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Abstract

Recombination results in the reciprocal exchange of genetic information occurring in
meiosis which increases genetic variation by producing new haplotypes. Recombination
rates are heterogeneous between species and also along di�erent genomic regions. Large
fractions of recombination events are often concentrated on short segments known as re-
combination hotspots. In this work we statistically inferred heterogeneous recombination
rates by using relevant summary statistics as explanatory variables in a regression model.
We used for this purpose a frequentist segmentation algorithm with type I error control
to estimate the variation in local recombination rates. Under various simulation setups
we have obtained very fast and accurate estimates. We also show an example of an in-
ference on a 103kb region of the human genome and compare our inferred historical- and
population-speci�c hotspots with results from experimental data (sperm-typing and dou-
ble strand break maps). For the analyzed region, our method shows a good congruence
between historical and experimental hotspots, except for one hotspot hypothesized to be
population-speci�c. This method is implemented in the R-package LDJump, which is avail-
able from https://github.com/PhHermann/LDJump.

1 Introduction

Recombination is a necessary process during meiosis starting with the formation of DNA double-
strand breaks (DSBs) that results in an exchange of genetic material between homologous
chromosomes [Baudat et al., 2013]. This causes the formation of new haplotypes and increases
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the genetic variability of populations. In population genetics, the recombination rate ρ is de�ned
as ρ = 4Ner, where Ne is the e�ective population size and r the recombination rate per base
pair (bp) and generation. Recombination rates vary between species (human vs. chimpanzee see
[Auton et al., 2012] or mice see [Smagulova et al., 2011]), populations within species (human
populations like Africans and Europeans see [The 1000 Genomes Project Consortium, 2015,
Pratto et al., 2014, Berg et al., 2010]), individuals within species (humans see [Pratto et al.,
2014]), individuals of di�erent sexes (see [Kong et al., 2010]), as well as along the genome with
hot and cold regions of recombination see [Je�reys et al., 2001, McVean et al., 2004, Myers
et al., 2005]. Large fractions of recombination events are concentrated on short segments which
are called hotspots (reviewed in [Arnheim et al., 2007]). The literature suggests to de�ne human
hotspots as showing an at least �ve-fold increase in rate compared to background recombination
for a length of up to 2kb [McVean et al., 2004].
Molecular and evolutionary mechanisms of the process of recombination can be better under-
stood with accurate estimates of the recombination rate in di�erent regions of the genome
[McVean et al., 2004, Chan et al., 2012]. Moreover, precise knowledge of the recombination
rate variation along the DNA sequence improves inference from polymorphism data about
e.g. positive selection [Sabeti et al., 2006], linkage disequilibrium [Hill and Robertson, 1968],
and facilitates an e�cient design and analyses of disease association studies [McVean et al.,
2004].
Di�erent approaches have been used to estimate recombination rates in humans di�ering in their
genome-wide coverage, resolution, and active recombination. Experimental measures include
whole genome sequencing or SNP typing of pedigrees of at least 2-3 generations [Coop et al.,
2008, Kong et al., 2010, Halldorsson et al., 2016] which do not have a resolution below tens
of the kilobases given that not many recombination events are captured. Direct measurements
in sperm provide high resolution events at the level of a few hundreds of base pairs, but lack
genome-wide coverage [Arnheim et al., 2007]. Finally, recombination has been inferred by the
analyses of patterns of linkage disequilibrium. These represent historical, genome-wide recom-
bination events and require the characterization of polymorphisms in several individuals within
a population. Estimating the recombination rate (ρ) from patterns of linkage disequilibrium is
di�cult because recombination events have a low frequency and do not always leave traces in
the genomic DNA sequences. One of the �rst approaches to estimate ρ was to compute a lower
bound on the number of recombination events [Hudson and Kaplan, 1985, Wiuf, 2002, Myers
and Gri�ths, 2003]. Other methods to estimate ρ calculate moments or summary statistics
[Hudson, 1987, Batorsky et al., 2011]. In [Wall, 2000, Wall, 2004], suitably chosen summary
statistics such as the number of haplotypes (haps) are used. The author performs simulations
with given haps, calculates the likelihoods for a series of ρ values, and chooses the value of ρ
with the highest likelihood as estimator of the recombination rate.
Other methods estimate ρ via maximum likelihood [Kuhner et al., 2000, Fearnhead and Don-
nelly, 2001] or approximations to the likelihood [Hudson, 2001, Fearnhead and Donnelly, 2002,
McVean et al., 2002, Li and Stephens, 2003, Wall, 2004]. The former methods rely on sim-
ulations using importance sampling [Fearnhead and Donnelly, 2001] or Markov chain Monte
Carlo (MCMC) methods [Kuhner et al., 2000] to become computationally feasible. The latter
approaches use a composite likelihood as in [Hudson, 2001], or a modi�ed composite likelihood
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as in [McVean et al., 2002]. Software implementations such as LDhat [McVean et al., 2004, Au-
ton and McVean, 2007] and LDhelmet [Chan et al., 2012] are also available. [Kamm et al.,
2016] extend this approach to account for demographic e�ects in their software package LDpop.
Generally, computing approximate likelihoods requires a somewhat smaller computational ef-
fort than full likelihoods at the price of a slight loss in accuracy. An improvement of composite
likelihood estimators via optimizing the trade-o� between bias and variance has been proposed
by [Gärtner and Futschik, 2016]. For a more technical discussion on composite likelihood in
general see [Varin et al., 2011, Reid, 2013].
Recently, alternative fast estimates of ρ have been proposed by [Lin et al., 2013, Gao et al., 2016]
that rely on regression. The software implementation is called FastEPRR and provides reliable
estimates for samples of at least 50 individuals. This software estimates variable recombination
rates in sliding windows. The authors note that they simultaneously minimize the prediction
error and maximize Shannon entropy in information theory [Shannon, 1948]. In contrast to
[Gao et al., 2016] our approach is also designed to work with small sample sizes.
In this paper we estimate variable recombination rates by partitioning the DNA sequence into
homologous regions with respect to the recombination rates. Speci�cally, the DNA sequence is
divided into small subregions (segments) and the recombination rate per segment is estimated
via a regression based on summary statistics. A frequentist segmentation algorithm [Frick et al.,
2014] is then applied to the estimated rates to obtain change-points in recombination. The
algorithm controls the type I error and provides con�dence bands for the estimator. [Futschik
et al., 2014] use a similar approach to partition DNA sequences into homologous segments with
respect to GC content. Section 2 contains a detailed description of our method called LDJump.
In section 3 we assess LDJump and compare it with the popular software packages LDhat and
LDhelmet. We provide an example of a prediction of a well-characterized region of the human
genome of several populations in section 4 and summarize our �ndings in section 5. Further
details on the regression model, bias correction, and more detailed comparisons are provided
in the appendix.

2 Methods

Our approach consists of steps. First, we train a regression model to estimate a broad range
of constant recombination rates. Subsequently, we apply a segmentation algorithm to estimate
breakpoints in recombination rates subject to under type I error control against over-estimating
the number of identi�ed segments.

2.1 Regression Model for Constant Recombination Rates

Based on a set of summary statistics X (see Table 1) we �t the regression model (1) to estimate
constant recombination within short DNA segments. More speci�cally, we use generalized
additive models (GAM) [Wood, 2011] that estimate cubic spline functions fj(zj) for covariates
zj, j = 1, . . . ,m and linear (or quadratic) e�ects for covariates xk, k = 1, . . . , l. The structure
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Variable Description Computation

hats∗ Constant recombination rate estimator of a segment pairwise of LDhat [McVean et al., 2004]
vapw ∗ Variance of the average pairwise di�erences per base pair convert of LDhat [McVean et al., 2004]
wath∗ Wattersons's θ per base pair convert of LDhat [McVean et al., 2004]
apwd∗ Average number of pairwise di�erences per base pair convert of LDhat [McVean et al., 2004]

fgts∗
The number of pairs of sites for which the FGT indicates a

self implementation
recombination event per base pair

hahe∗ Mean of haplotype heterozygosity for each pair of sites Hs of adegenet [Jombart, 2008]
rsqu∗ Mean of r2 for each pair of sites diseq of genetics [Warnes et al., 2013]
ldpr ∗ Mean of LD′ for each pair of sites diseq of genetics [Warnes et al., 2013]
haps The number of haplotypes per base pair and per individual find_confs of LDhelmet [Chan et al., 2012]
gcco GC content: ratio of guanine and cytosine in the DNA sequence gc.content of ape [Paradis et al., 2004]

Table 1: Summary statistics used in the regression model. Variables marked with an asterisk
(∗) had a signi�cant e�ect.

of our GAM is

t(ρi) = f1(zi1) + · · ·+ fq(ziq) + β0 + β1xi1 + · · ·+ βkxik + εi, (1)

for i = 1, . . . , n. For a more detailed description of the regression model as well as the selection
of explanatory variables see appendix A.1. Initial computations revealed variance heterogeneity.
Hence, we transformed the population recombination rate ρ using a Box-Cox transformation
t(ρ) [Box and Cox, 1964]. In appendix A.2, we describe the choice of the transformation
parameters (see (2)) and explore the issue of heterogeneous variances.
Table 1 contains the summary statistics of our set X . We have rescaled some of the summary
statistics by taking into account the length of the sequence or the number of individuals in the
sample for which the summary statistics were computed. Since the (constant) recombination
rate estimates of LDhat strongly rely on the number of haplotypes in the data, it is not surprising
that the e�ect of the variable itself (haps) does not appear to be signi�cant in our computations.

2.2 Segmentation Algorithm Estimating Variable Recombination Rates

[Frick et al., 2014] introduced a method for detecting change points in a function with ob-
servation errors distributed according to an exponential family. Their simultaneous multiscale
change-point estimator (SMUCE) infers the number of change-points and their locations. The
underlying function is also estimated and con�dence bands are provided. Given the model as-
sumptions are exactly satis�ed, the probability of overestimating the number of change-points
is controlled with a user speci�ed type I error probability α. Slight deviations of the model as-
sumptions will result in slightly overestimating the true number of segments. We use SMUCE
for normally distributed errors (after transforming the response) to detect changes in the re-
combination rate. For more details on the algorithm see [Frick et al., 2014] and for a general
overview on multiple change-point detection see [Niu et al., 2016].
In the �rst step LDJump divides the DNA sequence into a typically large number k of short
segments. Summary statistics are computed separately for each segment and used in our
regression model to estimate a local transformed recombination rate. The back-transformed

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2017. ; https://doi.org/10.1101/190876doi: bioRxiv preprint 

https://doi.org/10.1101/190876
http://creativecommons.org/licenses/by-nc-nd/4.0/


rates (natural scale of ρ, see appendix A.2) are used as input for the change point estimator. The
estimated breakpoints reveal the heterogeneity of segments with respect to the recombination
rates.

3 Simulations

We used the software package scrm of [Staab et al., 2014] to simulate populations with variable
recombination rates and converted its output to fasta-�les with the software package ms2dna of
[Haubold and Pfa�elhuber, 2013]. In this section we compare LDJump with LDhat, the newer
version LDhat2, as well as LDhelmet for constant and variable recombination rates, respectively.
The runtime comparison is based on one core of an Intel Xeon E5-2630v3 2.4 1866, with 64GB
DDR4-2133 RAM. Our analyses was performed in [R Core Team, 2017].

3.1 Constant Recombination Rate Estimation

We assess the quality of the regression model estimating constant recombination rates in com-
parison with the function pairwise of LDhat and max_lk of LDhelmet. We applied the func-
tions following the default guidelines. Therefore, we simulated recombination rates between 0
and 0.1 with populations of sizes {10, 16, 20} and sequence lengths of {1000, 2000, 3000} base
pairs. For each of these nine setups we simulated the same number of replicates (111 simulated
ρ ∈ [0, 0.1]) yielding a sample size of almost 1000 observations.

Using the root mean squared error (RMSE =
√

1
n

∑n
i=1(ρ̂i − ρi)2) and the coe�cient of deter-

mination R2, we compare the accuracy of the mentioned methods. We visualize the estimators
and the true values in Figure 1 along with a diagonal black line of a perfect �t. Both prediction
measures show a better �t of the generalized additive model (purple plus signs: higher R2 of
0.4974; smaller RMSE of 0.0256) compared with the software packages LDhat (red dots: 0.4447;
0.0290) and LDhelmet (green triangles: 0.2095; 0.0360).

3.2 Variable Recombination Rate Estimation

We compared and simulated two types of setup for variable recombination rate estimation:
simple setups (sequences of length 10 and 20 kb with one hotspot) and natural setups (sequences
of length 1Mb containing 15 hotspots). Both setups varied in background rates, sample sizes,
hotspot intensities, and hotspot lengths. Furthermore we followed common practice and chose
the recombination rate at hotspots as at least �ve times the background rate. Simulation
results with LDhat(2) were computed as recommended with 106 iterations for the reversible-
jump MCMC procedure, sampled every 4000 iterations, a burn-in of 105, and di�erent block
penalties of 0, 5, and 50. We also followed the recommendations for the computations with
LDhelmet using for instance a window size of 50 SNPs, and 11 Padè coe�cients. We applied the
implemented function smuceR within the R-package stepR [Hotz and Sieling, 2016] to estimate
the change-points of the back-transformed regression based recombination rate estimates.
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Predictions of LDhat, LDhelmet, and GAM (Transformation with Box−Cox)

Figure 1: Predicted constant recombination rates versus their true values estimated with LDhat
(red dots), LDhelmet (green triangles) and the GAM (purple plus signs). The black diagonal
line shows the perfect �t.

3.2.1 Simple Setups

We simulated populations of sizes {10, 16, 20} with sequence lengths of 10 kb and 20 kb. Our
15 considered background recombination rates were chosen equidistantly within [0.001, 0.03].
We considered hotspot intensities of {5, 10, 15, 20, 40}-fold the background recombination rate.
The length of the hotspots varied among {1

5
, 1
10
, 1
20
, 1
20
, 1
35
, 1
50
}-times the sequence length. Due

to the large number of resulting setups and the computation times of LDhelmet and LDhat(2),
we have restricted this analyses to 2 replicates per sample yielding in total 4500 scenarios. We
took the RMSE (root mean squared error) as one measure of quality, and approximated it by
taking an equidistant grid of 1000 positions along the sequences.
An important tuning parameter of LDJump is the number of segments k on which our summary
statistics are computed. We chose k between 10 and 50 (yielding segment lengths between 200
and 2000 base pairs depending on the overall sequence length). Figure 2 shows the RMSE
depending on the segment length for three di�erent sample sizes. It suggests to choose segments
of at least 333 bp. This observation is consistent across the considered sample sizes. The
�gure also suggests that the performance improves only slightly with larger sample sizes. Our
considered type-I error probabilities (between 0.01 and 0.1) did not a�ect these results.
Table 2 contains an overall comparison in terms of mean, median, and standard deviation of
the RMSE for LDhat (column 3), LDhat2 (c. 4), LDhelmet (c. 5), and LDJump (c. 6-10, with
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Figure 2: Comparison of the quality of �t of LDJump for di�erent segment lengths, distin-
guished between the considered sample sizes.

di�erent numbers of user-de�ned segments). The results using di�erent block penalties for
LDhat(2), LDhelmet along with di�erent type I error probabilities for LDJump as 0.1, 0.05,
and 0.01 are listed in separate rows.
When choosing a proper number of segments, our method performs equivalently or slightly
better than LDhat2, and outperforms LDhat and also LDhelmet. The choice of α did not have
a large e�ect when considering our simple scenarios. Similarly, the block penalty does not
much a�ect the performance of LDhat2. This is in contrast to LDhat and LDhelmet where the
choice of the block penalty strongly in�uences the performance. Higher variability in precision
is present between independent estimates from LDhat and LDhelmet than for LDJump and
LDhat2. With an appropriate number of segments, the standard deviation with LDJump is
more than 20 % lower than that of LDhat, which in turn has a more than 30 % lower SD
than LDhelmet. We provide a detailed analyses with respect to background rates, sample size,
sequence length, hotspot intensity, and hotspot length in appendix B.

3.2.2 Natural Setups

We simulated populations with 16 individuals and sequence lengths of 1Mb. The setups varied
in 13 equidistant background-rates between 0.001 and 0.01. The 15 hotspots were evenly
distributed along the sequence and had di�erent intensities of 8 to 40-fold compared to the
background rate. Every setup was replicated 20 times. We focus on the comparison between
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α/bpen LDhat LDhat2 LDhel
LDJump (Number of Segments)
10 15 20 25 30

x̄
0.1/0 0.158 0.064 0.286 0.068 0.065 0.062 0.064 0.066
0.05/5 0.132 0.064 0.234 0.068 0.065 0.062 0.064 0.066
0.01/50 0.078 0.064 0.094 0.068 0.065 0.062 0.064 0.066

x0.5

0.1/0 0.138 0.036 0.247 0.042 0.040 0.036 0.037 0.040
0.05/5 0.100 0.036 0.169 0.042 0.040 0.036 0.037 0.040
0.01/50 0.049 0.036 0.044 0.042 0.040 0.036 0.037 0.040

SD
0.1/0 0.115 0.076 0.227 0.077 0.074 0.096 0.078 0.079
0.05/5 0.121 0.076 0.224 0.077 0.074 0.096 0.078 0.079
0.01/50 0.102 0.076 0.145 0.077 0.075 0.096 0.078 0.079

Table 2: Mean (x̄), median (x0.5) and SD of RMSE for LDhat, LDhat2, LDhelmet (LDhel), and
LDJump of simple setups. Di�erent block penalties (bpen), number of segments, and type I
error probabilities α are chosen.

LDJump and LDhat2, as these methods performed best with the simple scenarios.
Figure 3 provides a comparison of LDJump with (grey) and without (purple) bias correction
with LDhat2 (blue). Here, three samples with di�erent background recombination rates of
0.001 (left), 0.0054 (middle), and 0.01 (right) are presented in dotted black lines. Segment
lengths were chosen to be 1kb with a quantile in the bias correction of 0.35 (see appendix A.3)
and a type-I error probability of 0.05. The bias-correction decreases the bias in the background
rates and increases the intensities of the estimated hotspots.

Quality Assessment We looked at the weighted RMSE, de�ned as WRMSE =√∑n
i=1wi(ρ̂i − ρi)2, with wi denoting the length of the estimated segment i divided by the

total sequence length. We also consider the proportion of correctly identi�ed hotspots (PCH).
A hotspot is counted as correctly identi�ed if it has a non-empty intersection with a detected
hotspot (i.e. a region with at least �ve-fold background recombination rate). The proportion
of correctly identi�ed background rates (PCB) has been de�ned analogously. Finally, the
proportion of correctly identi�ed segments is given as PCI = PCH + PCB - 1. PCH and PCB
re�ect true positives and true negatives, respectively.
We apply LDJump with k = 500, 1000, 1500, and 2000 segments and estimate the recombination
maps using quantiles of 0.25, 0.35, 0.45, and 0.5 in the bias correction (see appendix A.3)).
Hence, we can identify the best combination of bias correction and segment lengths. Notice
that the short segments are 2kb, 1kb, 666 and 500 bp long and hotspot lengths vary in the setup
between 1 and 2kb. Therefore, the scenario with k =1500 is more challenging as the hotspot
boundaries will systematically di�er from the segment boundaries. A direct comparison with
LDhat2 using a block penalty of 50 (based on the results from the simple setups) is provided.
The di�erent choices of k are displayed by the �rst four groups of boxplots in Figure 4. For
each of these four groups, quantiles of 0.25, 0.35, 0.4, and 0.5 are used in the bias correction and
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Figure 3: Estimated recombination maps from LDJump, improvements with the simulation
based bias-correction and LDhat2 for setups di�ering in the background rates of 0.001 (left),
0.0054 (middle), and 0.01 (right). Setups (black dotted lines) simulated for these comparisons
contain 16 hotspots. Horizontal lines represent the hotspot threshold (5·background rate).

are presented in di�erent colors. The rightmost bar per panel (in blue) summarizes the result
of LDhat2. From top-left to bottom-right, we show PCH, PCB, PCI, the estimated number of
blocks and the weighted RMSE.
PCH may be interpreted as a measure of sensitivity, whereas PCB provides a measure of
speci�city. We can see that our method has very high detection rates across k with even
less variability in performance than LDhat2. On the other hand, LDhat2 has very high PCB
proportions. The best PCB values for LDJump are obtained for the smallest quantile.
As an overall measure, we display the sum of PCH and PCB minus one as PCI in the bottom-
left panel. It turns out that PCI is larger for LDJump regardless of the tuning parameters. In
the bottom-middle panel we can see that the number of estimated block of LDJump depends
on k. When using 500 segments, the estimated number of blocks is still below 31, the true
number of blocks in the recombination map (due to 15 hotspots). For larger k the number
of blocks is slightly overestimated. LDhat2 estimated many more blocks, indeed the number
of change points in recombination tended to be larger by a factor of more than 3000. The
bottom-right plot shows the weighted RMSE as an overall quality measure showing a similar
level of accuracy across k and compared with LDhat2. A more detailed investigation reveals
that our method estimates hotspot rates more precisely, but provides less accurate estimators
of the background recombination rate.
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Our results also show that our method is fairly robust with respect to tuning choices. This is
also true for k = 1500, where there the hotspots have an unfavorable location. To obtain a
reasonable tradeo� between sensitivity (PCH) and speci�city (PCB), segment lengths of 1kb
(based on 1000 segments of sequence length 1Mb) and a quantile of 0.35 in the bias correction
seem to be a good choice with LDJump.
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Figure 4: Quality assessment is performed based on the proportion of correctly identi�ed
hotspots (PCH, top-left), the proportion of correctly identi�ed background rates (PCB, top-
right), the proportion of correctly identi�ed segments (PCI = PCH+PCB-1, bottom-left), the
estimated number of blocks (bottom-middle), and the weighted RMSE (bottom-right). Based
on 13 setups with 20 replicates these measures are computed for LDJump using di�erent num-
ber of initial segments k (500, 1000, 1500, 2000) and compared with the results of LDhat2 using
a block penalty of 50.

Figure 5 shows our considered quality measures depending on the background recombination
rates. We provide the average performance of 20 replicates. We can see that LDhat2 has
constant PCB and decreasing PCH as the background rate increases. LDJump shows constant
values for PCH and slightly increasing PCB for higher background rates. The overall measure
PCI behaves as expected given these observations (PCI and PCH overlap for LDhat2 ). Ten
times the weighted RMSE is also plotted. It can be seen that LDhat2 leads to slightly smaller
weighted RMSE values with decreasing di�erences for larger ρ.
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Figure 5: Proportion of correctly identi�ed hotspots (PCH, solid), proportion of correctly iden-
ti�ed background rates (PCB, dashed), the sum of these two quality measures-1 (PCI, dotted),
and weighted RMSE*10 (dash-dotted) across di�erent recombination rates. We compare LD-
Jump (purple, segment length: 1kb, quantile 0.35), with LDhat2 (blue, same line coding per
quality measure).

3.3 Runtime

Runtime is an important aspect of any method, especially for larger numbers of sequences,
and separate analyses for several populations. Hence, we provide a comparison with respect
to runtime (in seconds) between LDhat, LDhat2, LDhelmet, and LDJump. Again, we looked
at di�erent block penalty choices, as well as at di�erent numbers of atomic segments k for
LDJump in Table 3. As summaries, we computed the mean (top), median (middle), and SD
(bottom) of our measured runtimes. We can see that especially LDhat2 and LDhelmet require
ten to forty times longer runtimes than LDJump. While being only slightly slower, we have
seen before that LDhat leads to considerably less accurate estimates.
In Table 4 we explore the e�ects of sample size and sequence length on the runtime. We
compared the aforementioned methods with respect to their mean and median runtimes again
for our simple setups. The runtimes for LDhat2 and LDhelmet are strongly a�ected by sequence
length and sample size. Interestingly LDhat2 seems to have more problems dealing with longer
sequences, whereas LDhelmet shows an especially large increase in runtime when the sample
size increases. The runtime of LDJump (using segments of length 500 and 1000 bp) seems less
sensitive to such increases, but more sensitive than LDhat w.r.t. sequence length.
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LDhat LDhat2 LDhelmet LDJump
0 5 50 0 5 50 0 5 50 10 15 20 25

x̄ 33 53 138 649 2366 2324 1271 1345 1769 62 47 41 39
x0.5 33 52 123 619 1934 1909 814 880 1287 51 40 36 34
SD 6 8 61 256 1228 1195 1063 1070 1144 37 26 20 16

Table 3: Mean (x̄), median (x0.5), and SD of runtime (in seconds) for LDhat, LDhat2, LDhelmet,
and LDJump under simple setups. For each method, separate columns provide values depending
on either the block penalty (columns 2-10), or the number of prede�ned segments on which
LDJump was applied (columns 11-15).

Time Method
Sample Size Sequence Length

10 16/10 20/10 10kb 20kb/10kb

Mean LDhat 124 14% 20% 121.42 28%
Mean LDhat2 1862 33% 41% 1387.72 135%
Mean LDhelmet 709 90% 358% 1581.01 24%
Mean LDJump 34 16% 25% 28.58 67%

Median LDhat 109 15% 24% 111.41 24%
Median LDhat2 1526 29% 36% 1398.45 133%
Median LDhelmet 625 95% 416% 1101.45 43%
Median LDJump 31 19% 21% 28.41 68%

Table 4: Runtime in seconds and ratios between sample sizes and sequence lengths are provided.
We computed the mean and median runtime for each method and scenario. The e�ect of
increasing sample sizes or sequence lengths is shown in percent.

In Table 5 we show the mean, median, and SD of runtimes in seconds based on natural setups.
On average LDJump turns out to be about ten to twenty times faster than LDhat2. Choosing
larger values of k reduces the runtime for LDJump. Due to the faster computation of certain
summary statistics, runtime was reduced by about 50% when going from 500 to 2000 segments.
The remarkable di�erence between median and mean for LDhat2, is caused by di�erent recom-
bination rates. In appendix C we compare the development of runtime across background rates
and di�erent k and see that our method is approximately constant with respect to ρ in contrast
to LDhat2. Overall, LDJump provides a particularly attractive combination of performance
and runtime.

4 Application

We sampled the same 103kb region between SNPs rs10622653 and rs2299784 as characterized
by [Tiemann-Boege et al., 2006] with sperm typing containing the PCP4 gene. Speci�cally, we
used 50 individuals of 4 subpopulations from 4 European regions (TSI, FIN, IBS, GBR) with
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LDhat2
LDJump

500 1000 1500 2000

x̄ 77237 6758 4281 3575 3463
x0.5 122396 6809 4327 3592 3471
SD 2434 528 336 298 308

Table 5: Mean (x̄), median (x0.5), and SD of runtime (in seconds) for LDhat2 and LDJump
for natural setups. For LDJump we provide values depending on the number of prede�ned
segments.

data taken from [The 1000 Genomes Project Consortium, 2015]. The data has been reformatted
from vcf-format to fasta-�les with the R packages [Knaus and Grünwald, 2017, Paradis et al.,
2004] using two sequences per (diploid) sample and the reference sequence 80.37 (GRCH37) from
[The 1000 Genomes Project Consortium, 2015]. We applied LDJump with a segment length
of 1kb and chose the 35%-quantile for the bias-correction. The estimated recombination map
for the Italian population (TSI, using a lookup table of 100 sequences and a mutation rate of
0.005) in the top-left panel of Figure 6 is similar to the measures obtained by experimental data
(sperm typing) in [Tiemann-Boege et al., 2006] (see bottom-left panel of Figure 6) in the region
from 60-100kb. We also compared this region with the double strand break maps (representing
active recombination hotspots) from [Pratto et al., 2014], see Figure 6 bottom-right. The
computationally inferred, historical hotspots estimated with LDJump in this region (60-100kb)
also agree with the DSB activity measured by [Pratto et al., 2014]. However, we additionally
estimated with LDJump a hotspot before the PCP4 gene around position 45kb. This hotspot
was also found by other LD-based algorithms [McVean et al., 2004, Li and Stephens, 2003], see
Figure 6, bottom-left [Tiemann-Boege et al., 2006].
Given the lack of active recombination in this region (absence of this hotspot in the DSB
maps for the 2 European donors (carrying the PRDM9 allele A) or the donor with African
descend (carrying the PRDM9 allele C)), we hypothesize that the observed hotspot using
LDJump at position ∼45kb might represent a historical hotspot that got extinct. Alternatively,
it could be a population-speci�c hotspot given that its intensity varies among di�erent European
populations. In order to test this latter hypothesis, active recombination maps from di�erent
populations would be needed. However, one can also see di�erences in DSB intensities between
individuals of the same populations (e.g. hotspot at position 95kb present only in the individual
with a PRDM9 C allele) suggesting that the intensity of hotspots is highly variable.
Di�erences between hotspot rates estimated from LD patterns compared to estimates based
on sperm typing have also been observed by [Je�reys and Neumann, 2009]. This might be
caused by the short life-span of hotspots and their rapid evolution in intensity and genomic
position among populations and species [Coop and Myers, 2007, Myers et al., 2010, Je�reys
et al., 2013]. Fine-scale population speci�c di�erences with respect to recombination events
have been highlighted in studies such as [Kong et al., 2010, Berg et al., 2011, Fledel-Alon
et al., 2011, Pratto et al., 2014]. In the top-right panel of Figure 6 we provide an estimated
recombination map using LDJump on the Hap Map data samples mentioned above. Also for
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historical recombination events, we see population-speci�c di�erences in the detected hotspots.
Interestingly, all considered populations have detected the aforenamed hotspot before the PCP-
4 region (∼45kb), which was not found by sperm-typing or DSB-mapping.
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Figure 6: Top-left: Estimated recombination map of 50 individuals from an Italian population
on Chromosome 21:41187000-41290679, including the PCP4-Gene (red region on the x-axis).
Top-right: Estimated recombination map of 4 di�erent European populations (Italy, Finland,
Spain, and United Kingdom) on Chromosome 21:41187000-41290679, including the PCP4-
Gene (in red). Bottom-left: Estimated recombination map of the same 103kb region including
PCP4 on Chromosome 21 taken from [Tiemann-Boege et al., 2006] based on sperm typing 13
intervals ∼ 5kb in size (grey boxes), and LD-inferred measures (green lines: LDhat and blue
line: Hotspotter). Bottom-right: Recombination maps based on measured double strand break
(DSB) intensities for �ve di�erent individuals representing active recombination from [Pratto
et al., 2014].
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5 Conclusion

We introduce a new method called LDJump to estimate the heterogeneity of recombination
rates across the DNA sequence from population genetic data. A sequence is divided into seg-
ments of proper length in a �rst step. Subsequently, we use a generalized additive regression
model to estimate the constant recombination rates per segment. Then, we apply a simulta-
neous multiscale change-point estimator (SMUCE) to estimate the breakpoints in the recom-
bination rates across the sequence. We provide detailed comparisons of our method with the
recent reversible jump MCMC methods LDhat(2) and LDhelmet. Our estimates are very fast,
perform favourably in the detection of hotspots, and show similar accuracy levels as the best
available competitor for simple and natural setups, respectively. We have applied our method
on several human populations (data taken from the 1000 Genomes project) and compared the
estimated hotspots with recombination intensities measured by sperm-typing data and double
strand break maps. These computations revealed population speci�c hotspots in the region sur-
rounding the PCP4-gene located on Chromosome 21. We have implemented our approach in the
R-package LDJump, which can be downloaded from https://github.com/PhHermann/LDJump.
We recommend users to apply our method with segment lengths of 1kb and a bias correction
using the default quantile of 0.35.
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A Regression Model

Data management for computing the summary statistics was conducted with the functions
readDNAStringSet, writeXStringSet of the R-package [Pages et al., 2016] and the functions
genind2df, DNAbin2genind of the R-package adegenet [Jombart, 2008].
We simulated populations with {10, 16, 20} individuals and sequence lengths of {500, 1000,
2000, 3000, 5000} bp. The recombination rates per base pair were simulated from a uniform
distribution in the intervals {[0,0.01], [0.01,0.02], [0.02,0.05], [0.05,0.1], [0.1,0.2]} and used for
every combination of population size and sequence length. For the �rst setup we simulate 100
recombination rates between [0,0.01]. Subsequently, a population with 10 individuals and a
sequence length of 500 nucleotides is simulated using every of these 100 values. This procedure
is conducted with all setups combining population sizes and sequence lengths. Hence, the
simulated data set consists of 8000 observations, where 1 observation was removed due to the
lack of a recombination and mutation event. The mutation rate was set 0.01 per base pair for
all simulations as well as computations with LDhat and LDhelmet. We compute the summary
statistics for every observation in our data set and regressed the summary statistics on the
known recombination rates. We also took linear and quadratic e�ects of summary statistics
into account and performed variable selection based on ANOVA. No signi�cant e�ect was
estimated for GC content (gcco), although in natural populations GC-biased gene conversion
is associated with recombination [Birdsell, 2002] and modi�es the GC content in regions with
active recombination (reviewed in [Duret and Galtier, 2009]). Our analysis of the simulated
GC content per recombination rates showed an equal distribution of the GC content among
the simulated range of ρ.

A.1 Coe�cients & E�ect Plots

Figure 7 contains graphical representations of the e�ects of the summary statistics. The �rst six
plots from top-left to bottom-right represent the estimated cubic spline functions for the vari-
ables vapw, apwd, hahe, rsqu, ldpr, wath, and the last two plots show the estimated quadratic
e�ects of hats and fgts. The 95% con�dence interval of the e�ect is plotted with dashed lines.
Table 6 contains the estimation results of the regression model for the summary statistics with
signi�cant e�ects (represented with asterisks). The �rst two columns show the coe�cients and
the standard deviation of the quadratic functions and columns three and four the EDF and
ref.df of the cubic spline functions. The quality of �t measure R2 (0.74) shows a high model
�t based on the simulated data.

A.2 On the model assumptions of variance homogeneity and normal-

ity

Here, we denote the Box-Cox transformation [Box and Cox, 1964] (2) as

t(ρ, γ, ϵ) =

{
(ρ+ϵ)γ−1

γ
for γ ̸= 0

ln(ρ+ ϵ) for γ = 0.
(2)
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Figure 7: Visualized e�ects of the signi�cant variables estimating the recombination rates via
a generalized additive model.

This transformation performed best under the considered transformations such as logarithmic
or exponential transformations. In order to tune the model with respect to homogeneity and
normality of the residuals as well as high prediction accuracy, we compared the performance
of di�erent (combinations of) parameters of this transformation. The considered grid of values
for γ and ϵ for the Box-Cox transformation (2) was {0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}
and {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15}, respectively.
In place of this comparison the plots of Figure 8 are produced with the chosen model and the
trained data. The left plot of Figure 8 shows the scatter plot of the predicted values (y-axis)
and the true values (x-axis) of the simulated recombination rates, both in transformed scale.
By dividing the grid of recombination rates into 15 segments we can compute the standard
deviations for the predictions in this interval. The ratio of the standard deviation by the mean
of the standard deviations of all intervals is visualized in the middle plot of Figure 8 with an
estimated smoothing spline. Here, approximately 15% lower and 15% higher standard deviation
of the predictions in [0.0148, 0.0259] and [0.1429, 0.1571] are computed compared to the mean
of standard deviations over all intervals. The number of segments is arbitrarily chosen and
computations with 10 to 25 segments show robustness with a maximum deviation to the mean
of 20%. The right plot of Figure 8 shows the QQ-plot for the residuals of the model.
Figure 9 contains heat maps for the model assumption criteria of the GAM models. Each panel
has its own color key and is calibrated that greener boxes are better performances in terms of
the criterion. The x-axis of each plot contains the values of ϵ and the y-axis the values of γ. The
top-left and the top-right panel show the sum of squared and the sum of absolute di�erences of
the standard deviation to their means, respectively. These measures rely on the computations
visualized with the smoothing spline in middle plot of Figure 8. Naturally, smaller values
indicate a better performance in terms of variance homogeneity and are coded with (darker)
green. Greater sums of squared/absolute di�erences are visualized with brighter colors. Values
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linear/
Coe�cients (SD)

cubic
EDF (Ref.df)

quadratic splines

(Intercept) −2.52 (0.01)∗∗∗ s(vapw) 8.72 (9.00)∗∗∗

hats 5.71 (0.12)∗∗∗ s(apwd) 6.81 (9.00)∗∗∗

hats2 −7.41 (0.22)∗∗∗ s(hahe) 7.08 (9.00)∗∗∗

fgts 375.32 (36.17)∗∗∗ s(rsqu) 6.69 (9.00)∗∗∗

fgts2 −197694.71 (29144.10)∗∗∗ s(ldpr) 7.75 (9.00)∗∗∗

s(wath) 6.91 (9.00)∗∗∗

R2 0.74
Num. obs. 7999

∗∗∗p < 0.001,
∗∗p < 0.01,

∗p < 0.05

Table 6: Coe�cients of summary statistics estimated via a generalized additive model to explain
the recombination rate.
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Figure 8: Plot of predicted versus true values (left), graphical tests for variance homogeneity
(middle) and normality of residuals (right) of the chosen GAM model

of γ in a range of 0.05 - 0.35 with ϵ = 0 and γ in a range of 0.001 - 0.1 with ϵ = 0.1 are seen as
possible candidates for a proper transformation.
Normality of the residuals is considered in the bottom-left panel. Here, Shapiro-Wilk statistics
are calculated with values close to 1 coded in green color. The standard implementation of
this test in [R Core Team, 2017] is restricted to 5000 observations. Therefore, we drew 100
di�erent samples of 5000 residuals and computed the mean of these 100 Shapiro-Wilk statistics.
We can observe a similar pattern as for the variance homogeneity comparisons except for the
combination γ = 0.1 and ϵ = 0.1. The quality of the regression model in terms of R2 also points
to the same choice of the parameters γ and ϵ. We decide for the setup γ = 0.25 and ϵ = 0 due
to the better performance in terms of normality and a higher R2 given very similar values for
the variance homogeneity measures.
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Figure 9: Comparison of model assumptions of Box-Cox transformed ρ under di�erent values
for γ and ϵ.

A.3 Bias Correction and Homoscedasticity Check

We applied a simulation based bias correction due to an observable bias especially for setups
with small background rates. Therefore, recombination maps with in total 15 hotspots of
lengths of 1kB (7) and 2kb (8) were simulated in a sequence of length 1000kb (1Mb). These
recombination maps di�er in 10 equidistant background rates between 0.001 and 0.011 with
15 replicates. The hotspots are between �ve and forty folds of the background recombination
rates.
By estimating ρ with k = 1000 we use the systematic overlap of hotspot boundaries and segment
boundaries to compare the estimator with the true value. This comparison (transformed scale)
is provided in left plot of Figure 10 with a solid black diagonal line as perfect �t. Note that due
to the overrepresentation of small recombination rates we have sampled as many background
rates as hotspot rates in the recombination map. This yields approximately 4600 observations.
We sampled the background rates uniformly from all background rates. Visual inspections
reveal an overestimation of the background rate as well as an underestimation of very high
ρ. A correction of these patterns is performed with quantile regressions where the estimated
recombination rates explain the true recombination rates. The result of the estimated quantile
regression for the 0.25 (orange), 0.35 (blue), 0.4 (green), and 0.5 (red) quantile, respectively, is
given in Figure 10. On the right hand side of Figure 10 the residuals of the quantile regression
models are plotted starting with the 0.25 quantile (top) and ending with 0.50 quantile (bottom).
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Values smaller than -4 after bias-correction are set to -4, because they will equal to zero after
the back-transformation.
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Figure 10: Left: Estimated versus true recombination rates based on recombination maps from
simulations containing 15 hotspots of lengths 1 and 2kb. Predictions based on quantile regres-
sions with 0.25 (orange), 0.35 (blue), 0.4 (green), and 0.5 (red) are added in this plot. Right:
Residuals originating from the three quantile regressions provided for diagnostic purposes.

The SMUCE estimator requires homoscedastic observations [Frick et al., 2014]. Similar as
to the approach in section S1.2 we analyze the homogeneity of the recombination rates by
comparing the variance of the recombination rates in di�erent intervals. Here, we divide the
range of [0,0.2] in 25 equidistant segments. For each segment we compute the variance of
the corrected (and back-transformed) recombination rates. By dividing the variance of each
segment with the mean of all variances we have a measure of the variability of the variances
along the considered recombination rates. In Figure 11 we shows ratios of variances divided
by the mean of variances for all 24 considered intervals with an estimated smoothing spline
for the four quantiles, 25% (left), 35% (middle-left), 40% (middle-right), and 50% (right). The
di�erence of the variance to the mean variance only exceeds 20 percentage points in terms of
variances for the �rst quartile in 3 intervals. When comparing the standard deviations (dashed
lines) we can see that these deviations are less than (or slightly above) 10 percentage points (in
absolute values) for (almost) all considered quantiles in the correction.
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Figure 11: Graphical test for the homogeneity of the estimated recombination rates per quantile
used in the quantile regression of the bias-correction (left: 0.25, left-middle. 0.35, right-middle:
0.4, right: 0.5). Variances are computed for 24 intervals of recombination rates between 0 and
0.2. The ratio of the variances divided by the overall mean of variances is plotted. The same
approach is applied and visualized in terms of the standard deviation (dashed lines).

B Detailed Quality Assessment for Simple Setups

Figure 12 contains a more detailed analysis of the simple setups with boxplots including mean
values as black dots accounting for sample sizes, recombination rates, and sequence lengths. We
applied LDJump with 20 segments and a type I error probability of 5%. Hence, the considered
segments had a length of 500 and 1000 (for 10kb and 20kb, respectively) nucleotides. Both
sequence lengths have similar RMSE and are in the range of proper choices for segment lengths,
see Figure 2. Especially for small to middle background rates (under the considered values)
LDJump and LDhat2 have on average a lower RMSE than LDhat and LDhelmet. LDJump
and LDhat2 have smaller RMSE for all considered sample sizes as well as sequence lengths,
with slightly smaller values of our approach. Moreover, slightly smaller or equivalent RMSE was
computed with LDJump for hotspot intensities from 5- to 20-fold the background recombination
rate and hotspot lengths of 1/50 until 1/10. For a hotspot length of 1/5 of the total sequence
length we can see a similar �t for all methods.
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Figure 12: Comparison of the methods (LDhat(red), LDhat2 (blue), LDhelmet(green), and LD-
Jump (purple) with respect to the recombination rate (top), sample size (middle-left), sequence
length (middle-right), hotspot intensity (bottom-left), and hotspot length (bottom-right).

C Runtime Comparison: Natural Setup

Table 7 shows average and median runtimes in seconds per 20 replicates of the 13 di�erent
natural setups. In the �rst �ve rows we provide the mean runtimes of LDJump with k = 500,
1000, 1500, and 2000, and of LDhat. The same pattern builds rows 6-10 for the median. The
columns show the increasing background rates and highlight that the mean and (to a larger
extent) the median of LDhat2 is more strongly a�ected by larger recombination rates than
LDJump with approximately constant runtimes across these setups. The runtime of LDJump
is mainly determined by the computation of the summary statistics. However, LDJump has
approximately (depending on the number of segments chosen) 20 times faster runtimes than
LDhat2.
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Runtime Method
Background rates per base pair

0.01 0.013 0.022 0.027 0.039 0.045 0.054 0.062 0.071 0.08 0.085 0.091 0.1

Mean 500 6785 6766 6780 6725 6853 6768 6671 6805 6780 6684 6788 6716 6731
Mean 1000 4296 4288 4305 4262 4329 4286 4234 4303 4290 4234 4307 4257 4264
Mean 1500 3571 3571 3580 3561 3593 3616 3535 3566 3558 3584 3555 3628 3555
Mean 2000 3443 3468 3476 3448 3461 3508 3434 3452 3450 3458 3446 3511 3462
Mean LDhat2 73902 73752 77171 87025 73832 74423 80707 70203 86679 81078 70239 74016 81053

Median 500 6825 6863 6809 6789 6865 6820 6758 6883 6811 6794 6833 6863 6785
Median 1000 4323 4355 4320 4315 4341 4320 4279 4353 4327 4307 4339 4355 4322
Median 1500 3577 3618 3594 3552 3644 3616 3546 3580 3624 3568 3603 3626 3568
Median 2000 3436 3482 3477 3458 3479 3464 3480 3453 3487 3430 3483 3458 3482
Median LDhat2 100963 100963 124040 125921 100963 100934 125856 98629 126433 126072 98629 100963 126072

Table 7: Mean and median of runtime (in 1000s) per approach are provided. For k =
1000, 1500, 2000, and LDhat the runtimes in seconds are compared across all considered back-
ground recombination rates (columns).
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