector  points  “forwards”  or

“backwards.” For visual clarity, the sign of the topographical maps was adjusted so that the electrode

with  the  largest  magnitude  was forced to  be positive (this  is  a  common procedure  in  principal

components analysis).

In theory, these two source separation stages could be implemented in one shot by delay-embedding

the  M-channel  time  series.  However,  this  presents  computational  as  well  as  computation-time

challenges.  For  example,  a  64-channel  EEG  dataset  with  200  embeddings  would  produce  a

covariance matrix of size 12,800  12,800. Computing the inverse and eigendecomposition of such a⨉
large dense matrix  can lead to inaccuracies as well  as being prohibitively slow. Furthermore, for

typical EEG applications, the rank of the data is r<M, resulting from preprocessing strategies such as

removing non-physiological  independent  components  and average referencing.  The first  stage of
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source separation alleviates both of these concerns by using an optimized dimensionality reduction

prior to delay-embedding.

Selecting data for matrices S and R

“Guided” source  separation methods  like  generalized  eigendecomposition are  based on a  direct

comparison  between  two  researcher-selected  features  of  the  data  (Parra  and  Sajda,  2003).

Therefore, the validity and interpretability of the decomposition rests on an appropriate selection of

subsets  of  the data  from which the two covariance matrices  are  formed.  These two covariance

matrices should be similar in as many respects as possible, differing only in the characteristics that

one wishes to separate. For this reason, the signal-to-noise characteristics should be similar, and the

data subsets should contain a similar number of time points and trials.

For task-related designs, it is likely that S and R would come from the experimental (S) and control

(R) conditions, or perhaps from all conditions combined (S) and the pre-trial baseline time period (R).

For example, during a working memory task, the data subsets could come from the delay (memory

maintenance)  period and the inter-trial  interval.  See  (de Cheveigné and Parra,  2014;  Cohen and

Gulbinaite, 2017) for additional discussions about data selection considerations.

Simulated EEG data

The general procedures for simulating the EEG data will  first be described, and then the specific

features of the first and second simulations will be detailed (see also Figure S1 for images of key

parts  of  the  simulation  process).  A  leadfield  (anatomical  forward  model)  was  computed  using

OpenMEEG (Gramfort et al., 2010) as implemented in the Brainstorm toolbox (Tadel et al., 2011) in

Matlab.  The leadfield  contains  2,004 dipoles  placed  in  gray  matter  extracted from the standard

template MNI brain. Each brain location was initially modeled using three dipoles for three cardinal

orthogonal orientations, and these were collapsed to produce a normal vector (with respect to the

cortical sheet) at each location.

Correlated random data were simulated in 2,004 dipoles as follows. First, a dipole-by-dipole matrix of

positive values between 0 and 1 were computed, and this matrix was multiplied by its transpose to

obtain a symmetric positive-definite matrix. The matrix values were then scaled so that the largest

values were .8, except for the diagonal, which was set to 1. This matrix became the correlation matrix

for all dipole time series. The next step was to simulate a 1/f power spectrum. This was achieved by

scaling random complex numbers by a negative exponential to create the 1/f shape. A copy of these

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2017. ; https://doi.org/10.1101/190470doi: bioRxiv preprint 

https://paperpile.com/c/3WBYJF/xKm0
https://paperpile.com/c/3WBYJF/2lcQ
https://paperpile.com/c/3WBYJF/kGU4+wXpK
https://paperpile.com/c/3WBYJF/kGU4+wXpK
https://paperpile.com/c/3WBYJF/JGU8
https://doi.org/10.1101/190470
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 of 29

scaled complex  numbers  was then flipped to create  a  symmetric  Fourier  spectrum.  The inverse

Fourier transform of these values produces 1/f noise, and the real part of that result was taken. This

was done for all dipoles. Next, the previously constructed correlation matrix was imposed on these

data using the following formula.

Y = VL1/2X (9)

Y is  the new correlated time series,  X is  the channels  time random number matrix,  ⨉ V are the

eigenvalues of the correlation coefficient matrix, L contains the eigenvalues of the correlation matrix,

and 1/2 indicates the matrix square root. Finally, the data were multiplied by 500, which is an arbitrary

scaling factor selected to produce larger noise amplitude than signal.

After the dipole time series were generated, they were projected onto 64 virtual EEG electrodes

arranged according to the 10-20 system and epoched into 200 trials of two seconds per trial using a

sampling rate of 1024 Hz.

Additional details  for the first  simulation: One dipole was selected to contain the “signal” and a

second dipole was selected to contain the “distractor.” The signal was a two-cycle sine wave at 5 Hz

and the distractor was a three-cycle sine wave at 12 Hz. For each of the first 100 trials, the signal was

summed on top of the random time series data in a randomly selected time window. The distractor

was placed in all 200 trials. For convenience, the first 100 trials are referred to as “condition A” and

the next 100 trials are referred to as “condition B.” The purpose of the distractor was to test whether

the source separation procedure would ignore this feature of the data (it should in theory, because

that feature is present in both conditions and thus does not contribute to maximizing the power ratio

between wTSw and wTRw). Note that the signal and distractor were added to the dipole time series

before projecting to the electrodes; they were not added to the electrode data.

Additional details for the second simulation: This simulation was the same as the first, except that

the 12-Hz signal was added only to the first 100 trials, thus making two important features of the

data that should distinguish conditions A and B. The purpose of this was to determine whether the

source separation could identify and isolate both features, whether one feature would be missed, or

whether both features would be mixed in the same component.

Empirical EEG datasets
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Empirical data provide important proof-of-principle applications in the context of realistic sources of

signal and noise. Data used here were re-analyzed from Cohen (2015); the task is summarized here,

and readers are referred to the original publication for additional details. Thirty human volunteers

participated in the EEG experiment (informed consent was obtained and the study was approved by

the  ethics  committee at  the  University  of  Amsterdam,  psychology  department).  The task  was  a

modified Flankers task  (Appelbaum et al.,  2011), in which subjects reported via button press the

identity of a centrally presented letter that was flanked on both sides by other letters, which could be

congruent (e.g., “T T T T T”), partially incongruent (e.g., “T T I I I”), or fully incongruent (e.g., “T T I T

T”). Data were recorded from 64 electrodes placed according to the 10-20 system using BioSemi

hardware (see  www.biosemi.com for hardware details),  sampled at 512 Hz. Additional electrodes

were placed  on  the  thumb muscles  used to  indicate  responses;  these electrodes measured  the

electromyogram  (EMG),  which  was  used  to  identify  “partial  errors.”  Partial  errors  occur  when

subjects twitch the hand corresponding to the incorrect response but then press the correct button

with the other hand. Trials containing partial errors are the strongest indicators of response conflict

and  elicit  maximal  midfrontal  theta  power  (Cohen  and  van  Gaal,  2014).  Five  trial  types  were

separated in this task: congruent trials (the baseline condition used to create the R matrix), partial

incongruent, full incongruent, partial errors (the condition used to create the S matrix), and response

errors.  Across subjects,  the average numbers (standard deviations)  of  trials  for  these conditions,

respectively, were 375 (52), 335 (54), 135 (39), 235 (99), and 84 (44). Prior to analyses, data were

high-pass filtered at 2 Hz,  epoched around stimulus onset,  and manually  inspected for excessive

noise or artifacts. Data were further cleaned by removing independent components that captured

oculomotor  or  other  artifacts  using  the  eeglab  toolbox  (Delorme and  Makeig,  2004) (mean/std:

2.52/1.28 components per subject removed). Three datasets were excluded due to excessive noise in

the data, thus the results shown here are taken from 27 individuals. Cleaner data facilitates a better

decomposition, which motivated the removal of independent components and high-pass filtering.

Data for the S and R covariance matrices were taken from 0 to 600 ms post-stimulus onset. However,

stimulus onsets evoke a transient phase-locked response in the EEG that can interfere with analyses

of oscillatory dynamics that might co-occur with the transients, potentially leading to artifacts or

misinterpretations (Yeung et al., 2007). The approach taken here to avoid potential interference from

stimulus transients was to remove the phase-locked part of the signal prior to analyses (Cohen and

Donner,  2013).  This  was  accomplished  by  subtracting  the  time-domain  trial  average  (the  event-

related potential) from the single-trial data, separately per condition, per channel, and per subject.

The interpretation of this subtraction is that the residual—the non-phase-locked part of the signal
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used  in  analyses—can  only  reflect  amplitude  modulations  of  ongoing  dynamics,  as  opposed  to

phase-reset transients.

Considerable  previous  research  suggests  that  action  monitoring  tasks  like  this  one  should  be

associated with non-phase-locked increases in theta band (~6 Hz) activity, centered at midfrontal

electrodes (around FCz or Cz), during high-conflict and error trials compared to low-conflict trials.

Thus, although the “ground truth” in empirical data is not known, the expectation is that midfrontal

theta should emerge as the feature of the data that most strongly separates response conflict from

control conditions.

Statistical evaluations

It is important to be aware that any statistical test between the source time series from conditions

providing the S and R matrices is biased. In effect, the spatiotemporal filter is specifically constructed

to maximize any possible differences between the two conditions; even with pure noise the filter will

produce some result. Thus, there is a danger of overfitting, which could lead to circular inference if

the results are not appropriately interpreted.

There are several approaches to address this situation. One is to apply the spatiotemporal filter to

different data from those with which the filter was created. This is illustrated in the empirical data

here by constructing the filter based on conditions A and D, and applying the filter to data from

conditions A, B, C, D, and E. In this case, the direct comparison of D>A could be biased by overfitting,

but other comparisons are not biased. Cross-validation could also be applied, in which the spatial

filter is based on N-n trials and then applied to the remaining n trials. This procedure could be used

to compute confidence intervals. Finally, one could use permutation testing, whereby trials within

the two conditions are randomly shuffled, and many random permutations would produce a null-

hypothesis distribution against which to compare the observed differences.

Data and code availability

Matlab code to generate simulated data and apply the method is available at mikexcohen.com/data.

Readers are encouraged to explore and extend the code to determine applicability of the method to

their own data, as well as to test extreme and potential failure conditions.
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Results

Simulated data

Data  were  created  by  projecting  simulated  dipole  time  series  to  virtual  EEG  electrodes,  and

performing all analyses on the electrode data. The first simulation involved two dipoles containing

signals  (brief  sine waves summed on top of noise),  but with only one dipole containing a “task-

relevant”  signal,  meaning the  two-cycle  5  Hz  oscillation was  present  only  in  the  first  100 trials

(“condition A” in Figure 2). The second dipole had a three-cycle 12 Hz oscillation in both groups of

trials.  This  second dipole acted as an irrelevant  “distractor”  to  test  the specificity of  the source

separation.

Figure 2. Results of the first simulation. A) Analyses of electrode-level data. The upper topographical
plot depicts the spatial distribution of 5 Hz power and the lower topographical plot depicts that of 12
Hz power. The time-frequency power plots show dynamics from two electrodes (see black triangles in
topographical maps) based on their proximity to the maximal projection of the dipoles selected for
the simulated signals. Note that the simulated 5 Hz power is not observed due to large-amplitude
noise. The two columns of time-frequency power plots correspond to condition “A” (with the 5 Hz
signal) and condition “B” (without the signal).  B) The stage-1 spatial source separation based on
covariance matrices from conditions “A” and “B” yielded one major component, as evidenced by a
single large eigenvalue (there were 64 simulated EEG electrodes, thus producing 64 eigenvectors). C)
The topographical projection of the simulated dipole and the time-frequency power plot of its time
series (top row; this is “ground truth” data) and the topography and time-frequency power of the
largest component. Note the similarities between the component and the ground-truth data, and
their  collective dissimilarity with  the electrode-level  results  in  panel  A.  D) Results  of  the stage-2
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temporal source separation. The left plot shows the simulated signal.  The middle plot shows the
temporal filter kernel (cf. Figure 1i), and the right plot shows its power spectrum.

Electrode-level  analyses  were  unable  to  identify  the  5-Hz  signal,  because  its  amplitude  was

comparable to the noise level. The 12-Hz “distractor” was visible, because its source amplitude was

higher than that of the noise. The spatial source separation (steps a-e in Figure 1) on the covariance

matrices  comparing  conditions  A  and  B  recovered  the  spatial  topography  as  well  as  the  time-

frequency characteristics of the signal. The second source separation stage recovered an empirical

filter kernel that had a similar shape and spectral profile as the original simulated data (Figure 2D).

In  the second simulation,  the two dipoles contained “task-relevant”  signals,  with one having an

oscillation at  5 Hz and the other at  12 Hz. The purpose of  this  simulation was to test  how two

components  would  be  identified  by  the  spatiotemporal  decomposition,  considering  that  both

features are task-relevant.

Results showed that the two spectral-spatial features were isolated into different components. This

can be seen by two relatively large eigenvalues from the first stage of source separation (Figure 3b).

The associated eigenvectors isolated spatial components that were consistent with the topographical

projections of the two dipoles (Figure 3c,e). The second stage of source separation was performed on

two separate Hankel matrices: one created from the time series of the largest component, and one

created  from  the  time  series  of  the  second-largest  component.  The  resulting  temporal  filters

accurately reconstructed the spectral characteristics of the two simulated time series (Figure 3d,f).

The electrode-level analyses partially revealed the simulated data, but were also considerably noisier.

Without  a  priori knowledge  of  the  simulated  data,  it  would  be  difficult  to  know  which  time-

frequency-electrode features reflect “true” signals. Overall, results from this simulation confirm that

it is possible to separate multiple narrowband spatial-temporal components in multichannel data

without applying any narrowband temporal filters.
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Figure 3. Results of the second simulation. This simulation was similar to the first with the addition of
a second task-related signal in a second dipole at 12 Hz. This figure is organized similarly to Figure 2.
A) Electrode-level data. B) Note that the stage-1 source separation revealed two spatial components
with relatively large eigenvalues. The largest component isolated the 5 Hz signal while the second
component isolated the 12 Hz signal (the 5 Hz component was larger because the signal time series
was longer). Note that despite the two signals overlapping in time and in topography, they are fully
isolated into two distinct components because their trial-to-trial temporal onsets were non-phase-
locked, thus allowing sufficient spatial-temporal separation. No narrowband filters were applied in
either of the two source separation stages (narrowband filters were applied only to obtain the time-
frequency power plots).
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A third simulation (using only the second stage on single-channel time series data) was conducted to

illustrate  how the empirical  filter  kernel  identifies the most prominent features  of  the data  that

distinguish  it  from  the  reference  time  series,  which  may  not  capture  all  subtle  features  of  the

waveform shape. A square wave with a linear trend was added to random white noise (see Figure 4a

for the simulated signal and an example single trial of the signal plus noise). The reference time

series  was  noise.  The  filter  kernel  had  a  sinusoidal  shape,  which  captured  the  most  distinctive

temporal feature relative to the reference (note that this is not necessarily the same as the most

visually salient feature of the simulated waveform). This empirical filter kernel was then applied to

the  time  series  data  in  Figure  4a  (this  would  be  the  “measured”  data),  revealing  the  rank-1

approximation of the signal that best separates the signal from the reference data. Although the

reconstruction  does  not  capture  the  high-frequency  waveform  features  such  as  sharp  edges,  it

represents the temporal features that best distinguish the S from R time windows.

Figure  4.  Simulation  of  non-stationary  time  series.  (A)  The  simulated  (ground-truth)  data  and
examples of two single trials used to construct the S matrix (containing signal and noise) and the R
matrix (containing only noise) (the top plot has a different y-axis scaling for visibility). (B) The power
spectra from these two example trials. (C) The empirical temporal filter that maximally separated S
from  R was  concentrated  in  the  low-frequency  range  (although  the  filter  was  not  based  on
frequency-domain or filtered data).  The reconstructed single-trial signal  is  smooth relative to the
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simulated time series, but is a better approximation than the “measured” data in the middle row of
panel A. (D) The power spectra of the simulated signal, empirical kernel, and reconstructed signal.

Empirical data

The  procedure  outlined  in  Figure  1  was  applied  to  empirical  EEG  data.  The  dataset  had  five

experiment  conditions  related  to  response  conflict,  corresponding  to  a  baseline  (no  response

conflict),  three levels  of  response conflict  during correct trials,  and response errors.  Both source

separation  stages  were  based  on  comparing  the  condition  with  the  strongest  response  conflict

(correct  trials  containing  partial  errors)  with  the  baseline  condition  (congruent  trials).  After  the

spatiotemporal  filters  were constructed based on these conditions,  they were applied to  all  five

conditions.

Figure 5 shows the group-average topographical projection of the spatial filter, the spatiotemporal

filter kernel, its power spectrum, and the power envelope computed as the squared magnitude of

the Hilbert transform applied to the spatiotemporal component. Figure 5 shows the topographical

projections, the time-domain filter kernel projection, and its power spectrum, for each individual

subject.
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Figure 5. Group-level results of the spatiotemporal filter on empirical EEG data (N=27 humans). The S
and  R matrices were generated, respectively,  from conditions with high vs.  low response conflict
(“Partial error” and “Congruent”). (A) The stage-1 maps indicated a midfrontal-focused component.
(B) The power spectrum of the temporal filter had peaks at 3.2 and 6.4 Hz. This apparent double peak
resulted  from  averaging  individual  narrow  peaks,  as  can  be  seen  in  Figure  6.  (C)  The  baseline
normalized power time series (extracted from the squared magnitude of the Hilbert transform of the
stage-2 component time series) showed a peak at around 250 ms. (D) Average power from 0-600 ms
was used for an all-to-all t-test matrix. The Bonferroni-corrected threshold of p<.05/10 as well as the
uncorrected  p<.05  threshold  results  are  indicated.  The  comparison  between  partial  errors  and
congruent trials is biased because these are the conditions used to define the spatiotemporal filter;
this  result  should  be interpreted with  caution.  (C=congruent,  Prt=partial  conflict,  Fll=full  conflict,
PE=partial error, Err=full error).
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Several  aspects  of  these  results  are  worth  remarking.  First,  because  the  phase-locked  (ERP)

component of the signal was removed prior to analyses, these results reflect only non-phase-locked

dynamics  and  are  not  influenced  by  phase-locked  or  evoked  transients.  Second,  the  optimal

spatiotemporal  filter  was  narrowband,  despite  the  complete  absence  of  any  narrowband filters

applied to the data. This demonstrates that the narrowband activity was endogenously present in

the data, and not imposed by narrowband filtering a non-oscillatory evoked response, as has been

suggested could occur (Yeung et al., 2007). Third, although the difference between partial error and

congruent trials  can be expected based on overfitting noise (both source-separation stages were

based on separating these two conditions), the differences for other conditions are not trivial, as

those data were not considered when constructing the filters.

Finally, it is interesting to inspect the individual variability in the topography and frequency of the

spatiotemporal  feature  that  best  distinguished  response  conflict  from  the  congruent  condition

(Figure 6). The origin of this variability is not further investigated here, but it is possible that these

differences are related to meaningful variability in genetics, age, or brain structure (Klimesch, 1999;

Haegens et al., 2014; Cecere et al., 2015). Two subjects had stage-1 topographical projections

suggestive of artifacts (7th in the first column and 2nd in the second column of Figure 6). Closer

inspection of the data, however, did not reveal excessively noisy or corrupted data, and there was no

clear justification for removing these datasets from the analyses.
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Figure  6.  Individual  data  for  all  subjects  from  the  experiment  (the  ordering  is  based  on  data
acquisition date and is therefore arbitrary with respect to the results). These topographical maps
were averaged together in Figure 5a, and the power spectra were averaged together in Figure 5b.
The vertical dashed line indicates 5 Hz for reference. Note that each individual subject had a narrow
peak, but variability in the peak frequency led to the apparent double-peak in Figure 5b. The time
courses show the stage-2 source separation filters. No narrowband filters were applied at any stage;
these  signal  characteristics  were  empirically  identified  by  the  decomposition  as  being  the  most
relevant features for distinguishing partial error from congruent trials.
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Discussion

Population-level neural activity is often rhythmic, and these rhythmic patterns are increasingly being

linked to healthy and to dysfunctional cognitive and perceptual processes. Important insights into the

relationship between rhythmic neural activity and brain function will come from understanding the

neurophysiological principles that produce these rhythms, and how those principles are related to

the  neural  computations  that  implement  cognitive  operations.  This  endeavor  is  complicated  by

several limitations, such as large noise relative to signal (which is generally worse for non-invasive

measurements)  and  each  electrode  measuring  activity  simultaneously  from  multiple  sources  of

signal  and  noise.  Multichannel  recordings  can  help  ameliorate  these  limitations,  because  the

different sources of activity project instantaneously and linearly onto different electrodes. This fact

helps source-separation techniques recover the underlying sources, assuming the statistical features

of the sources conform to the assumptions made by the source separation method applied.

Most existing source-separation methods focus exclusively on optimizing spatial (electrode) weights,

while using traditional (e.g., Fourier-based) signal processing tools for subsequent temporal analyses.

This paper showed that the same source separation techniques can be applied to univariate time

series  data  as  well,  with  the  goal  of  empirically  identifying  temporal  patterns  that  discriminate

between two conditions or two time windows. One advantage of this method is that it eliminates the

need to impose temporal filters with specified temporal structures (such as sine waves), which may

be unrelated to the temporal process that generates the measured activity. This is not to say that

traditional temporal signal processing methods are inappropriate; instead, it is important to have

many tools in a scientist’s toolkit.

Advantages and limitations

Source separation methods in general have several advantages. They increase the signal-to-noise

characteristics, they help identify patterns in the data that might be difficult to obtain from single-

electrode analyses,  they reduce the dimensionality  of the data in a “guided” way (in contrast to

completely blind decompositions), and they reduce the need for potentially suboptimal electrode

selection (Makeig et al., 2004; Blankertz et al., 2008; Cunningham and Yu, 2014; Cohen, 2016). The

extension to temporal source separation illustrated here provides additional benefits, including blind

discovery  of  prominent  temporal  characteristics  that  can  be  used  for  empirically  derived  filter

kernels, and further separating signal from noise in time series data.
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The second stage of source separation does not require multichannel data; it could be performed on

single-channel time series. The advantage of the first stage is to facilitate isolation of a single spatial

component. This can be particularly important for datasets in which multiple sources contribute to

the data  recorded at  each electrode.  In  these cases,  the first  source separation phase will  help

spatially  isolate  features of  the data,  which will  facilitate the temporal  separation at  the second

stage. It  would also be possible to apply temporal filters to the data prior to the stage-1 source

separation (Cohen, 2016). However, such temporal filters should be fairly wide, otherwise the stage-2

temporal filter may simply reflect the sinusoidality imposed by the narrowband filter.

Empirical temporal filter kernel versus waveform shape

Perhaps the main limitation of the method presented here is related to the subtle but important

distinction  between  the  waveform  shape  that  reflects  the  biophysics  of  the  neural  circuit  that

produces measurable electrical fields, vs. the empirically derived temporal filter kernel obtained from

the method described here. The waveform shape of brain oscillations has become increasingly a

topic  of  conversation in  the neuroscience  literature  (Jensen et  al.,  2010;  Jones,  2016;  Cole  and

Voytek,  2017).  Identifying  waveform shape is  important  because it  provides  an anchor-point  for

linking EEG results  to underlying neurophysiology. Many empirically  measured waveforms appear

sinusoidal, but this may result from using sinusoidal filter banks to identify those waveforms; thus,

the sinusoidal filters will identify only the sinusoidal features of the “true” waveform. There are a few

striking cases of neural oscillations having non-sinusoidal shapes (Cole and Voytek, 2017), but these

tend to be unusually strong signals measured invasively, such as rat hippocampal theta.

The source separation method presented here produces the low-rank approximation of the time

series that optimally achieves the specified constraints (e.g., difference between conditions or time

windows). This is not the same as the waveform shape itself. For example, features such as a sharp

edge or a small ripple may be visually salient and physiologically meaningful, but if they contain little

discriminative information, those features will be ignored by source-separation or machine-learning

algorithms. Indeed, eigendecomposition and related methods have the goal of optimizing subspace

basis  vectors  based  on  patterns  in  covariance  matrices;  they  are  not  constrained  by  potential

neurophysiological plausibility. Although this hinders a simple physiological interpretation, it is also

an advantage: One need not specify a large number of unknown parameters and constraints for the

method to be valid and appropriately used. Therefore, if the empirical filter kernel is narrowband, it

indicates that a narrowband feature best discriminates two conditions, although it does not mean

that additional features of the data are irrelevant.
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Automatic or manual component selection?

In theory, algorithmic component selection would be optimal because it eliminates the potential for

researcher bias or subjectivity. The easiest selection criteria would be to take the eigenvector with

the largest corresponding eigenvalue. Additional selection criteria can be incorporated based on  a

priori expectations of the results, such as maximal topographical projection onto some electrodes, or

maximal spectral power within some frequency range.

However,  a  simple  selection algorithm may  not  always  select  the  most  appropriate  component.

Therefore, some expert user selection may be necessary. This is analogous to user-guided selection

of  components  during  independent  components  analysis.  Indeed,  algorithm-based  selection

methods of  independent  components tend to be suboptimal  relative to expert  human selection

(Chaumon et al., 2015). Human-supervised component selection should not be avoided or shunned.

As long as the component is selected in a way that is orthogonal to the main analysis, the risk of

introducing systematic biases towards any particular statistical result can be minimized.

Comparison to other source separation methods

There are many source separation methods that range in assumptions and implementation details.

The  brain-computer-interface  community  has  developed  many  strategies  for  dimensionality

reduction and source separation as it relates to classification of states based on multichannel EEG

signals  (Fouad et al., 2014). Generalized eigendecomposition is used in many of these approaches

(where it is sometimes called common spatial pattern analysis), because it tends to be a fast, robust,

and efficient method.

The  primary  novelty  of  the  present  paper  is  to  demonstrate  that  the  same  source  separation

principle can be applied to time series data by first expanding the dimensionality of a time series

using delay-embedding. The use of delay-embedded matrices in neuroscience is already established.

For example, Brunton et  al.  (2016) used delay-embedded matrices to estimate data components

(spatiotemporal coefficients) that link data at each time point to data at the previous time point.

Lainscsek  and  Sejnowski  (Lainscsek  and  Sejnowski,  2015;  Lainscsek  et  al.,  2015) used  delay-

embedded matrices to model neural dynamics as delay differential equations to estimate frequency-

specific  responses  and couplings  between electrodes.  Delay-embedding  matrices  are  a  powerful

method for uncovering dynamics in time series data, and continued methodological development

and applications will improve the quality of neuroscience data analysis.
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An advantage of using generalized eigendecomposition for the temporal source separation is that,

like with the spatial source separation, it is fast and robust, and does not require any parameters

other than those used to select the data for the S and R matrices. Applying the source separation in

two steps (first spatial, then temporal) is a major advantage. As mentioned in the Methods section,

trying to combine these into a single analysis step is theoretically sensible, but practically difficult

due to instabilities of decompositions on very large spatiotemporal matrices.

Implications for midfrontal theta and response conflict

Midfrontal theta is a robust neural signature of action monitoring including response conflict, error

detection, and learning from negative feedback (Cavanagh and Frank, 2014; Cohen, 2014b). Because

the primary purpose of this paper is methodological, there are limited novel insights into the neural

mechanisms  of  response  conflict  processing  and  performance  monitoring.  That  said,  this  study

provided  an  independent  demonstration  using  a  novel  analysis  technique  that  conflict-related

midfrontal theta reflects an amplitude modulation of ongoing theta oscillations, as opposed to a

phasic non-oscillatory evoked potential (for further discussion of this point, see Yeung et al., 2004,

2007; Trujillo and Allen, 2007; Cohen and Donner, 2013; Munneke et al., 2015).

Conclusion

Multivariate source separation methods are becoming increasingly important in neuroscience, as the

number of simultaneously recorded electrodes is steadily increasing (Stevenson and Kording, 2011)

and as it is increasingly becoming clear that information can be embedded within spatial-temporal

patterns of data that may be difficult to ascertain from traditional (e.g., single-channel ERP) analyses.

Although source-separation methods are typically applied only in the spatial dimension, they can

also be applied directly to the time series data to create empirical temporal filters that maximize

researcher-defined criteria without the necessity to apply sine wave-based filters that may distort

non-stationary time series. This was illustrated here by applying generalized eigendecomposition to

delay-embedded matrices.  In  the  empirical  EEG  application,  it  was  demonstrated  that  response

conflict and errors elicit  non-phase-locked narrow-band activity recorded over midfrontal regions.

The consistency of this finding with previous studies proves a proof-of-principle demonstration of the

method, as well as confirming the role of theta oscillations in cognitive control processes without the

necessity to apply narrowband sinusoidal filters.
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SUPPLEMENTAL FIGURE 1.

Figure S1.  Overview of key elements of data simulation. 2,004 dipoles were placed in the cortex
(black  dots)  with  an  orientation  normal  to  the  cortical  surface.  Noise  data  were  generated  by
imposing a correlation structure (see correlation matrix) on random numbers that had a 1/f power
spectrum. Two dipoles (magenta) were selected to contain brief sine waves that were summed on
top of the noise. Finally, the time series from all dipoles were projected onto the scalp and summed.
Note the difference in signal amplitude from the dipole to the EEG electrode with maximum dipole
projection; this difference is due to source-level mixing with activity from other dipoles.
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