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Abstract

As recombination plays an important role in evolution, its estimation, as well as, the

identi�cation of hotspot positions is of considerable interest. We propose a novel approach

for estimating historical recombination along a chromosome that involves a sequential

multiscale change point estimator. Our method also permits to take demography into

account. It uses a composite likelihood estimate and other summary statistics within a

regression model �tted on suitable scenarios. Our proposed method is accurate, compu-

tationally fast, and provides a parsimonious solution by ensuring a type I error control

against too many changes in the recombination rate. An application to human genome
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data suggests a good congruence between our estimated and experimentally identi�ed

hotspots. Our method is implemented in the R-package LDJump, which is freely available

from https://github.com/PhHermann/LDJump.

Keywords Bioinformatics, population recombination rate, regression, change-point estimation,

R-package

1 Introduction

Recombination is a process during meiosis starting with the formation of DNA double-strand

breaks (DSBs) and resulting in an exchange of genetic material between homologous chro-

mosomes [Baudat et al., 2013]. The process leads to the formation of new haplotypes and

increases the genetic variability in populations. In most species, recombination is concentrated

in narrow regions known as hotspots, 1-2 kb in length, �anked by large zones with low recombi-

nation or cold regions. Meiotic recombination is a tightly regulated process de�ned mostly by a

methyltransferase protein called PR domain zinc �nger protein 9 (PRDM9) in most mammals

(reviewed in [Baudat et al., 2013, Tiemann-Boege et al., 2017]). PRDM9 binds to a certain se-

quence motif (Myers motif) with its zinc �nger array and recruits the DSB machinery (SPO11)

to the hotspot (reviewed in [Tiemann-Boege et al., 2017]). Hotspots vary between species

(human vs. chimpanzee see [Auton et al., 2012] or mice see [Smagulova et al., 2011]), popula-

tions within species (human populations like Africans and Europeans see [The 1000 Genomes

Project Consortium, 2015, Pratto et al., 2014, Berg et al., 2010]), individuals within species

(humans see [Pratto et al., 2014]), individuals of di�erent sexes (see [Kong et al., 2010]) as well

as between viruses (reviewed in [Pérez-Losada et al., 2015]).

Molecular and evolutionary mechanisms of the process of recombination can be better un-
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derstood with accurate local estimates of the recombination rate [McVean et al., 2004, Chan

et al., 2012]. Moreover, knowledge of the recombination rate variation along DNA sequences

improves inference from polymorphism data about e.g. positive selection [Sabeti et al., 2006],

linkage disequilibrium [Hill and Robertson, 1968], and facilitates an e�cient design and analysis

of disease association studies [McVean et al., 2004]. For this purpose, we designed LDJump,

an algorithm that provides a fast and reliable new estimate of variable genome-wide historical

recombination rates by partitioning the DNA sequence into homologuous regions with respect

to recombination that also permits to take demography into account.

Methods di�ering in their genome-wide coverage, resolution, and reliance on active recombina-

tion have been proposed to estimate recombination rates in humans. Experimental approaches

include whole genome sequencing or SNP typing of pedigrees of at least 2-3 generations [Coop

et al., 2008, Kong et al., 2010, Halldorsson et al., 2016], leading to a resolution of order tens

of kilobases, given that not many recombination events are captured. Direct measurements

in sperm provide high resolution events at the level of a few hundreds of base pairs, but lack

genome-wide coverage [Kauppi et al., 2004, Arnheim et al., 2007, Arbeithuber et al., 2015].

Finally, recombination hotspots have been inferred by the analysis of patterns of linkage dise-

quilibrium [McVean et al., 2004, Myers et al., 2005, Myers et al., 2008]. The latter approach

provides genome-wide historical recombination events based on polymorphisms characterized

in several individuals within a population.

One of the �rst approaches to infer the population recombination rate ρ from patterns of linkage

disequilibrium was to compute a lower bound on the number of recombination events [Hudson

and Kaplan, 1985, Wiuf, 2002, Myers and Gri�ths, 2003]. In population genetics, ρ is de�ned

as ρ = 4Ner, where Ne is the e�ective population size and r the recombination rate per base pair

(bp) and generation. Other methods estimate ρ via maximum likelihood [Kuhner et al., 2000,
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Fearnhead and Donnelly, 2001] or approximations to the likelihood [Hudson, 2001, Fearnhead

and Donnelly, 2002, McVean et al., 2002, Li and Stephens, 2003, Wall, 2004]. The former

methods rely on simulations using importance sampling [Fearnhead and Donnelly, 2001] or

Markov chain Monte Carlo (MCMC) methods [Kuhner et al., 2000] to become computationally

feasible. The latter approaches use a composite likelihood as in [Hudson, 2001], or a modi�ed

composite likelihood as in [McVean et al., 2002]. Software implementations such as LDhat

[McVean et al., 2004, Auton and McVean, 2007] and LDhelmet [Chan et al., 2012] are also

available. [Kamm et al., 2016] extend this approach to account for demographic e�ects in their

software package LDpop. Generally, computing approximate likelihoods requires a somewhat

smaller computational e�ort than full likelihoods at the price of a slight loss in accuracy. An

improvement of composite likelihood estimators via optimizing the trade-o� between bias and

variance has been proposed by [Gärtner and Futschik, 2016]. For a more technical discussion

on composite likelihood in general see [Varin et al., 2011, Reid, 2013].

Another approach is to rely on calculating moments or summary statistics [Hudson, 1987,

Batorsky et al., 2011]. In [Wall, 2000, Wall, 2004], suitably chosen summary statistics such as

the number of haplotypes (haps) are used. There the author performs simulations with given

haps, calculates the likelihood for a series of ρ values, and chooses the value of ρ with the

highest likelihood as estimator of the recombination rate.

Further well-established frameworks to estimate recombination rates include Lamarc [Kuhner,

2006], OmegaMap [Wilson and McVean, 2006], RDP [Martin et al., 2015], and CodABC [Arenas

et al., 2015]. The latter method [Arenas et al., 2015] applies ABC (approximate Bayesian com-

putation) using 26 summary statistics to estimate constant recombination rates for simulated

regions of size up to 300 codons for 100 alignments. With the GUI of RDP [Martin et al., 2015]

overall patterns of recombination and testing for hot- and coldspots is performed by integra-
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tion of LDhat [McVean et al., 2004]. Recently, alternative fast estimates of ρ that rely on

regression on sliding windows have been proposed by [Lin et al., 2013, Gao et al., 2016]. Their

software implementation is called FastEPRR and recommended for larger samples consisting

of 50 sequences or more.

So far all these previous methods have at least some limitations such as being computationally

demanding, not designed for small sample sizes or leading to a too large number of breakpoints

in the recombination map. In order to address these issues within one algorithm we developed

LDJump. More precisely, we divide the DNA sequence into small segments and estimate the

recombination rate per segment via a regression based on the following summary statistics:

measures of LD, r2, Watterson's θ, measures on pairwise di�erences, haplotype heterozygosity,

the four gametes test as well as the constant recombination rate estimator of LDhat [McVean

et al., 2004]. A frequentist segmentation algorithm [Frick et al., 2014] is then applied to the

estimated rates to obtain change-points in recombination. The algorithm controls a type I

error and provides con�dence bands for the estimator. [Futschik et al., 2014] use a similar

approach to partition DNA sequences into homogeneous segments with respect to GC content.

In contrast to [Gao et al., 2016] our approach is also designed to work with small sample sizes.

As will be shown in the following sections, LDJump allows us to calculate hotspots at high

accuracy within a reduced computational time from sample sizes of at least 10 sequences of

genomic regions spanning many megabases.

Section 2 contains a detailed description of our proposed method we call LDJump. In section

3 we assess LDJump and compare it with the popular software packages LDhat, LDhelmet,

and FastEPRR. We also consider di�erent levels of genetic diversity as well as demographic

e�ects. For di�erent human populations, we apply our approach to a well-characterized region

of the human genome. We furthermore estimate population speci�c recombination maps for
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the complete human chromosome 16, showing a good overlap between our and experimental

estimates of hotspot positions. Finally, we summarize our �ndings in section 4. Further details

on the regression model, bias correction, and more detailed simulation results are provided in

the supplementary material.

2 Materials and Methods

Our approach consists of two steps. First, we �t a regression model from simulated data to

estimate constant recombination rates on small segments. Subsequently, we apply a segmen-

tation algorithm to estimate breakpoints in the recombination rate which is subject to type I

error control against over-estimating the number of identi�ed breakpoints.

2.1 Regression Model for Constant Recombination Rates

We use generalized additive models (GAM) [Wood, 2011] to estimate cubic spline functions

fj(zj) for covariates zj, j = 1, . . . , q and linear (or quadratic) e�ects for covariates xk, k =

1, . . . , l to regress the population recombination rate ρ on summary statistics computed from

simulated short DNA segments. The structure of our GAM is

t(ρi) = f1(zi1) + · · ·+ fq(ziq) + β0 + β1xi1 + · · ·+ βlxil + εi, (1)

for i = 1, . . . , n. We chose our explanatory variables using an ANOVA on simulated data. The

resulting set of (suitably scaled) summary statistics X includes the constant recombination rate

estimator available within the LDhat package, and can be found in Table 1.

For a more detailed description of the regression model as well as the selection of explana-
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tory variables see supplementary material section 1.1. Initial computations revealed variance

heterogeneity. Hence, we transformed the population recombination rate ρ using a Box-Cox

transformation t(ρ) [Box and Cox, 1964]. In section 1.2 of the supplementary material, we

describe the choice of the transformation parameters.

We observed a systematic overestimation of the background rates as well as underestimated

hotspot intensities. Therefore, we performed a simulation based bias correction using quantile

regression of the true recombination rate on the above described estimates. For further details

on the bias correction see Figure 3 and section 1.3 of the supplementary material.

Variable Description Computation

z

vapw Variance of the average pairwise di�erences per base pair convert of LDhat [McVean et al., 2004]
wath Wattersons's θ per base pair convert of LDhat [McVean et al., 2004]
apwd Average number of pairwise di�erences per base pair convert of LDhat [McVean et al., 2004]
hahe Mean of haplotype heterozygosity for each pair of sites Hs of adegenet [Jombart, 2008]
rsqu Mean of r2 for each pair of sites diseq of genetics [Warnes et al., 2013]
ldpr Mean of LD′ for each pair of sites diseq of genetics [Warnes et al., 2013]

x
hats Constant recombination rate estimator of a segment pairwise of LDhat [McVean et al., 2004]

fgts
The number of pairs of sites for which the four gametes test

self implementation
indicates a recombination event per base pair

Table 1: Summary statistics used in the regression model. The in�uence of variables tagged
with z is modeled using spline functions and variables tagged with x are �tted by linear and
quadratic e�ects.

2.2 Segmentation Algorithm Estimating Variable Recombination Rates

[Frick et al., 2014] introduced a method called SMUCE for detecting change points in a func-

tion for observations distributed according to an exponential family. This method starts with a

constant function and introduces successively additional jumps, as long as they lead to a signif-

icant increase in the likelihood. Using likelihood ratio tests, the probability of overestimating

the number of change-points is controlled subject to a user speci�ed type I error probability α.
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For a given number of jumps, the best �tting locally constant function is chosen by maximizing

the likelihood. We use this method with local estimates ρ̂ as input. For a general overview on

multiple change-point detection see [Niu et al., 2016].

In the �rst step LDJump divides the DNA sequence into k short segments. Summary statistics

are computed separately for each segment and inserted into our regression model to estimate

a local transformed recombination rate. The back-transformed rates follow an approximate

normal distribution (natural scale of ρ, see supplementary material section 1.2) and are used

as input for the change point estimator. In our simulations, the use of the back-transformed

rates led to a better detection of hotspots compared to the transformed rates.

3 Results

We used the software package scrm of [Staab et al., 2014] to simulate samples of populations

with variable recombination rates and converted its output to fasta-�les with the software

package ms2dna of [Haubold and Pfa�elhuber, 2013]. In this section we compare LDJump

with LDhat, the newer version LDhat2, LDhelmet as well as FastEPRR. We consider both

constant and variable recombination rates and look at the performance as well as the runtime.

The runtime comparison is based on one core of an Intel Xeon E5-2630v3 2.4 1866, with 64GB

DDR4-2133 RAM. Our analysis was performed in [R Development Core Team, 2017]. Note

that all mentioned software packages can also be applied on several cores in parallel.

3.1 Constant Recombination Rate Estimation

We �rst focus on a constant recombination rate on a DNA segment. In our simulations, LDJump

is compared with the functions pairwise of LDhat and max_lk of LDhelmet following the
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default guidelines. The chosen sample sizes were {10, 16, 20}, and the sequence lengths {1000,

2000, 3000} base pairs. For each of these nine setups we simulated under 111 di�erent values

of ρ ∈ [0, 0.1] yielding a total of 999 simulated scenarios. The population mutation rate was

chosen θ = 0.01.

Using the root mean squared error (RMSE =
√

1
n

∑n
i=1(ρ̂i − ρi)2) and the coe�cient of deter-

mination R2, we compare the accuracy of the mentioned methods. We visualize the estimators

and the true values in Figure 1 along with a diagonal black line indicating the true values. Both

prediction measures show a slightly better �t of the generalized additive model (purple plus

signs: higher R2 of 0.4974; smaller RMSE of 0.0256) compared with the software packages LD-

hat (red dots: 0.4447; 0.0290) and LDhelmet (green triangles: 0.2095; 0.0360). As our method

uses the function pairwise as one of the summary statistics, the improved performance may be

in part due to an optimized bias-variance trade-o�, see [Gärtner and Futschik, 2016].

3.2 Variable Recombination Rate Estimation

For humans, large fractions of recombination events are concentrated on short segments which

are called hotspots (reviewed in [Arnheim et al., 2007]). Following the literature, we de�ne

recombination hotspots as genomic regions that exceed the background rate by more than a

threshold factor of �ve for a length of up to 2kb [McVean et al., 2004].

We investigate how well hotspots are detected by our method and simulated two types of setup

for variable recombination rate estimation: simple setups (sequences of length 10 and 20 kb

with one hotspot) and natural setups (sequences of length 1Mb containing 15 hotspots) both

using a mutation rate θ of 0.01. These scenarios were investigated with di�erent background

rates, sample sizes, hotspot intensities, and hotspot lengths. When comparing our approach

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2018. ; https://doi.org/10.1101/190876doi: bioRxiv preprint 

https://doi.org/10.1101/190876
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.1

0.2

0.3

0.000 0.025 0.050 0.075 0.100
ρ

ρ̂

Program
LDhat
LDhelmet
GAM

Predictions of LDhat, LDhelmet, and GAM

Figure 1: Predicted recombination rates versus their true values estimated with LDhat (red
dots), LDhelmet (green triangles) and the GAM (purple plus signs). The black line provides
the true rates.

with LDhat(2) and LDhelmet, we followed recommendations and used 106 iterations for the

reversible-jump MCMC procedure, sampled every 4000 iterations, chose a burn-in of 105, and

di�erent block penalties of 0, 5, and 50. For the computations with LDhelmet, we used a

window size of 50 SNPs, and 11 Padè coe�cients. Results for FastEPRR were obtained using

winLength=stepLength (segment lengths) of 500, 1000, 1500, and 2000 base pairs. We applied

the implemented function smuceR within the R-package stepR [Hotz and Sieling, 2016] to

estimate the change-points for our method.
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3.2.1 Simple Setups

We simulated samples of sizes {10, 16, 20} with sequence lengths of 10 kb and 20 kb. Our 15

considered background recombination rates were chosen equidistantly within [0.001, 0.03].

We considered hotspot intensities of {5, 10, 15, 20, 40}-fold the background recombination rate.

The length of the hotspots varied among {1
5
, 1
10
, 1
20
, 1
20
, 1
35
, 1
50
}-times the sequence length. Due

to the large number of resulting setups and the computation times of LDhelmet and LDhat(2),

we have restricted this analysis to 2 replicates per sample yielding in total 4500 simulated

recombination maps. We approximated the RMSE (root mean squared error) as our quality

measure, and computed the estimation errors on an equidistant grid of 1000 positions along

the sequences.

Table 2 summarizes the performance of the considered methods. More speci�cally, we com-

puted the mean, median, and standard deviation (across simulations) of the RMSE for LDhat

(column 3), LDhat2 (c. 4), LDhelmet (c. 5), FastEPRR (c. 6-9, with di�erent segment lengths)

and LDJump (c. 10-15 with di�erent numbers of user-de�ned segments k). The results using

di�erent block penalties for LDhat(2), LDhelmet along with di�erent type I error probabilities

for LDJump are listed in separate rows.

As discussed in the supplementary material (section 1.4), segment lengths of at least 333 bp are

needed with θ = 0.01 for a good performance of LDJump. Following this recommendation, our

method performs equivalently or slightly better than LDhat2, and outperforms LDhat and also

LDhelmet. The choice of α did not have a large e�ect under the considered scenarios. Similarly,

the block penalty does not much a�ect the performance of LDhat2. With LDhat and LDhelmet

on the other hand, the choice of the block penalty strongly in�uences the performance. The per-

formance of LDJump and LDhat2 turned out to be more constant across simulations. Indeed,
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the standard deviation of the RMSE is more than 20 % lower with LDJump than that of LDhat,

which in turn has a more than 30 % lower SD than LDhelmet. With FastEPRR, approximately

57%, 5%, 4%, and 2% of the computations terminated due to errors using segment lengths of

500, 1000, 1500, 2000, respectively. When FastEPRR provided estimates, the performance was

comparable with LDJump. A more detailed graphical display of the performance of FastEPRR

with respect to segment lengths can be found in Figure 7 in section 2 of the supplementary

material.

bpen LDhat LDhat2 LDhel
FastEPRR (Segment Length)

α
LDJump (Number of Segments)

500 1000 1500 2000 10 15 20 25 30

x̄
0 0.158 0.064 0.286

0.053 0.057 0.061 0.063
0.1 0.068 0.065 0.062 0.064 0.066

5 0.132 0.064 0.234 0.05 0.068 0.065 0.062 0.064 0.066
50 0.078 0.064 0.094 0.01 0.068 0.065 0.062 0.064 0.066

x0.5

0 0.138 0.036 0.247
0.039 0.034 0.035 0.036

0.1 0.042 0.040 0.036 0.037 0.040
5 0.100 0.036 0.169 0.05 0.042 0.040 0.036 0.037 0.040
50 0.049 0.036 0.044 0.01 0.042 0.040 0.036 0.037 0.040

SD
0 0.115 0.076 0.227

0.053 0.066 0.072 0.074
0.1 0.077 0.074 0.096 0.078 0.079

5 0.121 0.076 0.224 0.05 0.077 0.074 0.096 0.078 0.079
50 0.102 0.076 0.145 0.01 0.077 0.075 0.096 0.078 0.079

Table 2: Mean (x̄), median (x0.5) and SD of the RMSE for LDhat, LDhat2, LDhelmet (LDhel),
FastEPRR, and LDJump under simple setups. Di�erent block penalties (bpen) have been tried
for LDhat, LDhat2, LDhelmet. Di�erent segment lengths have been applied with FastEPRR,
and di�erent number of segments as well as type I error probabilities α considered for LDJump.

Figure 2 contains separate results for di�erent sample sizes, recombination rates, hotspot in-

tensities and lengths, as well as sequence lengths. We applied LDJump with 20 segments and

a type I error probability of 5%. Hence, the considered segments had a length of 500 and 1000

(for 10kb and 20kb, respectively) nucleotides. We used FastEPRR with a window length of 2kb

in order to achieve a small number (32) of runs terminating due to errors. Especially for small

to middle background rates (under the considered values) LDJump, FastEPRR, and LDhat2

have on average a lower RMSE than LDhat and LDhelmet. LDJump, FastEPRR and LDhat2
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lead on average to a smaller RMSE for all considered sample sizes as well as sequence lengths,

with our approach performing best in many cases. Moreover, slightly smaller or equivalent

values for the RMSE were computed with LDJump and FastEPRR for hotspot intensities from

5- to 20-fold the background recombination rate and hotspot lengths between 1/50 and 1/10.

For a hotspot length of 1/5 of the total sequence length we can see a similar �t for all methods.

LDJump and FastEPRR have similar estimation quality with slight preference for our method.
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Figure 2: Comparison of the methods (LDhat(red), LDhat2 (blue), LDhelmet(green), LDJump
(purple), and FastEPRR (orange) for di�erent true recombination rates (top), sample sizes
(middle-left), sequence lengths (middle-right), hotspot intensities (bottom-left), and hotspot
lengths (bottom-right). Mean values are shown as black dots.
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3.2.2 Natural Setups

We simulated samples with 16 sequences and sequence lengths of 1Mb. The setups varied in

the background rate which was chosen among 13 equidistant values between 0.001 and 0.01.

The 15 hotspots were evenly distributed along the sequence and had di�erent intensities of

8 to 40-fold the background rate. Every setup was replicated 20 times. The same mutation

rate θ = 0.01 was again chosen for all setups. In our simulations, we focused on the methods

that performed best for the simple scenarios. As FastEPRR using segment lengths of 1kb

terminated without producing estimates for 88% of our simulated complex data sets, we mainly

restricted our attention to a comparison between LDJump and LDhat2. Additional information

on the performance of FastEPRR based on the non-terminating runs only can be found in

supplementary material section 3. Notice however that a high proportion of missing results

may lead to a biased quality assessment, if the missing probability depends on features of the

data set that a�ect the performance of the estimate.

Figure 3 provides a comparison between LDJump with (grey) and without (purple) bias correc-

tion, and LDhat2 (blue). Three samples with di�erent background recombination rates of 0.001

(left), 0.0054 (middle), and 0.01 (right) are presented in dotted black lines. Segment lengths

were chosen to be 1kb with the quantile chosen 0.35 in the bias correction (see supplementary

material section 1.3) and a type-I error probability of 0.05. The bias-correction decreases the

bias in the background rates and increases the intensities of the estimated hotspots.

Quality Assessment We took the weighted RMSE as measure of quality. It is de�ned as

WRMSE =

√√√√ n∑
i=1

wi(ρ̂i − ρi)2,
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Figure 3: Estimated recombination maps using LDhat2 and LDJump, both with and without
our bias-correction. The chosen setups di�er in the background rates (0.001 (left), 0.0054
(middle), and 0.01 (right)). The true recombination map (black dotted lines) contains 15
hotspots. Horizontal lines represent the hotspot threshold (5·background rate).

with wi denoting the length of the estimated segment i divided by the total sequence length. We

also considered the proportion of correctly identi�ed hotspots (PCH). A hotspot is counted as

correctly identi�ed if it has a non-empty intersection with a detected hotspot (i.e. a region with

at least �ve-fold background recombination rate). The proportion of correctly identi�ed back-

ground rates (PCB) has been de�ned analogously. Finally, the weighted average performance

is given as WAP = (PCH + PCB)/2.

To identify the best combination of bias correction and segment lengths, we applied LDJump

with k = 500, 1000, 1500, and 2000 segments and estimated the recombination maps using the
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0.25, 0.35, 0.45, and 0.5 quantiles in the bias correction (see supplementary material section

1.3). Notice that segment lengths resulting from the chosen values of k are 2kb, 1kb, 666 and

500 bp. As hotspot lengths are either 1 or 2kb, the scenario with k = 1500 is most challenging

as the hotspot boundaries will systematically di�er from the segment boundaries. A direct

comparison with LDhat2 using a block penalty of 50 (based on the results from the simple

setups) is provided.

The di�erent choices of k are displayed by the �rst four groups of boxplots in Figure 4. For

each of these four groups, quantiles of 0.25, 0.35, 0.4, and 0.5 are used in the bias correction

and are presented in di�erent colors. The rightmost bar in each panel (in blue) summarizes

the result of LDhat2. From top-left to bottom-right, we show PCH, PCB, WAP, the estimated

number of blocks, and the weighted RMSE.

PCH may be interpreted as a measure of sensitivity, whereas PCB provides a measure of

speci�city. We can see that our method has very high detection rates irrespective of k with

even less variability in performance than LDhat2. On the other hand, LDhat2 has very high

PCB proportions. The best PCB values for LDJump are obtained for the smallest quantile.

As an overall measure, we display the mean of PCH and PCB as WAP in the bottom-left

panel. It turns out that WAP is larger for LDJump regardless of the tuning parameters. In the

bottom-middle panel we can see that the number of estimated blocks of LDJump depends on

k. When using 500 segments, the estimated number of blocks is still below 31, the true number

of blocks in the recombination map (due to 15 hotspots). For larger k the number of blocks

is slightly overestimated. LDhat2 estimated many more blocks, indeed the number of change

points in recombination tended to be larger by a factor of more than 3000. The bottom-right

plot shows the weighted RMSE as an overall quality measure showing a similar level of accuracy

across k and compared with LDhat2. A more detailed investigation reveals that our method
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estimates hotspot rates more precisely, but provides less accurate estimators of the background

recombination rate.

Our results also show that our method is fairly robust with respect to tuning choices. This

is also true for k =1500, where the hotspots have an unfavorable location compared with the

design segment boundaries. To obtain a reasonable tradeo� between sensitivity (PCH) and

speci�city (PCB), segment lengths of 1kb (based on 1000 segments of sequence length 1Mb)

and a quantile of 0.35 in the bias correction seem to be a good choice with LDJump.
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Figure 4: Quality assessment is performed based on the proportion of correctly identi�ed
hotspots (PCH, top-left), the proportion of correctly identi�ed background rates (PCB, top-
right), the weighted average performance (WAP = (PCH+PCB)/2, bottom-left), the estimated
number of blocks (bottom-middle), and the weighted RMSE (bottom-right). Based on 13 se-
tups with 20 replicates these measures are computed for LDJump using di�erent numbers of
initial segments k (500, 1000, 1500, 2000) and compared with the results of LDhat2 using a
block penalty of 50.
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Figure 5 shows our considered quality measures depending on the background recombination

rates. We provide the average performance over 20 replicates. We can see that LDhat2 has

constant PCB and decreasing PCH as the background rate increases. LDJump shows constant

values for PCH and slightly increasing PCB for higher background rates. The overall measure

WAP slightly increases for LDJump and decreases for LDhat2 with increasing background

rates, respectively. The weighted RMSE is also plotted. It can be seen that LDhat2 leads to a

slightly smaller weighted RMSE with decreasing di�erences for larger ρ.
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Figure 5: Proportion of correctly identi�ed hotspots (PCH, solid), proportion of correctly identi-
�ed background rates (PCB, dashed), the average of these two quality measures (WAP, dotted),
and weighted RMSE*10 (dash-dotted) across di�erent recombination rates. We compare LD-
Jump (purple, segment length: 1kb, quantile 0.35), with LDhat2 (blue, same line coding per
quality measure).

Notice that we have obtained an error share of more than 88% using FastEPRR for the natural

setups. We provide a comparison of the error-free results in Figure 8 in supplementary material
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section 3. Based on this smaller number of results for FastEPRR, LDJump is favorable in terms

of the WRMSE and PCH, but has lower PCB compared to FastEPRR.

3.3 Populations under Di�erent Levels of Genetic Diversity

Since natural populations di�er in the level of genetic diversity, we simulated samples under

di�erent mutation rates θ ∈ {0.0025, 0.005, 0.01, 0.02}. In Figure 6 we compare the performance

based on the RMSE of LDJump (�rst panel) with LDhat2. For both methods, the in�uence

of a misspeci�ed θ has also been investigated. We used LDJump with segment lengths of 1kb,

and the regression model calibrated under the mutation rate θ = 0.01. Thus the model is

misspeci�ed when the true θ ̸= 0.01. For LDhat2, results obtained using the true value of θ are

displayed in the second panel, and results under misspeci�cation in the third panel.

LDJump improves with increasing mutation rates due to the higher information available per

segment. Interestingly, LDhat2 bene�ts less from increased levels of genetic diversity. A mis-

speci�ed θ had little e�ect on the performance of LDhat2.

Based on our simulations we also evaluate the in�uence of the SNP density on the performance

of LDJump. Figure 7 provides box plots illustrating the performance in terms of the RMSE

depending on the mean number of SNPs per base pair within a simulated segment. Our results

suggest that the higher the SNP density the more accurate estimates are obtained. When there

are fewer than two SNPs in a segment, our software implementation imputes estimates based

on the neighboring segments.
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Figure 6: Accuracy of estimates for di�erent levels of genetic diversity introduced by di�erent
mutation rates θ. LDJump (�rst panel) is compared with LDhat2 for di�erent values of θ.
Misspeci�ed values of θ are also considered: Indeed, LDJump was trained only under the
mutation rate θ = 0.01. For LDhat2, we compare the performance under di�erent mutation
rates (2nd panel) and under misspeci�cation assuming that the true mutation rate is equal to
0.01 (3rd panel, misspeci�ed for θ ̸= 0.01).

3.4 Populations under Demography

It has been observed in [McVean et al., 2002, Chan et al., 2012, Smith, 2005] that ignoring

population demography by wrongly assuming a constant population size leads to biased esti-

mates of recombination. As a remedy, [Kamm et al., 2016] computed 2-locus likelihoods under

a known variable population size. LDJump permits the natural inclusion of any type of de-

mography or even range of demographic scenarios by simply �tting our regression model under

suitable scenarios.

We illustrate this approach and consider a scenario that involves a bottleneck followed by a
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Figure 7: RMSE of LDJump using simulated populations under simple setups with di�erent
mutation rates θ = {0.0025, 0.005, 0.01, 0.02}. We compare the performance of LDJump in
dependence on the mean number of SNPs per bp.

rapid population growth. This scenario has also been used by [Kamm et al., 2016]. More

precisely, we chose time dependent population sizes as follows:

η(t) =


100, −0.5 < t ≤ 0

0.1, −0.58 < t ≤ −0.5

1, t ≤ −0.58.

(2)

Time is scaled in coalescent units and the simulations were again performed with scrm [Staab

et al., 2014]. [Johnston and Cutler, 2012] analyzed a similar demographic scenario and showed

that LDhat infers spurious recombination hotspots when falsely assuming a constant population

size.

With LDJump, we �tted our regression model using samples simulated under the demographic
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model (2). We used the same explanatory variables as under neutrality, but added Tajima's

D [Tajima, 1989] as an additional explanatory factor. This additional variable had signi�cant

e�ect on the model �t in our ANOVA, suggesting that choosing summary statistics dependent

on demography can help to improve the accuracy of our estimates. We did not change the

parameters in the Box-Cox transformation compared to the constant population size model.

To see what can be gained by explicitly considering an underlying demography, we simulated

samples under the demographic model (2), and sticking otherwise to the previously described

natural setups. For these samples, we estimated recombination maps using the regression mod-

els trained either under neutrality (misspeci�ed model) or under demography. More speci�cally

LDJump has been applied with segment lengths of 1kb and a quantile of 0.35. The accuracy

of these models was then compared in terms of the indicators PCH, PCB, and WRMSE.

The results are shown in Figure 8. When using the correct demographic model, the hotspot

detection rate as well as the proportion of correctly identi�ed regions with background recom-

bination rate increases. We also found the WRMSE to be equal or slightly smaller when using

the correct demographic model.

3.5 Runtime

Obtaining estimates of recombination can be computationally demanding, especially for a larger

number of sequences, and separate analyses for several populations. Hence, we also provide a

comparison with respect to runtime (in seconds) between LDhat, LDhat2, LDhelmet, FastEPRR,

and LDJump. We �rst consider simple setups using our simulated sequences of length 20kb.

Again, we looked at di�erent block penalty choices, as well as at di�erent numbers of atomic

segments k for LDJump in Table 3. As summaries, we computed the mean (top), median
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Figure 8: Performance of LDJump under the demographic model (2) (grey-boxes) compared
with the results under misspeci�ed demography (white-boxes), where a neutral model was incor-
rectly assumed. We set the segment lengths to 1kb for these comparisons and use the quantile
of 0.35 in the bias correction. We provide box plots for the quality measures WAP (left), PCB
(middle), and WMRSE (right).

(middle), and SD (bottom) of our measured runtimes. We can see that especially LDhat2 and

LDhelmet run ten to �fty times longer than LDJump and FastEPRR. While being only slightly

slower, we have seen before that LDhat leads to considerably less accurate estimates. LDJump

turns out to be also faster than FastEPRR when the number of segments k is at least 15.

In Table 4 we show the mean, median, and SD of runtimes in seconds based on natural setups.

On average LDJump turns out to be about ten to twenty times faster than LDhat2. Choosing

larger values of k reduces the runtime for LDJump. Due to the faster computation of certain

summary statistics, runtime was reduced by about 50% when going from 500 to 2000 segments.
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LDhat (bpen) LDhat2 (bpen) LDhelmet(bpen) FastEPRR (seg. length) LDJump (k)
0 5 50 0 5 50 0 5 50 500 1000 1500 2000 10 20 25 30

x̄ 35 56 156 751 3333 3260 1281 1368 1958 139 113 85 65 94 59 53 50
x0.5 34 55 138 735 3315 3261 849 936 1575 121 131 98 77 95 59 53 50
SD 6 7 70 273 999 977 1034 1042 1125 84 40 28 21 25 13 11 9

Table 3: Mean (x̄), median (x0.5), and SD of runtime (in seconds) for LDhat, LDhat2, LDhelmet,
FastEPRR, and LDJump under simple setups of length 20kb. For each method, separate
columns provide values depending on either the block penalty for LDhat, LDhat2, LDhelmet
(columns 2-4, 5-7, 8-10, respectively), the segment length (seg. length) for FastEPRR (columns
11-14) or the number of prede�ned segments k on which LDJump was applied (columns 15-18).

In contrast to our approach. It turns out that the runtimes strongly depend on the underlying

recombination rates with LDhat2, leading to a considerable di�erence between the median and

mean of times. In supplementary material (section 4), we compare the runtimes for various

background rates and di�erent values of k. Overall, LDJump provides a particularly attractive

combination of performance and runtime.

LDhat2
LDJump

500 1000 1500 2000

x̄ 77237 6758 4281 3575 3463
x0.5 122396 6809 4327 3592 3471
SD 2434 528 336 298 308

Table 4: Mean (x̄), median (x0.5), and SD of the runtimes (in seconds) for LDhat2 and LD-
Jump under our natural setups. For LDJump we provide values depending on the number of
prede�ned segments.
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3.6 Validation of LDJump Computed Hotspots with Active Recom-

bination Hotspots

We �rst tested our algorithm on a 103kb region on human chromosome 21. Therefore, we

sampled the region between SNPs rs10622653 and rs2299784 containing the PCP4 gene, because

this is the only region in which recombination has been characterized at high resolution by

sperm typing for such a long continuous stretch [Tiemann-Boege et al., 2006]. Taking data from

[The 1000 Genomes Project Consortium, 2015], we randomly chose 50 individuals for each of 4

subpopulations from 4 European regions (TSI, FIN, IBS, GBR). The data has been reformatted

from vcf-format to fasta-�les with the R packages [Knaus and Grünwald, 2017, Paradis et al.,

2004] using two sequences per (diploid) sample and the reference sequence 80.37 (GRCH37)

from [The 1000 Genomes Project Consortium, 2015]. We applied LDJump with a segment

length of 1kb and chose the 35%-quantile for the bias-correction.

In the region from 60-100kb, the estimated recombination maps across populations (using a

lookup table of 100 sequences and θ of 0.005) coincide well to the map obtained experimentally

using sperm typing in [Tiemann-Boege et al., 2006] (see panel A of Figure 9). However, we

also �nd population speci�c di�erences in the detected hotspots. We then compared this region

with the double strand break (DSB) maps (representing active recombination hotspots) from

[Pratto et al., 2014], see panel C of Figure 9. The hotspots inferred by LDJump in this

region (60-100kb) also agree with the DSB activity. However, LDJump additionally estimated

hotspots before the PCP4 gene around position 45kb. These hotspots were also found by other

LD-based algorithms [McVean et al., 2004, Li and Stephens, 2003], see panel B of Figure 9

[Tiemann-Boege et al., 2006].
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Figure 9: A: Estimated recombination map of 4 di�erent European populations (Italy, Finland,
Spain, and United Kingdom) on Chromosome 21:41187000-41290679 (GRCH37), including the
PCP4-Gene. B: Estimated recombination map of the same 103kb region including PCP4 on
Chromosome 21 taken from [Tiemann-Boege et al., 2006] based on sperm typing 13 intervals
∼ 5kb in size (grey boxes). Moreover, the estimated recombination maps of LDhat (green)
and Hotspotter (blue) are provided. C: Recombination maps based on measured double strand
break (DSB) intensities for �ve di�erent individuals representing active recombination from
[Pratto et al., 2014].
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We further tested the performance of LDJump within a larger genomic region to validate our

method. For this purpose, we applied LDJump to the entire chromosome 16, and consider

separate samples of 50 sequences from four populations (GBR, TSI, IBS, FIN) taken from

[The 1000 Genomes Project Consortium, 2015]. For the data preparation we used the software

package vcftools [Danecek et al., 2011] and then ran a parallel version of LDJump with segment

lengths of 1kb for each population recombination map. We obtained these results in less than

2 days using in total 15 cores of an Intel Xeon E5-2630v3 2.4 1866, with 64GB DDR4-2133

RAM.

In panel A of Figure 10 we show the estimated recombination maps under the demography

model (2) for chromosome 16 with the Italian population (TSI) in black, the Finnish sample

in dashed red (FIN), the Spanish sample (IBS) in dotted green, and the British population

(GBR) in dash-dotted blue. When we ignore demography and applied LDJump under a neu-

tral scenario, we obtained hotspots with unrealistically high intensities (up to values of 70).

Demography model (2) is rather simple, and we stress that LDJump could also be applied under

any demographic scenario by training the regression model with a suitable setup. Overall, we

observe population speci�c hotspots, but also hotspots present in more than one population as

is also observed in genome-wide DSB maps (Figure 10, panel B) [Pratto et al., 2014].
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Figure 10: A: Estimated recombination map for chromosome 16 of four European populations
with 50 randomly sampled individuals of the 1000 Genomes Project using LDJump under the
demography model and segment lengths of 1kb. The results of the Italian sample are plotted
in black, the Finnish sample in dashed red, the Spanish population in dotted green and the
British one in dash-dotted blue. B: Double-strand break maps taken from [Pratto et al., 2014]
of chromosome 16 for �ve individuals with di�erent PRDM9-types. Here, the di�erent colors
and line types represent di�erent individuals (solid-black: AA1, dashed-red: AA2, dotted-
green: AB1, dash-dotted-blue: AB2, long-dashed-cyan: AC). C: Overlap between detected
DSB hotspots and the hotspots identi�ed by LDJump. With LDJump, we de�ne hotspots as
regions with more than �ve times the estimated background rate. The DSB hotspots were taken
from [Pratto et al., 2014]. We looked at overlaps between LDJump and the DSB hotspots that
occurred with at least one European population (white areas). To assess the level of accuracy,
we added segments of length 0.5 (grey), 1 (cyan), 2 (red), and 3 (yellow) kb left and right to
the DSB region boundaries. The comparison is performed for all PRDM9-types considered in
[Pratto et al., 2014]. The total number of DSB hotspots of all PRDM9-types is 2889 of which
866 were not detected by LDJump.
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Furthermore, we evaluated the agreement of the estimated recombination hotspot locations

using LDJump with the DSB map hotspots. For identifying LDJump hotspots we use a simple

heuristic to de�ne the average background rate. More speci�cally, we chose the mean of all

estimates ρ̂ that fall below the median. This should give a downward biased estimate. With

LDJump, we againd de�ned regions with more than �ve-fold the estimated background rate as

hotspots. The DSB hotspots were selected by making use of the indicator variables provided

by [Pratto et al., 2014]. Given that DSB hotspots are very narrow, yet the resolution of DSB

into a crossover can occur with 3-5 kb, we added segments of di�erent length (0, 0.5, 1, 2, 3

kb) left and right to the DSB hotspot regions and calculated the respective number of detected

hotspots per PRDM9-type. The total number of DSB hotspots for AA1, AA2, AB1, AB2, and

AC is 2889. We counted a hotspot as jointly detected, if an overlap between DSB hotspot and

a LDJump hotspot occurred in at least one of the four populations (FIN, IBS, GBR, TSI). We

display the number of jointly detected hotspots (augmented by segments of di�erent lengths)

via a Venn diagram in panel C of Figure 10. Notice that the number of hotspots estimated by

LDJump for all considered populations is in total 31423, and therefore approximately 10 fold

higher than the number of DSB-hotspots. Our analysis shows that on average about 70% of

the DSB-hotspots (when adding 3kb segments to these regions) overlapped with at least one of

the estimated LDJump population hotspots. These proportions go in line with the comparison

of LD-based recombination maps and DSB hotspots in [Pratto et al., 2014] with an overlap of

56%.
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4 Discussion

We introduced a new method called LDJump to estimate heterogeneous recombination rates

along chromosomes from population genetic data. Our approach splits a given DNA sequence

into segments of proper length in a �rst step. Subsequently, we use a generalized additive

regression model to estimate the constant recombination rates per segment. Then, we apply a

simultaneous multiscale change-point estimator (SMUCE) to estimate the breakpoints in the

recombination rates across the sequence. We provide detailed comparisons of our method with

the recent reversible jump MCMC methods LDhat(2) and LDhelmet as well as the regression

based method FastEPRR. Our estimates are very fast, perform favourably in the detection

of hotspots, and show similar accuracy levels as the best available competitor for simple and

natural setups, respectively. These comparisons show that LDJump is a powerful tool to explore

recombination rates in organisms with narrow recombination hotspots; for example, PRDM9

de�ned hotspots in most mammals (reviewed in [Tiemann-Boege et al., 2017]).

We validated our method by computing hotspots in several human populations and compared

the estimated hotspots with recombination intensities measured by sperm-typing and double

strand break maps. These computations revealed population speci�c hotspots in the region

surrounding the PCP4-gene located on chromosome 21. Although on a small scale (103b) LD-

Jump computed hotspots mainly agree with hotspots detected at high resolution with sperm

typing and Chip immuno-precipitation (DSB map); we also observed a region with little con-

gruence at position ∼45kb. Given the lack of active recombination at position ∼45kb (absence

of this hotspot in sperm typing and in the DSB maps for the 2 European donors carrying the

PRDM9 allele A, as well as the donor with African descent (carrying the PRDM9 allele C)), we
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hypothesize that this estimated hotspot might represent a historical hotspot that got extinct.

Alternatively, it could be a population-speci�c hotspot given that its intensity varies among

di�erent European populations. In order to test this latter hypothesis, active recombination

maps from di�erent populations would be needed. Experimental data (e.g. hotspot at posi-

tion 95kb present only in the individual with a PRDM9 C allele) suggest that the intensity of

hotspots might vary also within populations.

Di�erences between hotspot rates estimated from LD patterns compared to estimates based on

sperm typing have also been observed by [Je�reys and Neumann, 2009]. This might be caused

by the short life-span of hotspots and their rapid evolution in intensity and genomic position

among populations and species [Coop and Myers, 2007, Myers et al., 2010, Je�reys et al., 2013].

In fact, only ∼56% of historical hotspots determined by LD agree with genome-wide DSB maps

[Pratto et al., 2014]. Our large-scale validation on chromosome 16 shows that about 70% of

the DSB-hotspots were also found by LDJump using four European populations. Fine-scale

population speci�c di�erences with respect to recombination events have also been highlighted

in studies such as [Kong et al., 2010, Berg et al., 2011, Fledel-Alon et al., 2011, Pratto et al.,

2014]. Given all this, our observed di�erences are likely due to underlying biological features.

We have implemented our approach as an R-package called LDJump, which can be freely down-

loaded from https://github.com/PhHermann/LDJump. In our simulations, we obtained partic-

ularly good results when applying our method with segment lengths of 1kb and a bias correction

using the default quantile of 0.35.

In conclusion, LDJump is a fast algorithm which is able to detect narrow hotspots at high

accuracy using segments of approximately 1kb length. Moreover, we also show that LDJump

can be applied on populations under demography. We validated our method on a 103kb region

of human chromosome 21 as well as the whole chromosome 16 and found a good congruence
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by comparing LDJump hotspots with recombination hotspots measured with sperm typing or

Chip immuno-precipitation (DSB map).
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Data Accessibility Statement

LDJump has been implemented as an R package which can be downloaded and installed
from Github (https://github.com/PhHermann/LDJump). We also provide example �les and
a manual in this repository. We downloaded the data of chromosome 16 from ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 and uploaded an R-script with details
on the data management as well as the hotspot locations for the estimated population recom-
bination maps to Github (https://github.com/PhHermann/Hermann_et_al_2018_LDJump).
We download the data for the application on chromosome 21 from http://phase3browser.

1000genomes.org/Homo_sapiens/Location/Overview?r=21:41187000-41290679 using the �rst
50 samples of the four European populations IBS, GBR, TSI, and FIN.
We provide details on the regression model, bias correction, choice of segment lengths, detailed
quality assessments and runtime comparisons in the supplementary material.
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