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Synopsis	

	

A	molecular	dynamics	simulation	of	diffuse	X-ray	scattering	from	staphylococcal	

nuclease	crystals	is	greatly	improved	when	the	unit	cell	model	is	expanded	to	a	

2x2x2	layout	of	eight	unit	cells.	The	dynamics	are	dominated	by	internal	protein	

motions	rather	than	rigid	packing	interactions.	
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Abstract	

	

Molecular	dynamics	(MD)	simulations	of	Bragg	and	diffuse	X-ray	scattering	provide	

a	means	of	obtaining	experimentally	validated	models	of	protein	conformational	

ensembles.	This	paper	shows	that,	compared	to	a	single	periodic	unit	cell	model,	the	

accuracy	in	simulating	diffuse	scattering	is	increased	when	the	crystal	is	modeled	as	

a	periodic	supercell,	consisting	of	a	2x2x2	layout	of	eight	unit	cells.	The	MD	

simulations	capture	the	general	dependence	of	correlations	on	the	separation	of	

atoms.	There	is	substantial	agreement	between	the	simulated	Bragg	reflections	and	

the	crystal	structure;	there	are	local	deviations,	however,	indicating	both	the	

limitation	of	using	a	single	structure	to	model	disordered	regions	of	the	protein	and	

local	deviations	of	the	average	structure	away	from	the	crystal	structure.		Although	

it	was	anticipated	that	a	longer	duration	simulation	might	be	required	to	achieve	

convergence	of	the	diffuse	scattering	calculation	using	the	supercell	model,	only	a	

microsecond	is	required,	the	same	as	for	the	unit	cell.	Rigid	protein	motions	only	

account	for	a	small	fraction	of	the	variation	in	atom	positions	from	the	simulation.	

The	results	indicate	that	protein	crystal	dynamics	can	be	dominated	by	internal	

motions	rather	than	packing	interactions,	and	that	MD	simulations	can	be	combined	

with	Bragg	and	diffuse	X-ray	scattering	to	model	the	protein	conformational	

ensemble.	
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Introduction	

	

In	X-ray	diffraction	from	protein	crystals,	the	sharp	Bragg	peaks	are	accompanied	by	

diffuse	scattering	–	streaks	and	cloudy	features	between	the	peaks.	Diffuse	

scattering	comes	from	imperfections	in	the	crystal	such	as	diverse	protein	

conformations.	Unlike	the	Bragg	diffraction,	which	is	only	sensitive	to	the	mean	

charge	density,	diffuse	scattering	is	sensitive	to	the	spatial	correlations	in	charge	

density	variations.	Diffuse	scattering	therefore	provides	unique	data	for	modeling	

protein	conformational	ensembles.		

	

There	is	a	longstanding	interest	in	using	diffuse	scattering	to	validate	MD	

simulations	of	protein	crystals	(1-7).	Recent	advances	in	computing	now	enable	

microsecond	duration	simulations	of	diffuse	scattering	(7)	and	Bragg	diffraction	(8,	

9)	that	can	overcome	limitations	seen	using	10	ns	or	shorter	MD	trajectories	(1,	4).	

In	a	microsecond	simulation	of	a	single	staphylococcal	nuclease	unit	cell	(7),	much	

of	the	agreement	between	the	MD	simulation	and	diffuse	data	is	due	to	the	isotropic	

component,	a	small-angle-scattering-like	pattern	seen	for	all	protein	crystals.	

Agreement	with	this	component	is	significant	as	it	consists	of	roughly	equal	

contributions	from	solvent	and	protein	(5,	7).	The	anisotropic	component,	which	is	

about	10-fold	weaker,	agrees	less	well	with	the	simulation	(linear	correlation	of	

0.35-0.43).	This	gap	in	accuracy	between	the	isotropic	and	anisotropic	components	

must	be	closed	because	the	anisotropic	component	is	richly	structured	and	comes	

almost	entirely	from	the	protein,	creating	possibilities	for	validation	of	detailed	
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models	of	protein	motions.	Accurate	modeling	of	the	anisotropic	component	is	the	

key	to	unlocking	the	potential	of	diffuse	scattering	and	MD	simulations	for	modeling	

the	conformational	ensemble.	

	

Wall	et	al.	(7)	noted	that	the	simulation	of	a	single	unit	cell	might	limit	the	accuracy	

of	MD	models	of	diffuse	scattering,	and	suggested	that	simulating	a	larger	section	of	

the	crystal	with	several	unit	cells	might	improve	the	accuracy.	Here	this	idea	is	

tested	by	constructing	a	periodic	model	of	a	2x2x2	supercell	of	staphylococcal	

nuclease	and	performing	a	5.1	microsecond	duration	MD	simulation.	The	linear	

correlation	of	the	anisotropic	component	of	diffuse	intensity	computed	from	this	

simulation	with	the	data	is	0.68,	indicating	that	the	supercell	simulation	greatly	

increases	the	accuracy	of	the	model.	Analysis	using	Patterson	methods	suggests	that	

distance	dependence	of	the	correlations	is	captured	well.	The	mean	structure	

factors	from	the	simulation	largely	agree	with	the	crystal	structure;	however,	there	

are	local	deviations,	suggesting	a	path	to	improve	the	MD	model.	The	B	factors	from	

the	simulation	agree	well	with	the	crystal	structure	and	improve	on	a	TLS	model.	

Similar	to	the	unit	cell	simulation,	the	agreement	of	the	supercell	model	with	the	

data	plateaus	within	a	microsecond.	This	suggests	that	the	simulation	duration	

required	to	achieve	convergence	might	become	independent	of	the	system	size	as	it	

is	increased	beyond	the	length	scale	of	the	correlations.	Finally,	rigid	body	motions	

explain	only	a	minority	component	of	the	dynamics,	indicating	that	internal	motions	

can	be	more	important	than	packing	dynamics	in	MD	simulations	of	protein	crystals.	
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Methods	

	

Molecular	dynamics	simulation.	A	solvated	crystalline	model	was	created	using	

PDB	entry	1SNC.	After	stripping	the	waters,	UCSF	Chimera	was	used	to	add	residues	

absent	in	the	crystal	structure.	Using	the	context	of	the	crystal	structure	as	a	guide,	

six	missing	residues	at	the	N	terminus	were	modeled	as	a	beta	strand,	and	eight	

missing	residues	at	the	C	terminus	were	modeled	as	an	alpha	helix.	A	P1	unit	cell	of	

the	protein	and	thymidine-3′-5′-bisphosphate	(pdTp)	ligand	was	built	in	UCSF	

Chimera	using	the	P41	space	group	(4	copies	per	cell).	The	unit	cell	parameters	

were	a=b=48.499	Å,	c=63.430	Å,	α=β=γ=90°.	The	system	was	extended	to	a	2x2x2	

supercell	in	a	96.998	Å	X	96.998	Å	X	126.860	Å	right	rectangular	box	using	

Ambertools	PropPDB	(Fig.	1).		

	

Molecular	dynamics	simulations	were	performed	using	Gromacs	(10)	versions	5.0.2	

(setup	and	first	4.1	µs)	and	5.1.4	(extension	to	5.1	µs).	The	protein	topology	was	

defined	using	gmx	grompp	with	CHARMM	27	parameters	(11,	12).		The	HIS	

protonation	states	from	grompp	were	used	without	modification.	15,440	TIP3P	

water	molecules	were	added	using	gmx	solvate.	To	neutralize	the	system,	192	

waters	were	replaced	by	Cl-	ions,	using	gmx	genion.	CHARMM	27	compatible	

parameters	for	the	pdTp	ligand	were	obtained	using	the	SwissParam	server	((13),	

http://www.swissparam.ch/).		

	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2017. ; https://doi.org/10.1101/190496doi: bioRxiv preprint 

https://doi.org/10.1101/190496
http://creativecommons.org/licenses/by-nd/4.0/


Simulations	were	performed	using	a	constant	NVT	ensemble.	NVT	simulations	are	

desired	for	crystalline	simulations	to	enable	comparisons	of	any	calculated	densities	

and	structure	factors	to	the	crystal	structure	while	avoiding	difficulties	introduced	

by	drift	of	the	unit	cell	parameters	during	the	course	of	the	simulation.	The	model	

after	gmx	genion	showed	large	negative	pressures	when	simulated	via	NVT.	The	

standard	approach	for	solvated	systems	of	initially	equilibrating	the	pressure	using	

NPT	simulations	cannot	be	used,	as	this	would	change	the	box	size	and	therefore	the	

unit	cell.	The	present	approach	is	to	iteratively	perform	energy	minimization,	NVT	

simulation,	and	solvation	until	obtaining	a	pressure	near	1	bar.	After	several	

iterations,	the	number	of	water	molecules	was	increased	by	1,890	to	17,138.	The	

mean	pressure	computed	from	the	first	110	ns	of	the	trajectory	was	18	bar	with	a	

standard	deviation	of	130	bar,	indicating	that	the	procedure	was	successful.	

		

The	final	system	consisted	of	a	total	of	129,462	atoms.	There	were	32	copies	of	the	

protein,	32	copies	of	the	pdTp	ligand,	32	Ca2+	ions,	17138	water	molecules,	and	192	

Cl-	counterions.			

	

For	the	production	simulations,	a	time	step	of	2	fs	was	used,	with	LINCS	holonomic	

constraints	on	all	bonds.	Neighbor	searching	was	performed	every	10	steps.	The	

PME	algorithm	was	used	for	electrostatic	interactions,	with	a	cutoff	of	1.4	nm.	A	

reciprocal	grid	of	64	x	64	x	80	cells	was	used	with	4th	order	B-spline	interpolation.	

A	single	cut-off	of	1.4	nm	was	used	for	Van	der	Waals	interactions.	Temperature	

coupling	was	done	with	the	V-rescale	algorithm.	The	protein-ligand	complex	was	
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treated	as	a	separate	temperature	group	from	the	rest	of	the	atoms.	Periodic	

boundary	conditions	were	used.	Trajectory	snapshots	were	obtained	every	2	ps	in	

Gromacs	.xtc	format.	The	first	110	ns	of	the	trajectory	was	dedicated	to	initial	setup	

and	equilibration.	An	initial	production	run	then	extended	the	duration	to	1.1	µs.	

Subsequent	extensions	were	performed	to	5.1	µs,	in	1	µs	increments.	The	size	of	the	

equilibration	trajectory	is	27	GB,	and	the	rest	are	each	245	GB.	Each	microsecond	

took	about	2-4	weeks	to	complete	on	LANL	Institutional	Computing	machines,	

depending	on	availability	of	cycles.		

	

Simulated	diffuse	intensity.	The	diffuse	intensity	was	calculated	for	100	ns	

sections	of	the	MD	trajectory.	Each	section	was	divided	into	200	chunks,	which	were	

processed	in	parallel	across	10	nodes	of	an	Intel	Xeon	E5-2660_v3	cluster.	Prior	to	

performing	the	calculation,	each	snapshot	of	the	trajectory	was	aligned	to	the	crystal	

structure	using	the	gromacs	.tpr	structure	file.	To	do	this,	the	.tpr	file	was	converted	

to	a	.pdb	file	using	gmx	editconf.	The	.pdb	file	was	processed	to	ensure	the	

coordinates	reflected	the	connectivity	of	the	molecules	(gmx	trjconv	–pbc	mol).	The	

alignment	was	performed	using	the	processed	.pdb	file	as	the	reference	structure	

(gmx	trjconv	-fit	translation	–pbc	nojump).		

	

Each	chunk	of	sampled	structures	was	processed	using	the	previously	described	

Python	script	get_diffuse_from_md.py	(7)	to	calculate	the	diffuse	intensity	to	1.6	Å	

resolution.	The	calculation	of	the	diffuse	intensity	!!" ℎ!" 	uses	Guinier’s	equation	

(14):	
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!!" ℎ!" = !! ℎ!" ! ! − !! ℎ!" ! !.		 (1)	

	

In	the	script,	the	structure	factor,	!! ℎ!" ,	for	each	sample	n	is	calculated	at	Miller	

indices	hkl	using	the	iotbx	package	in	the	computational	crystallography	toolbox	

(CCTBX)	(15).	The	script	was	modified	to	accept	input	of	an	externally	supplied	unit	

cell	specification	using	the	PDB	CRYST1	format.	Specifying	the	P1	unit	cell	from	the	

crystal	structure	yields	the	diffuse	intensity	!!",!× ℎ!" 	sampled	on	the	Bragg	

lattice,	only	at	integer	hkl	values.	Specifying	the	P1	supercell	dimensions	in	the	

CRYST1	record	yields	!!",!× ℎ!" ,	which	is	sampled	twice	as	finely,	at	hkl	values	

that	are	multiples	of	½.		Averages	for	longer	sections	of	the	trajectory	were	

accumulated	from	averages	of	the	smaller	chunks.		

	

To	decompose	the	diffuse	intensity	into	isotropic	and	anisotropic	components,	

reciprocal	space	was	subdivided	into	concentric	spherical	shells,	each	with	a	

thickness	equal	to	the	voxel	diagonal.	The	discretely	sampled	isotropic	intensity	

!!" !! 	was	calculated	as	the	mean	intensity	at	scattering	vector	!!	at	the	midpoint	

of	each	shell	n.	The	anisotropic	intensity	!′!" ℎ!" 	was	then	calculated	at	each	

lattice	point	ℎ!"	by	subtracting	the	isotropic	intensity	!!" !!!" 	from	the	original	

signal	!!" ℎ!" .	The	value	of	!!" !!!" 	at	scattering	vector	!!!" 	in	the	range	

(!!, !!!!)	was	obtained	by	cubic	B-spline	interpolation	of	!!" !! 	(previous	

anisotropic	intensity	calculations	made	use	of	linear	interpolation	(7);	results	using	

either	interpolation	method	were	similar	in	the	present	case,	though	the	spline	is	
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generally	preferred	for	increased	accuracy).	The	same	method	was	used	to	obtain	

isotropic	 !! !! 	and	anisotropic	 !′! ℎ!" 	components	of	the	experimentally	

observed	diffuse	intensity.	

	

Because	the	experimental	diffuse	intensity	shows	symmetry	consistent	with	the	P41	

symmetry	of	the	unit	cell,	the	P4/m	Patterson	symmetry	(corresponding	to	the	P41	

unit	cell	symmetry)	was	enforced	by	replacing	each	!!" ℎ!" 	value	with	the	

average	over	all	symmetry	equivalent	hkl	positions	in	the	map.		

	

Simulated	structure	factors	and	average	structure.	Averages	of	!! ℎ!" 	were	

computed	along	with	the	diffuse	intensity.	To	obtain	structure	factors	for	

comparison	with	the	crystal	structure,	the	P41	unit	cell	CRYST1	record	was	used	in	

lieu	of	the	P1	unit	cell	or	supercell	record.	The	real	space	correlation	coefficient	

(RSCC)	was	evaluated	using	the	MolProbity	validation	tool	in	Phenix	(16),	using	PDB	

entry	4WOR	and	the	intensities	!!" ℎ!"  computed	as	the	square	of	the	mean	

!! ℎ!" .	The	errors	in	the	intensities	were	calculated	as	the	square	root	of	the	

intensities.	Prior	to	calculating	the	RSCC,	a	molecular	replacement	search	using	

CCP4	molrep	was	used	to	determine	the	placement	of	the	protein	in	the	unit	cell.	The	

average	structure	from	the	simulation	was	computed	by	using	phenix.refine	to	refine	

the	crystal	structure	against	the	!!" ℎ!" .	The	phenix.refine	option	

apply_overall_isotropic_scale_to_adp=false	was	used	to	remove	the	bulk-solvent	

scaling	component	from	the	B	factors.	For	comparison,	the	B	factors	from	a	TLS	
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model	were	obtained	by	refinement	against	the	experimental	Bragg	data	using	the	

refine.adp.tls="chain	A"	strategy=tls	in	phenix.refine.	

	

Image	processing	and	diffuse	data	integration.	Experimental	diffuse	scattering	

data	from	Wall	et	al.	(17)	were	used	for	validation	of	the	simulations.	These	data	

were	collected	on	a	custom	CCD	detector	configured	in	an	anti-blooming	mode	in	

which	charge	was	drained	away	from	overflow	pixels	(18).	The	data	were	processed	

using	Lunus	software	for	diffuse	scattering	((19),	

https://github.com/mewall/lunus).	Indexing	was	performed	using	image	numbers	

1,	20,	and	40	from	the	rotation	series.	Rather	than	limiting	the	observations	!! ℎ!" 	

to	integer	values	of	the	Miller	indices	hkl,	as	was	done	for	the	single	unit	cell	MD	

simulations	(7),	data	were	sampled	twice	as	finely,	both	at	Miller	indices	and	at	the	

mid-points	between.	The	two-fold	sampling	yields	data	that	correspond	precisely	to	

the	reciprocal	lattice	of	the	2x2x2	supercell	from	the	MD	model.	To	place	the	model	

and	data	in	an	equivalent	orientation,	the	data	were	reindexed	by	applying	a	180	

degree	rotation	about	the	h-axis.		Prior	to	integration,	images	were	mode	filtered	to	

reject	the	Bragg	peak	signal	(18,	19).		The	kernel	for	the	mode	filter	was	a	15	pixel	x	

15	pixel	square,	with	frequency	statistics	evaluated	in	1	ADU	bins.	

	

The	accuracy	of	Lunus	was	improved	by	shifting	from	integer	to	floating	point	

arithmetic	for	the	polarization	correction	and	sold	angle	normalization,	which	were	

combined	into	a	single	step.	The	increase	in	accuracy	is	small	for	strong	diffraction	

images	such	as	those	used	here	but	is	substantial	for	weaker	diffraction	images,	e.g.,	
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including	pixels	with	fewer	than	10-100	photon	counts.	In	addition,	as	mentioned	

above	(Diffuse	scattering	computation),	a	cubic	B-spline	method	was	implemented	

in	Lunus	to	improve	calculation	of	the	anisotropic	intensity.		

	

A	collection	of	helper	scripts	was	added	to	Lunus	to	enable	diffraction	images	to	be	

processed	and	integrated	in	parallel.	The	helper	scripts	produce	shell	scripts	with	

Lunus	workflows	to	perform	image	processing,	integration,	and	merging	of	the	data,	

and	a	CCTBX	(15)	workflow	to	index	the	data	and	obtain	a	transformation	to	map	

pixels	in	diffraction	images	to	fractional	hkl	values	in	reciprocal	space.	The	scripts	

were	executed	in	parallel	on	12	nodes	of	a	32-core	Intel	Haswell	cluster;	the	96	

1024x1024	images	of	diffraction	from	staphylococcal	nuclease	could	be	processed	

in	one	minute.	Real-time	parallel	processing	of	diffuse	scattering	from	single-crystal	

synchrotron	datasets	is	therefore	now	possible	using	Lunus.			

	

All	Lunus	revisions,	including	helper	scripts	for	parallel	processing,	have	been	

committed	to	the	github	repository,	https://github.com/mewall/lunus.			

	

As	for	the	calculated	!!" ℎ!" 	the	P4/m	Patterson	symmetry	was	enforced	for	the	

experimental	!! ℎ!" .	The	isotropic	and	anisotropic	components	!! !! 	and	

!′! ℎ!" 	were	calculated	from	!! ℎ!" ,	like	for	!!" !! 	and	!′!" ℎ!" 	(Diffuse	

scattering	computation).	The	correlation	coefficient	!!" 	was	used	to	compare	the	

total	calculated	diffuse	scattering,	!!" ℎ!" ,	to	the	experimental	data,	!! ℎ!" ,	and	
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used	the	correlation	coefficient	!′!" 	to	compare	the	anisotropic	component,	

!′!" ℎ!" 	to	the	experimental	data,	!′! ℎ!" .		

	

Simulated	diffraction	images.	Diffraction	images	were	simulated	using	methods	

similar	to	the	data	integration,	except	instead	of	the	datasets	being	compiled	from	

the	pixel	values,	pixel	values	were	obtained	from	3D	datasets.	An	indexing	solution	

was	obtained	as	in	the	data	integration,	and	a	template	image	was	provided	to	

determine	the	crystal	orientation.	Each	pixel	was	mapped	to	a	fractional	Miller	

index,	and	the	pixel	value	was	calculated	as	a	sum	of	intensities	at	the	eight	nearest	

grid	points	in	the	dataset,	in	proportion	to	the	distance	to	the	center	of	the	grid	

point	along	each	axis	in	the	space	of	Miller	indices.		The	method	was	implemented	in	

a	Lunus	python	script,	simulate_diffraction_image.py	using	CCTBX	methods.	

	

Patterson	maps.	Diffuse	Patterson	maps	were	created	by	Fourier	transforming	

diffuse	intensities.	Symmetrized	anisotropic	diffuse	intensities	were	output	in	hklI	

text	format	using	Lunus	lat2hkl,	and	were	converted	to	.mtz	format	using	

phenix.reflection_file_converter.	Fourier	transforms	were	computed	using	the	

PATTERSON	fft	method	(20)	in	the	CCP4	suite	(21).	A	Patterson	map	of	the	

anisotropic	component	of	the	Bragg	reflections	was	computed,	for	comparison	to	

the	diffuse	Patterson	maps.	The	anisotropic	component	of	Bragg	reflections	was	

calculated	using	Lunus	anisolt,	after	conversion	of	the	reflections	from	.mtz	format	

to	hklI	text	using	CCP4	mtz2various.	The	intensities	were	than	converted	back	to	
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.mtz	using	phenix.reflection_file_converter,	and	the	Patterson	obtained	using	fft,	as	

mentioned	above.	

	

Rigid-body	rotation	analysis.	Snapshots	of	alpha	carbon	positions	from	the	

supercell	were	obtained	every	40	ps	and	were	translationally	aligned	to	the	

structure	in	the	.tpr	file	used	for	the	110-1100	ns	simulation.	Rotation	matrix	

analysis	was	performed	using	32	runs	of	gmx	rotmat,	using	the	snapshots	for	each	of	

the	32	copies	of	the	protein	as	inputs.	The	gmx_rotmat.c	source	code	was	edited	to	

add	outputs	of	the	root	mean	squared	deviation	(RMSD)	of	coordinates	between	the	

snapshot	and	the	reference	structure	both	before	and	after	alignment,	in	addition	to	

the	usual	output,	the	elements	of	the	rotation	matrix.	A	custom	python	script	was	

written	to	compute	standard	deviations	of	Euler	angles	from	the	.xvg	rotation	

matrix	element	output	of	rotmat,	and	to	accumulate	trajectory-wide	RMSDs	by	

calculating	the	square	root	of	the	average	squared	RMSD	for	individual	snapshots.		

	

Results	

	

MD	simulations	were	performed	using	a	solvated	supercell	model	of	crystalline	

staphylococcal	nuclease	consisting	of	eight	unit	cells	in	a	2x2x2	layout	(Fig.	1,	

Methods).	The	total	simulation	duration	was	5.1	µs.	Trajectories	were	obtained	for	

the	following	segments,	sampled	every	2	ps:	the	initial	equilibration,	0-110	ns;	110–

1100	ns;	1100-2100	ns;	2100-3100	ns;	3100-4100	ns;	and	4100-5100	ns.		
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Diffuse	intensities	were	calculated	from	the	trajectories	in	100	ns	sections,	and	the	

agreement	with	the	data	was	assessed	using	the	anisotropic	component	(Methods).	

In	the	100	ns	immediately	following	the	equilibration,	the	linear	correlation	

between	the	simulation	and	the	data	is	0.62.	Correlations	range	between	0.59	and	

0.62	for	subsequent	sections,	through	1100	ns	(Fig.	2,	dashed	boxes).		

	

The	correlation	of	the	running	average	of	the	diffuse	intensity	with	the	data	

increases	steadily	from	0.62	to	0.68	from	110-700	ns;	it	remains	at	0.68	through	

1100	ns	(Fig.	2,	solid	line).	Beyond	1100	ns,	the	agreement	decreases:	the	

correlation	for	100	ns	sections	between	1100-5100	ns	ranges	from	0.56	to	0.60;	the	

correlations	for	the	accumulated	1100-2100	ns,	2100-3100	ns,	and	3100-4100	

segments	are	all	0.65;	and	the	correlation	for	the	4100	ns-5100	ns	segment	is	0.63.	

	

Simulated	and	experimentally	derived	diffraction	images	look	similar	(Fig.	3).	There	

is	good	correspondence	between	the	shapes	of	cloudy	features	in	the	simulation	and	

the	experimental	data	at	all	but	the	lowest	resolutions.	There	are	some	large	

differences	in	the	strengths	of	the	features;	for	example,	the	large,	intense	red	

feature	in	the	bottom	half	of	the	simulation	image	(Fig.	3A)	is	weaker	than	the	

corresponding	feature	in	the	experimentally	derived	image	(Fig.	3B).					

	

The	correlation	between	the	simulation	and	the	data	is	substantial	over	a	wide	

resolution	range	(Fig.	4,	solid	steps),	consistent	with	the	range	over	which	the	

diffuse	features	look	similar	in	Fig.	3.	Above	10	Å	resolution,	the	correlation	is	at	
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least	0.52	in	all	of	the	32	resolution	shells,	and	is	above	0.6	in	all	but	three.	Below	3	

Å	resolution,	the	agreement	between	the	simulation	and	data	is	substantially	less	

than	the	agreement	between	symmetrized	and	unsymmetrized	datasets,	indicating	

there	is	room	for	improvement	in	modeling	the	data	in	this	resolution	range.	Above	

2	Å	resolution,	the	agreement	between	the	data	and	simulation	is	higher	than	the	

degree	to	which	the	symmetry	is	obeyed,	suggesting	that	the	symmetry	averaging	

might	have	eliminated	some	systematic	error	in	the	data.	Below	10	Å	resolution,	the	

agreement	becomes	very	small	(with	the	exception	of	a	low	resolution	outlier),	and	

the	CCsym	values	also	become	very	small,	suggesting	that	the	data	were	not	

accurately	measured	in	the	neighborhood	of	the	beam	stop.	

	

Real-space	comparisons	of	the	Patterson	function	of	the	charge	density	variations	

(Methods)	show	that	both	the	simulation	and	the	data	exhibit	similar	modulation	

with	distance	(Fig.	5).	The	amplitude	of	the	variations	is	especially	similar	in	the	X=0	

section	(Figs.	5A,B).	In	the	Z=0	section,	the	simulation	has	higher	amplitude	

variations	than	the	data	at	longer	distances	(Figs.	5D,	E),	indicating	that	the	

correlations	within	this	plane	are	stronger	in	the	simulation	than	in	the	data.	The	

linear	correlation	between	the	Pattersons	computed	from	the	simulation	and	the	

data	is	0.70.	The	Patterson	computed	from	the	Bragg	data	(Figs.	5C,	F)	shows	much	

higher	amplitude	features	at	long	distances,	indicating	a	longer	length	scale	of	

correlations	for	the	mean	than	for	the	variations	in	charge	density.		
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The	real-space	correlation	coefficient	(RSCC)	computed	using	the	crystal	structure	

and	the	calculated	Bragg	reflection	amplitudes	from	the	simulation	(Methods)	is	

high	in	most	regions	(Fig.	6,	purple	line);	however,	there	are	especially	large	dips	

(<0.6)	for	residues	6-8	at	the	N	terminus,	and	for	residues	46-52.	The	average	RSCC	

for	all	residues	is	0.80.	Regions	of	the	crystal	structure	with	high	B	factors	(Fig.	6,	

blue	line)	include	both	the	N	terminus	and	a	previously	observed	disordered	loop	in	

the	crystal	structure	at	residues	44-50	(22).	The	overall	RMSD	of	atom	positions	

between	the	simulation	average	structure	(Methods)	and	the	crystal	structure	is	0.7	

Angstroms,	with	high	deviations	concentrated	in	local	regions	of	the	protein	(Fig.	6,	

yellow	line).	The	residue-wise	composite	B	factors	from	the	crystal	structure	and	

the	simulation	average	structure	are	very	similar	(Fig.	7A,B);	the	linear	correlation	

between	the	two	is	0.94.	By	comparison,	the	residue-wise	composite	B	factors	from	

a	TLS	model	of	the	crystal	structure	underestimate	the	disorder	in	the	N	terminus	

and	in	the	flexible	loop	(Fig.	7C);	the	linear	correlation	between	the	B	factors	

derived	from	the	individual	ADP	vs	TLS	model	is	0.89.	

	

Discussion	

	

The	0.68	correlation	with	the	anisotropic	component	of	the	diffuse	data	is	much	

higher	than	has	been	previously	achieved	using	MD	simulations.	The	present	

simulation	used	a	supercell	model	whereas	previous	simulations	used	a	unit	cell	

model	of	the	crystalline	protein.	Supercell	models	are	expected	to	be	more	accurate,	

as	they	more	realistically	describe	interactions	across	unit	cell	boundaries.	Larger	
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supercell	models	might	further	increase	the	accuracy,	and	can	yield	detailed	models	

of	large-scale	motions	that	have	been	studied	using	simpler	models	of	protein	

diffuse	scattering,	such	as	acoustic	crystal	vibrations	in	ribosome	crystals	(23),		

coupled	rigid-body	motions	in	lysozyme	crystals	(24),	and	liquid-like	motions	with	

long	correlation	lengths	in	lysozyme	(25)	and	calmodulin	crystals	(26).	

	

In	addition,	compared	to	the	previous	simulation,	the	present	simulation	included	

residues	theoretically	modeled	at	the	N	and	C	terminus.	To	determine	the	role	of	

including	the	extra	residues	in	achieving	the	increased	correlation,	a	MD	simulation	

of	a	single	unit	cell	was	performed	using	the	extended	model	(unpublished).	The	

correlation	between	the	simulated	and	experimental	diffuse	intensity	within	the	

first	microsecond	was	0.42	compared	to	the	previous	correlation	of	0.35-0.43	(7).	

The	supercell	model	therefore	accounts	for	the	increased	accuracy	of	the	simulated	

diffuse	scattering.	

	

Like	in	the	supercell	simulation,	the	residue-wise	B	factors	of	the	average	structure	

from	the	single	unit	cell	simulation	are	similar	to	the	crystal	structure	(Supporting	

Fig.	S1A);	the	linear	correlation	between	the	two	is	0.95,	compared	to	a	correlation	

of	0.94	for	the	supercell	simulation.	A	similar	high	agreement	with	crystallographic	

B	factors	was	seen	in	MD	simulations	of	a	3x2x2	supercell	P1	hen	egg-white	

lysozyme	crystals	(9).	The	RSCC	values	computed	between	the	crystal	structure	and	

the	unit	cell	simulation	also	are	similar	to	those	for	the	supercell	simulation	

(Supporting	Fig.	S1B);	the	average	RSCC	for	all	residues	is	0.82	for	the	unit	cell	
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simulation,	compared	to	0.80	for	the	supercell	simulation.	Compared	to	the	unit	cell	

simulation,	the	supercell	simulation	therefore	specifically	improves	the	model	of	

structure	variations,	but	not	the	model	of	the	average	structure.		

	

The	maximum	agreement	with	the	data	was	achieved	within	the	first	1100	ns	of	the	

simulation.	The	rate	of	convergence	to	the	maximum	is	similar	to	what	was	seen	for	

the	previously	published	unit	cell	simulation	(7).	Because	the	diffuse	intensity	is	

only	sensitive	to	the	two-point	correlations	in	the	variations,	this	result	suggests	

that	the	most	important	motions	in	the	present	MD	simulation	for	explaining	the	

experimental	data	are	correlated	on	a	shorter	length	scale	than	the	unit	cell.	The	

short	length	scale	of	correlations	is	supported	by	the	comparison	between	the	

Patterson	computed	from	the	Bragg	and	diffuse	data,	which	reveal	that	the	diffuse	

Patterson	is	attenuated	at	long	distances	(Fig.	5).	The	simulation	duration	required	

to	achieve	a	similar	accuracy	is	therefore	expected	to	be	nearly	independent	of	the	

system	size.	Prior	to	this	study,	the	expectation	was	that	supercell	simulations	

would	require	a	longer	duration	than	unit	cell	simulations	to	converge,	as	larger	

systems	involve	motions	on	longer	length	scales,	which	are	generally	slower.	It	is	

still	possible	that	more	accurate	MD	models	of	larger	scale	motions	would	yield	an	

even	higher	correlation	with	the	data,	at	the	cost	of	longer	simulation	times.	

However,	the	finding	that	reasonably	accurate	MD	models	of	larger	systems	do	not	

require	longer	simulation	durations	is	surprising.			
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There	are	strong	similarities	between	the	Patterson	maps	calculated	from	the	

simulated	and	experimental	diffuse	intensities	(Fig.	5).	The	overall	modulation	of	

the	diffuse	Patterson	is	especially	similar	between	the	simulation	and	the	data,	

indicating	that	the	distance	dependence	of	the	correlations	is	captured	well	by	the	

MD	simulation.	The	attenuation	of	the	Patterson	along	the	a	and	b	lattice	vectors	is	

more	pronounced	in	the	data	than	in	the	simulation,	however,	indicating	a	longer	

length	scale	of	correlations	in	the	simulation	than	in	the	data	within	the	Z	=	0	plane	

(Fig.	5C,D).		

	

If	the	simulation	perfectly	described	the	experimental	system,	the	agreement	would	

be	expected	either	to	increase	or	to	plateau	at	long	times,	depending	on	how	

accurately	the	data	were	measured.	The	agreement	beyond	1100	ns	decreased,	

however,	indicating	a	divergence	of	the	simulation	away	from	the	data.	While	it	is	

possible	that	the	decrease	is	transient	and	that	running	the	present	simulation	for	

longer	would	eventually	lead	to	an	increase	in	the	agreement,	the	simplest	

explanation	is	that	the	MD	model	is	deviating	from	the	experimental	behavior	at	

long	times.		

	

Dips	in	the	residue-wise	RSCC	plot	(Fig.	6,	purple	line)	indicate	regions	where	the	

simulated	charge	density	locally	deviates	from	the	crystal	structure.	Dips	at	the	N	

terminus	and	at	residues	46-52	correspond	to	high	B	factor	regions	(Fig.	6,	blue	

line),	and	might	reflect	the	intrinsic	difficulty	of	capturing	discrete	conformational	

variability	using	B	factors	(27).	Dips	in	the	RSCC	also	correspond	to	regions	of	high	
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RMSD	between	the	simulation	average	structure	and	the	crystal	structure	(Fig.	6,	

yellow	line).	These	include	not	only	the	high	B	factor	regions,	but	also	many	regions	

with	lower	B	factors.	The	low	B	factor	regions	with	high	RMSDs	indicate	where	the	

atom	positions	from	the	simulation	locally	deviate	from	the	crystal	structure.	The	

discrepancies	in	these	regions	would	be	especially	good	targets	for	improving	the	

MD	model.		

	

There	are	a	number	of	specific	routes	to	improving	the	MD	model.	Missing	residues	

at	the	N	and	C	terminus	could	be	modeled	more	accurately,	using	more	of	the	

context	from	the	crystal	structure.	The	2x2x2	supercell	could	be	extended	to	an	

even	larger	supercell.	Additional	compounds	found	in	the	mother	liquor	could	be	

added	to	the	model	(e.g.	23%	2-methyl-2,4-	pentanediol	(MPD)),	and	the	ionic	

strength	of	the	solvent	could	be	more	accurately	modeled;	the	current	model	only	

includes	water	and	neutralizing	counter-ions.	There	might	be	inaccuracies	in	the	MD	

force	fields;	importantly,	the	accuracy	of	the	MD	models	should	now	be	high	enough	

to	enable	improvement	of	force	fields	using	crystallography	data,	just	as	validation	

using	NMR	data	(28)	has	led	to	improvement	in	MD	force	fields	(29-31).	Time-

averaged	ensemble	refinement	produces	models	that	are	closer	to	the	crystal	

structure	(32)	and	might	be	used	in	combination	with	diffuse	data	to	generate	more	

accurate	conformational	ensembles.			

	

Recent	solid	state	NMR	(ssNMR)	experiments	combined	with	crystalline	protein	

simulations	(33-35)	create	opportunities	for	joint	validation	of	MD	simulations	
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using	crystallography	and	NMR.	A	ssNMR	+	MD	study	of	protein	GB1	(35)	showed	

reasonable	agreement	between	200	ns	MD	simulations	and	the	data	for	longitudinal	

relaxation	rates	and	chemical	shifts,	with	lower	agreement	for	the	transverse	

relaxation	rates.	A	ssNMR	+	MD	study	of	ubiquitin	(33,	34)	attributed	the	transverse	

relaxation	rates	to	rigid	body	rotations	of	whole	proteins	in	the	crystal	lattice,	with	

amplitudes	of	3-5	degrees	extracted	from	the	simulations.	To	assess	the	importance	

of	rigid	body	rotations	in	the	present	staphylococcal	nuclease	simulation,	snapshots	

of	each	of	the	32	copies	of	the	protein	were	rotationally	aligned	to	a	reference	

structure	(Methods).	Standard	deviations	of	Euler	angles	were	mostly	in	the	1-2	

degree	range,	with	individual	values	as	low	as	0.8	degrees	and	as	high	as	2.3	degrees	

(Fig.	8A).	The	RMSD	of	coordinates	between	the	snapshots	and	the	reference	

structure	decreased	after	the	alignment,	but	only	by	10-20%	for	most	copies	of	the	

protein,	with	a	minimum	of	8%	and	a	maximum	of	28%	(Fig.	8B).	Therefore	rigid	

body	rotations	are	not	a	substantial	component	of	the	dynamics	in	the	present	

simulations.		

	

Further	investigation	of	the	rotational	matrix	fit	for	protein	numbers	4	and	31,	

which	have	ψ	angle	SDs	of	2.3	and	2.2	degrees,	respectively,	revealed	a	pitfall	in	

rotational	analysis.	Visual	inspection	of	the	trajectories	for	these	protein	numbers	

revealed	a	conformational	change	in	the	flexible	loop	around	residues	42-54	during	

the	first	microsecond	(Fig.	9).	When	the	tip	of	the	loop	was	removed	(residues	46-

52,	rendered	using	sticks	in	Fig.	9),	the	fitted	value	of	ψ decreased	by	0.7	degrees	for	

each	of	the	protein	copies.	This	means	that	the	rotational	matrix	fit	does	not	solely	
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report	on	rigid	body	motions,	as	is	commonly	assumed;	therefore	caution	is	

warranted	when	using	rigid-body	motions	models	to	interpret	MD	simulations.	It	

would	be	interesting	to	perform	a	similar	analysis	of	crystalline	ubiquitin	MD	

trajectories	(33,	34),	to	see	whether	the	variations	in	rotational	fits	correspond	to	

rigid	body	rotations,	as	assumed,	or	whether	they	instead	reflect	internal	motions.	

Overall	the	analysis	here,	including	the	improved	modeling	of	the	B	factors	using	the	

MD	model	compared	to	a	TLS	model	(Fig.	7),	highlights	the	importance	of	internal	

motions	and	suggests	a	more	minor	role	for	independent	rigid	body	translations	

(36)	or	rotations	(37)	in	protein	diffuse	scattering.	It	will	be	important	to	determine	

whether	rigid	body	motions	are	important	for	other	proteins,	especially	proteins	

that	are	stiffer	than	staphylococcal	nuclease.		Studies	that	combine	crystallography,	

ssNMR,	and	MD	simulations	to	develop	accurate	models	of	crystalline	protein	

dynamics	with	multiple	points	of	validation	are	strongly	motivated,	to	reveal	the	

mechanisms	of	variation	that	really	occur	in	protein	crystals.		

	

In	Bragg	analysis,	a	good	molecular	replacement	solution	yields	a	linear	correlation	

with	the	Bragg	data	of	about	0.80.	The	individual	atom	positions	and	B	factors	can	

then	be	refined	to	determine	a	crystal	structure	that	is	specific	to	the	

crystallography	experiment.	Because	each	Bragg	reflection	is	determined	by	the	

entire	crystal	structure,	local	atomic	details	only	become	resolved	once	the	entire	

structure	is	modeled	with	sufficient	accuracy.		Similarly,	accurate	models	of	diffuse	

data	might	only	reveal	the	atomic	details	of	molecular	motions	when	the	entire	

conformational	ensemble	is	modeled	with	sufficient	accuracy.		
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The	present	correlation	of	0.68,	although	a	significant	advance,	probably	only	

reflects	a	global	agreement	of	the	model	with	the	data,	and	not	a	validation	of	the	

details	of	the	simulation.	As	for	the	Bragg	data,	once	the	correlation	of	models	with	

the	anisotropic	diffuse	data	is	sufficiently	high,	diffuse	scattering	figures	of	merit	

such	as	correlation	coefficients	or	R	factors	might	become	more	sensitive	indicators	

of	whether	the	MD	motions	are	real.		If	this	can	be	achieved,	then	crystallography	

and	MD	simulations	will	become	a	powerful	tool	for	obtaining	experimentally	

validated	models	of	biomolecular	mechanisms	in	crystalline	proteins.	
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Figure	Captions	

	

Fig.	1.	Staphylococcal	nuclease	supercell	model.	Eight	unit	cells	containing	four	

proteins	each	are	arranged	in	a	2x2x2	layout.	Protein	chains	are	rendered	as	

cartoons.	The	pdTP	ligand	is	rendered	as	red	sticks.	Water	atoms	are	indicated	using	

speck-like	blue	spheres.	The	image	was	rendered	using	Pymol	(https://pymol.org/).	

		

Fig.	2.	Linear	correlation	between	the	simulated	and	experimental	diffuse	intensity,	

evaluated	for	subsequent	100	ns	sections	of	the	MD	trajectory	(dashed	boxes)	and	

cumulatively	(solid	line).	The	cumulative	plot	plateaus	at	a	value	of	0.68.	

	

Fig.	3.	Comparison	of	simulated	diffraction	images	calculated	from	the	simulated	

(Left	panels)	and	experimental	(Right	panels)	three-dimensional	diffuse	intensities.	

The	crystal	orientation	corresponds	to	the	first	diffraction	image	in	the	rotation	

series.	The	display	is	truncated	at	1.6	Angstroms.	The	mean	pixel	value	at	each	

scattering	vector	was	subtracted,	and	then	the	minimum	value	in	the	image	was	

subtracted,	prior	to	visualization.	The	images	were	displayed	using	the	rainbow	

colormap	in	Adxv	(38),	with	a	pixel	value	range	arbitrarily	chosen	to	highlight	the	

similarities.	

	

Fig.	4.	Resolution-dependent	agreement	between	simulation	and	data	(solid	line),	

compared	to	the	self-consistency	of	the	data,	as	assessed	using	the	expected	P4/m	

symmetry	(dotted	line).	
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Fig.	5.	Comparison	of	the	Fourier	transform	of	the	simulated	diffuse	intensity	(left	

panels)	with	that	of	the	experimental	data	(middle	panels)	and	the	Bragg	data	(right	

panels).	Only	the	anisotropic	component	is	used	to	calculate	the	transforms.	Positive	

contours	are	in	black,	negative	in	red.	Contours	are	at	every	0.5-sigma	between	0	

and	10-sigma	in	the	diffuse	data	and	are	adjusted	to	be	equivalent	with	respect	to	

sigma/Imax	in	other	panels.	(A)	X=0	section,	simulation;	(B)	X=0	section,	diffuse	

data;	(C)	X=0	section,	Bragg	data;	(D)	Z=0	section,	simulation;	(E)	Z=0	section,	

diffuse	data;	(F)	Z=0	section,	Bragg	data.	The	plots	were	produced	using	CCP4	

mapslicer	(21).	

	

Fig.	6.	Residue-wise	comparisons	between	the	simulated	structure	factors	and	the	

crystal	structure.	The	real	space	correlation	coefficient	(purple	line)	is	computed	

using	the	crystal	structure	and	the	simulated	Bragg	reflections.	The	isotropic	B	

factors	(blue	line)	are	taken	from	the	crystal	structure.	The	RMSD	of	atomic	

coordinates	(yellow	line)	is	computed	between	the	average	structure	from	the	

simulation	and	the	crystal	structure.		

	

Fig.	7.	Residue-wise	comparison	between	the	B	factors	from	the	crystal	structure	

(purple),	MD	simulated	average	structure	(cyan),	and	a	TLS	model	of	the	crystal	

structure	(green).		
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Fig.	8.	Analysis	of	the	MD	trajectory	in	terms	of	rigid-body	motions	of	whole	

proteins.	(A)	Standard	deviations	of	Euler	angles	that	optimally	align	protein	

snapshots	to	the	reference	structure.	(B)	RMSDs	of	coordinates	computed	before	

and	after	aligning	protein	snapshots	to	the	reference	structure.	

	

Figure	9.	Snapshots	of	protein	31	at	110	ns	(green)	and	10001	ns	(pink).	The	seven	

residues	at	the	N-	and	C-terminus,	ignored	in	the	rotational	fit,	are	colored	white.	

The	Euler	angle	ψ	of	the	rotational	fit	decreases	by	0.7	degrees	when	the	tip	of	the	

flexible	loop	(residues	46-52,	indicated	using	sticks)	is	removed.	The	image	was	

rendered	using	Pymol	(https://pymol.org/).	

	

Supplementary	Figure	S1.	Comparison	of	Bragg	analysis	results	for	the	unit	cell	vs.	

supercell	simulations.	(A)	Residue-wise	comparison	between	the	B	factors	from	the	

crystal	structure	(purple)	and	simulated	average	structures	from	the	unit	cell	

(green)	and	supercell	(cyan)	simulations.	(B)	Residue-wise	RSCC	computed	between	

the	crystal	structure	and	the	charge	density	from	the	supercell	(green)	and	unit	cell	

(cyan)	simulations.	
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