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Abstract1

Changes in pathogen genetic variation within hosts alter the severity and spread of infectious2

diseases, with important implications for clinical disease and public health. Genetic drift3

may play a strong role in shaping pathogen variation, but analyses of drift in pathogens have4

oversimplified pathogen population dynamics, either by considering dynamics only at a single5

scale (within hosts, between hosts), or by making drastic simplifying assumptions (host immune6

systems can be ignored, transmission bottlenecks are complete). Moreover, previous studies7

used genetic data to infer the strength of genetic drift, whereas we test whether the genetic8

drift imposed by pathogen population processes can be used to explain genetic data. We first9

constructed and parameterized a mathematical model of gypsy moth baculovirus dynamics that10

allows genetic drift to act within and between hosts. We then quantified the genome-wide11

diversity of baculovirus populations within each of 143 field-collected gypsy moth larvae12

using Illumina sequencing. Finally, we determined whether the genetic drift imposed by13

host-pathogen population dynamics in our model explains the levels of pathogen diversity in14

our data. We found that when the model allows drift to act at multiple scales, including within15

hosts, between hosts, and between years, it can accurately reproduce the data, but when the16

effects of drift are simplified by neglecting transmission bottlenecks and stochastic variation17

in virus replication within hosts, the model fails. A de novo mutation model and a purifying18

selection model similarly fail to explain the data. Our results show that genetic drift can play19

a strong role in determining pathogen variation, and that mathematical models that account for20

pathogen population growth at multiple scales of biological organization can be used to explain21

this variation.22
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Introduction23

Pathogen genetic variation can have important consequences for human health, in both clinical24

and epidemiological settings (Alizon et al. 2011). In particular, high variation within hosts25

can lead to severe disease symptoms within individuals, and rapid disease transmission within26

populations (Read and Taylor 2001; Vignuzzi et al. 2006). An understanding of the mechanisms27

determining pathogen variation might therefore lead to novel interventions, reducing the toll of28

infectious diseases. Development of such an understanding requires quantification of the effects29

of population processes on pathogen genetic variation, in turn requiring mathematical models30

that relate population processes to genetic change.31

Such models, however, tend to greatly simplify pathogen biology. Selection-mutation32

models, for example, often assume that pathogen populations are effectively infinite33

(Lorenzo-Redondo et al. 2016). Models that allow pathogen population sizes to be finite34

typically neglect pathogen population processes either within hosts in acute infections (Koelle35

et al. 2006), or between hosts in chronic infections (Pennings et al. 2014). Models that attempt to36

capture both of these scales of disease dynamics have assumed either that pathogen population37

growth within hosts is very simple (Klinkenberg et al. 2017), or that pathogen bottlenecks at38

transmission are complete (Didelot et al. 2014; Klinkenberg et al. 2017; Ypma et al. 2013),39

so that every infection begins as a clonal lineage. These simplifications could strongly alter40

conclusions about the effects of genetic drift on pathogen diversity, and indeed have been41

highlighted as key challenges in phylodynamic inference (Frost et al. 2015).42

Genetic drift is a change in an allele’s frequency due to the chance events that befall43

individuals. The effects of drift are thus strongest in small populations, in which a few events44

can have a large impact (Nagylaki 1992). The high population sizes typical of severe infections45

have led some authors to argue that drift has little effect on pathogens (Kouyos et al. 2006;46
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Maldarelli et al. 2013), but pathogen population sizes typically fluctuate by several orders47

of magnitude over the course of infection and transmission. It therefore seems likely that,48

when pathogen populations are small and variable, pathogen genetic variation will be strongly49

affected by drift. Indeed, analyses that allow for finite population sizes have shown that drift50

has at least weak effects on some pathogens (Pennings et al. 2014).51

New infections are typically initiated by small pathogen population sizes within hosts52

(Gutiérrez et al. 2012), leading to bottlenecks at the time of transmission that may drive genetic53

drift. Pathogen population sizes within hosts can also remain small for long periods following54

exposure (Kennedy et al. 2014). In small populations, chance events such as the timing of55

reproduction can strongly influence population growth, a phenomenon known as “demographic56

stochasticity” (Kot 2001). When the effects of demographic stochasticity are strong, chance57

may allow some virus strains to replicate and survive while others go extinct, providing a second58

source of genetic drift that we refer to as “replicative drift”. Note that we use the term “strain”59

to mean a population of pathogen particles that have identical genetic sequences.60

Many previous studies of genetic drift in pathogens have focused only on population61

processes that operate within hosts, either during experiments with model organisms, or during62

the treatment of human patients (Abel et al. 2015; Gutiérrez et al. 2012). Pathogen variation in63

nature, however, is also affected by processes that operate at the host population level, such as64

fluctuating infection rates during epidemics (Grenfell et al. 2004). Studies of Ebola (Azarian65

et al. 2015) and tuberculosis (Lee et al. 2015), for example, have shown that much of the66

variation present at the population level often cannot be explained by natural selection, and67

must instead be due to neutral processes that presumably include genetic drift.68

Genetic drift in pathogens may thus be driven by population processes at multiple scales.69

These multiple scales can be incorporated into a single framework by constructing “nested”70

models, in which sub-models of within-host pathogen population growth are nested in models71
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of between-host pathogen transmission (Mideo et al. 2008). The computing resources necessary72

to analyze such complex models have only become available recently, however, and so it has not73

been clear whether sufficient data exist to test nested models of drift (Gog et al. 2015). Indeed,74

even for models that assume that the strength of drift is constant across hosts, robust tests of the75

model predictions require both genetic data and mechanistic epidemiological models (Didelot76

et al. 2014), a combination that is rarely available. Whether nested models can be of practical77

use for understanding pathogen genetic variation in nature is therefore unclear.78

For baculovirus diseases of insects, pathogen population processes have been intensively79

studied at both the host population level (Elderd 2013), and at the individual host level80

(Kennedy et al. 2014). Baculoviruses cause severe epizootics (= epidemics in animals) in81

many insects (Moreau and Lucarotti 2007), including economically important pest species82

such as the gypsy moth (Lymantria dispar) that we study here (Woods and Elkinton 1987).83

Collection and rearing protocols for the gypsy moth have long been standardized (Elkinton84

and Liebhold 1990), and so previous studies of the gypsy moth baculovirus Lymantria85

dispar multiple nucleopolyhedrovirus (LdMNPV) have produced parameter estimates for both86

within-host (Kennedy et al. 2015) and between-host (Elderd et al. 2008, 2013; Fuller et al. 2012)87

models. Moreover, collection of large numbers of virus-infected individuals is straightforward88

(Woods and Elkinton 1987), making it possible to use high-throughput sequencing methods to89

characterize pathogen diversity across many virus-infected hosts. Here we use a combination of90

whole-genome sequencing and parameterized, nested models to quantify the effects of genetic91

drift on the gypsy moth baculovirus. We show that a mechanistic model of genetic drift can92

explain variation in this pathogen, but only if the model takes into account the effects of drift at93

multiple scales of biological organization.94
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Results95

Sequencing the virus populations from each of 143 field-collected insects showed that there is96

substantial genetic variation in baculovirus populations between hosts. We generated consensus97

sequences for each of our 143 samples (see Supplemental Information A), and comparisons98

between consensus sequences identified 712 segregating sites at the between host scale (defined99

as sites where alternative variants were the consensus in more than 6 samples (≈ 5%)). These100

sites correspond to approximately 0.4% of the genome. Analysis of the variation at these101

712 sites within each sampled virus population showed that these sites were polymorphic in102

some hosts but not others, which might occur if some hosts were exposed to multiple strains103

of virus, while others were exposed to only a single strain. We summarize genetic variation104

within hosts using mean nucleotide diversity (Nei and Li 1979), the probability that two105

randomly selected alleles at a segregating site are different (Supplemental Information A). Our106

conclusions were nevertheless unchanged when we used alternative metrics of diversity, such107

as the proportion of polymorphic loci, the effective number of alleles, or the relative nucleotide108

diversity (Supplemental Information I).109

Measured across the consensus sequences of our 143 samples, nucleotide diversity at our110

712 segregating sites was quite high at 0.404. Within samples, nucleotide diversity at these111

same sites ranged from 0.002 to 0.284 (mean = 0.072, s.d. = 0.077, Supplemental Information112

B). Overall nucleotide diversity within samples ranged from 0.001 to 0.003, with a mean of113

0.001. In Supplemental Information B, we show that these values imply that a large fraction of114

nucleotide diversity within hosts can be explained by just 712 segregating sites, or 0.4% of the115

genome.116

Together, these patterns suggest that substantial pathogen diversity within hosts is likely117

acquired from the exposure of host insects to multiple virus strains. If diversity had instead118
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been generated by de novo mutation, nucleotide diversity between samples would have119

been less variable (Supplemental Information E), and polymorphism would have likely been120

spread across many sites, including sites that were not polymorphic at the population level.121

Immune-system mediated diversifying selection is also an unlikely explanation, because insects122

lack clonal immune cell expansion (Vilmos and Kurucz 1998), because immune cell expansion123

does not explain why some hosts have substantially more pathogen diversity than others, and124

because we found no evidence of diversifying selection in our sequence data (Supplemental125

Information H). Negative correlations between host families in susceptibility to different126

pathogen genotypes constitute yet a third unlikely explanation, because in the gypsy moth such127

correlations are positive (Hudson et al. 2016). Migration of virus or infected larvae from nearby128

locations with different virus strains similarly cannot explain the data, because population129

structure in the gypsy moth virus is minimal (Fujita 2007, Supplemental Information A).130

Genetic drift, however, can explain the data, but only if we allow for effects of population131

processes at multiple scales of biological organization. To explain why, we first use a132

nested model of pathogen population dynamics (fig. 1) to show how genetic drift in pathogen133

populations may operate at three scales; within hosts, within epizootics, and between years. We134

then show that the model can only explain the data if it includes effects of drift both during135

transmission bottlenecks and virus growth within hosts.136

Simulations of our within-host model show that the combination of transmission bottlenecks137

and replicative drift can substantially reduce pathogen diversity within hosts (fig. 2A-C).138

Demographic stochasticity, which is manifest in the figure as jaggedness in the model139

trajectories, is strongest shortly after exposure, when the pathogen population size is small. This140

stochasticity generates variability in the time to host death, and it also drives replicative drift.141

Comparing this model to a linear birth-death model (Supplemental Information C) shows that142

the immune system substantially slows the growth of the virus population early in the infection,143
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which strengthens the effects of replicative drift.144

Overwintered virus infects hatchlings during the initial emergence of hosts from eggs,145

an effect that is apparent in our simulations of the epizootic model (fig. 2D-E). After the146

overwintered virus decays, there is a short period when cadavers are rare, such that the vast147

majority of virus is present only within exposed larvae. When these exposed larvae die, the148

virus that they release is transmitted to new larvae feeding on foliage. During this time, the149

relative frequencies of different virus strains consumed by larvae can fluctuate strongly due to150

the drift that occurs when cadavers are rare. Low densities of cadavers can thus alter the relative151

frequency of strains within hosts. In the figure, the initial host population consists of more152

than 10,000 hosts, reflecting the high densities at which baculovirus epizootics occur in insect153

populations in nature (Moreau and Lucarotti 2007). Demographic stochasticity nevertheless154

influences the composition of virus strains near the end of the epizootic, when the pathogen155

population begins to die out, in turn allowing drift to influence which virus strains cause156

infections within hosts.157

Over longer time periods, fluctuations at the population scale (fig. 2F) produce158

host-pathogen cycles that match the dynamics of gypsy moth outbreaks in nature (Dwyer et al.159

2000; Elderd et al. 2008). These large fluctuations can drive changes in the relative frequency160

of pathogen strains, especially when pathogen population sizes and overall infection rates are161

at their lowest, in the troughs between host population peaks. Host-pathogen population cycles162

in our model thus further strengthen the effects of genetic drift on the pathogen.163

Our combined model therefore shows that drift can act both within and between hosts, and164

at time scales ranging from hours to decades. To test the model, we compared its predictions of165

nucleotide diversity to the levels of nucleotide diversity in our data. To test whether the data can166

be explained equally well by models that neglect one or more sources of drift, we also tested167

models that eliminated replicative drift, or that eliminated both replicative drift and transmission168
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bottlenecks. Note that it is not possible to construct a model that includes replicative drift but not169

transmission bottlenecks, because replicative drift requires virus population sizes to be integer170

values, and forcing the virus population to have an integer value necessarily imposes a form171

of bottleneck. Also, to test whether the data are better explained by selection than by drift, we172

constructed a model that allows for purifying selection to act within hosts, but that lacks both173

replicative drift and transmission bottlenecks.174

These comparisons show that only the model that includes both replicative drift and175

bottlenecks can explain the data (fig. 3). The neutral model that includes only drift at the176

host-population scale predicts within-host diversity levels that are much higher and much less177

variable than in the data. The model that includes population-scale drift and bottlenecks but not178

replicative drift, and the model that includes purifying selection but not transmission bottlenecks179

or replicative drift both correctly predict that there will be substantial variation across hosts,180

but they predict diversity levels that are much higher than in the data. In Supplemental181

Information D and G, we show the that these qualitative conclusions are robust across parameter182

values that determine bottleneck severity and selection intensity. In contrast, the model that183

includes replicative drift and transmission bottlenecks accurately predicts the entire distribution184

of diversity levels seen in the data. This visual impression is strongly confirmed by differences185

in the Monte Carlo estimates of the likelihood scores across models (Supplemental Information186

F: neutral model with neither bottlenecks nor replicative drift, median log mean likelihood187

= −503.2; purifying selection model, median log mean likelihood = −353.1, neutral model188

with bottlenecks but not replicative drift, median log mean likelihood = −266.7; neutral model189

with both bottlenecks and replicative drift, median log mean likelihood = −63.9). Because no190

parameters were fit to the diversity data, we do not need a model complexity penalty, but the191

difference in the number of parameters across models was in any case dwarfed by the differences192

in the likelihood scores.193
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Our results thus show that a model that accounts for the effects of population processes at194

multiple scales can explain differences in pathogen variation across hosts in the gypsy moth195

baculovirus. In contrast, models that simplify the effects of genetic drift by ignoring effects196

of transmission bottlenecks and replicative drift, or that allow for selection but not within host197

drift, cannot explain the diversity of this pathogen. More broadly, because the model parameters198

were estimated entirely from experimental data on baculovirus infection rates (Supplemental199

Information C), we are effectively carrying out cross-validation of the model.200

The highly skewed distribution of nucleotide diversity apparent in our data can thus be201

explained by a model that allows for drift at multiple scales, and that includes multiple sources202

of drift within hosts, but not by simpler models. In addition, fig. 4 shows that the best203

model can reproduce entire distributions of diversity within individual hosts. Allele-frequency204

distributions in the model nevertheless tend to have slightly shorter tails and narrower peaks205

compared to the data. These mild discrepancies may be partially explained by mutations that206

occurred during viral passaging or during library preparation, but they can also be explained by207

small biases introduced during the mapping of our short sequence reads to the reference genome208

(Supplemental Information J). The data therefore do not reject the model.209

Our virus samples were collected at times of peak or near-peak gypsy moth densities, which210

are the only times at which large numbers of larvae can be collected easily, and so the data211

do not directly show how changes in pathogen population size at the host-population scale212

affect pathogen variation. We therefore used our best model to explore how pathogen variation213

within hosts will change over the course of the gypsy moth outbreak cycle. Within-host214

diversity is predicted to be highest just as the host population begins to crash due to the215

pathogen, after which diversity is predicted to gradually decline until the next outbreak (fig. 5).216

Reductions in within-host variation due to transmission bottlenecks and replicative drift are217

thus counter-balanced by increases in within-host variation at the time of host population peaks,218
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due to the high frequency of multiple exposures when host populations are large. Long-term,219

population-scale processes can therefore also strongly affect within-host variation.220

Discussion221

A basic prediction of population genetics theory (Nagylaki 1992), and a fundamental222

assumption of phylodynamic modeling (Grenfell et al. 2004), is that the effects of genetic drift223

are determined by population processes. Explicit tests of this assumption for infectious diseases,224

however, are rare. We used a model that was developed and parameterized using non-genetic225

datasets to show that patterns of genetic diversity in an insect pathogen can be explained by a226

model that accounts for population processes at multiple scales, but not by models that simplify227

or neglect the effects of drift. Previous work has attempted to infer disease demography and228

pathogen evolution from genetic data (Grenfell et al. 2004). Here we instead began with an229

existing population process model that has already been fit to epidemiological data, and we use230

it to predict pathogen genetic data. We thus tested the extent to which disease demography can231

be used to predict neutral pathogen evolution.232

A simple model of purifying selection was not able to explain the patterns of diversity233

in our data. Models that instead invoke diversifying selection or more complex patterns of234

host-specific immune selection might provide reasonable explanations for our data, but such235

models require extra parameters to account for the costs and benefits of alternative alleles,236

increasing the complexity of the models (Orr 1998). Moreover, drift is an inherent property237

of small populations, and so models that invoke selection should still allow for effects of drift238

if population sizes are small. In our case, complex models of selection were not needed to239

explain patterns of diversity, suggesting that the effects of selection on our data are weak240

relative to the effects of drift. Selection may nevertheless be necessary to explain variation241
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in other pathogens or other datasets. Given that polymorphism has been widely observed242

in insect baculoviruses (Chateigner et al. 2015; Hodgson et al. 2001), our results suggest243

that baculoviruses present opportunities to understand the relationship between host-pathogen244

ecology and pathogen diversity.245

We have shown that both transmission bottlenecks and replicative drift have detectable246

impacts on pathogen diversity. Due to the difficulty of separating these effects, previous247

studies of genetic drift have assumed that bottlenecks are complete (Klinkenberg et al. 2017;248

Pennings et al. 2014; Ypma et al. 2013), have ignored impacts of key biological processes249

such as the host immune response (Sobel Leonard et al. 2017), or have summarized the250

effects of multiple sources of drift with a single parameter, the effective population size251

Ne (Volz et al. 2017). Similarly, estimates of bottleneck size often combine the effects of252

transmission bottlenecks and replicative drift into a single estimate of the effective bottleneck,253

biasing estimates of transmission botteleneck size (Sobel Leonard et al. 2017, Supplemental254

Information D). Distinguishing between transmission bottlenecks and replicative drift, however,255

may provide novel insights into disease control strategies. For example, the emergence of256

resistance to antibiotic drugs might be slowed if drug therapy windows are restricted to periods257

when the effects of replicative drift are strongest, such as when pathogen populations are small258

or are turning over rapidly.259

To show that both transmission bottlenecks and replicative drift play an important role in260

shaping pathogen diversity within hosts, we have focused our analysis on common variants that261

cannot be easily explained by de novo mutation. Additional variation is nevertheless present262

(Supplemental Information B). In our case, this other variation occurs at such low levels that it263

cannot be readily distinguish from sequencing error, but it is almost certainly true that mutation264

and selection also play roles in shaping total pathogen diversity within hosts. Our argument265

is therefore not that mutation and selection are unimportant, but instead that transmission266
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bottlenecks and replicative drift can strongly affect pathogen diversity within hosts. In our267

case, bottlenecks and replicative drift appear to be the main drivers of diversity at sites that268

segregate at the population level.269

High-throughput sequencing has revolutionized our ability to measure pathogen variation.270

It has been used to detect drug-resistance (Mideo et al. 2016), to discover novel viruses in nature271

(Lipkin and Anthony 2015), and to diagnose disease in clinical settings (Wilson et al. 2014).272

Our work shows that high throughput sequencing can also provide important insights into the273

ecology and evolution of host-pathogen interactions, especially when combined with nested274

disease models. The increasing availability of both parameterized models (Keeling and Rohani275

2008) and genomic data (Hatherell et al. 2016) suggests that our approach of using genetic data276

to challenge models of nested disease dynamics may be widely applicable.277

Methods278

Model description279

The gypsy moth baculovirus LdMNPV, is a double stranded DNA virus belonging to the family280

Baculoviridae. The virus is approximately 161 kb, and like all baculoviruses, it exists in two281

forms, as an “occlusion body” that is highly stable in the environment due to its protective282

proteinaceous matrix, and as a “budded virus” that is released from cells during replication283

within hosts.284

The gypsy moth baculovirus is transmitted when larvae consume occlusion bodies while285

feeding on foliage (Elderd et al. 2008). If the resulting virus population grows inside the host286

to a sufficiently large size, the larva dies, releasing new occlusion bodies onto the foliage.287

These occlusion bodies are then available to be consumed by additional conspecifics (the virus288

is species specific (Moreau and Lucarotti 2007)), leading to very high infection rates in high289
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density populations (Woods and Elkinton 1987). During the fall and winter, when the insect is290

in the egg stage, the virus persists beneath egg masses laid on cadavers or other locations where291

the virus may be protected from degradation by ultraviolet light (Fleming-Davies and Dwyer292

2015; Murray and Elkinton 1989). Genetic drift in the gypsy moth baculovirus may therefore293

be affected by population processes at multiple scales, including within individual hosts and294

across the host population.295

Exposure to the virus results in an initial population of only a few virus particles (Kennedy296

et al. 2014; Zwart et al. 2009), and the population size in the host remains small for a substantial297

period of time following exposure (Kennedy et al. 2014, 2015). Our model of pathogen growth298

within hosts therefore tracks population sizes from the initial population bottleneck through the299

stochastic growth of the pathogen population, until death or recovery. Our model thus explicitly300

includes genetic drift (fig. 1).301

Our within-host model is based on a birth-death model (Kot 2001), which describes302

probabilistic changes in population sizes over time. In birth-death models, the probability of303

a birth or a death in a small period of time increases with the population size (Renshaw 1991).304

When the population size is small in a birth-death model, it is possible for extinction to occur305

due to a chance preponderance of deaths over births, even if the per-capita birth rate exceeds306

the per-capita death rate. Birth-death models are thus well suited to describe the demographic307

stochasticity that underlies replicative drift.308

In our within-host birth-death model, pathogen extinction is equivalent to the clearance309

of the infection by the host. If the pathogen does not go extinct, its population eventually310

becomes large enough that the effects of stochasticity are negligible (Saaty 1961), leading to311

host death when the population reaches an upper threshold. In previous work we showed that312

linear birth-death models are insufficient to explain data on the speed of kill of the gypsy moth313

baculovirus, whereas models that allow for nonlinearities due to the immune system produce a314
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better explanation for the data (Kennedy et al. 2014).315

Our within-host model thus describes virus removal as the outcome of a process that begins316

with the insect’s immune system releasing chemicals that active the phenol-oxidase pathway.317

This release causes virus particles to be encapsulated and destroyed by host immune cells,318

and it also incapacitates the immune cell (Ashida and Brey 1998; Trudeau et al. 2001). Our319

model thus follows standard predator-prey-type immune-system models (Alizon and van Baalen320

2008), in which the pathogen is the prey, and the immune cells are the predator, except that here321

the immune cells do not reproduce over the timescale of a single infection. The pathogen322

population in the model may then be driven to zero because of interactions with the host323

immune system, or it may persist long enough to overwhelm the host immune system, leading324

to exponential pathogen growth and eventual host death. Which outcome occurs depends on the325

initial pathogen population size and on demographic stochasticity during the infection.326

In our model, the initial pathogen population size within a host is drawn from a Poisson327

distribution (fig. 1, Kennedy et al. 2014). If the infecting cadaver is composed of multiple328

strains, the model draws an initial population size for each strain from a multinomial329

distribution, such that the probability of sampling a particular strain from the infecting cadaver330

depends on the frequency of that strain in the cadaver. This process creates a transmission331

bottleneck. Next, the model tracks the population size of each virus strain over the course of332

the infection. Changes in the relative frequencies of these strains over time creates replicative333

drift. The host dies when the total pathogen population size exceeds an upper threshold. The334

frequency of virus strains at the time of host death determines the frequency of strains in the335

newly generated cadaver.336

We model pathogen dynamics at the scale of the entire host population first by using337

a stochastic Susceptible-Exposed-Infected-Removed or “SEIR” model to describe epizootics338

(in our case the infected I class consists of infectious cadavers in the environment, which339
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we symbolize as P for pathogen). Our SEIR model is modified to allow hosts to vary in340

infection risk, an important feature of gypsy moth virus transmission (Dwyer et al. 1997; Elderd341

et al. 2008), and to allow exposed hosts to be re-exposed, because infected gypsy moth larvae342

continue to consume foliage until shortly before death (Eakin et al. 2014). For computational343

convenience (Wearing et al. 2005), most SEIR models assume that the time between exposure344

and infectiousness follows a gamma distribution (Keeling and Rohani 2008). We instead allow345

this time to be determined by our within-host model, so that the within-host model is nested346

inside the stochastic SEIR model. As in the within-host model, the frequency of different virus347

strains at the population scale can drift due to chance events, such as the exposure of hosts to348

one cadaver and not another. Our between-host model therefore adds an additional source of349

drift to our nested models.350

Over longer time scales, gypsy moth populations go through host-pathogen population351

cycles, in which host outbreaks are terminated by baculovirus epizootics. This pattern352

is typical of many forest defoliating insects (Moreau and Lucarotti 2007). The resulting353

predator-prey-type oscillations drive gypsy moth outbreaks at intervals of 5-9 years (Dwyer354

et al. 2004, we neglect the effects of the gypsy moth fungal pathogen Entomophaga maimaiga,355

which was having only modest effects in our study areas in Michigan, USA, when we collected356

our samples). Between insect outbreaks, virus infection rates are very low (Elderd et al. 2008),357

which may strengthen the effects of genetic drift.358

Gypsy moths have only one generation per year, and therefore only one epizootic per year.359

We thus nest our within-host/SEIR-type model into a model that describes host reproduction360

and virus survival after the epizootic (fig. 1). The SEIR model determines which hosts die361

during the epizootic and which virus strains killed those hosts. This information is used in362

difference equations that describe the reproduction of the surviving hosts, the survival of the363

pathogen over the winter, and the evolution of host resistance, an important factor in gypsy364
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moth outbreak cycles (Dwyer et al. 2000; Elderd et al. 2008).365

By explicitly tracking the dynamics of individual hosts and pathogens, our model inherently366

includes the effects of genetic drift. We also tested whether a simple model of purifying367

selection, or a model of de novo mutation could explain the patterns of diversity in the368

data, without invoking drift within hosts. If these models were to fail to explain the369

patterns of diversity seen in our data, more complex models of evolution would need to be370

considered. In the gypsy moth baculovirus system, however, mutation rates are likely low371

(Rohrmann 2008; Sanjuán and Domingo-Calap 2016), spatial structure appears to be weak372

(Fujita 2007, Supplemental Information A), and evidence of selection acting within hosts is373

lacking (Supplemental Information H). Drift therefore seems likely to play a strong role in374

shaping virus diversity.375

To show that the different sources of drift in our model are actually necessary to explain376

the data, we created three alternative models. All three alternative models simply the effects377

of genetic drift, but one also allows for effects of purifying selection. For the first alternative378

model, we simplified the effects of genetic drift by assuming that the relative frequencies of379

different virus strains within hosts do not change during pathogen population growth within380

hosts. To do this, we altered the model output such that the relative frequencies of virus381

strains released from a host upon host death were equal to the relative frequencies of virus382

strains just after the transmission bottleneck, thereby eliminating the effects of replicative drift383

(Fig. 1). For the second alternative model, we further simplified the effects of drift by assuming384

that the relative frequencies of virus strains at the end of an infection were the same as their385

relative frequencies in the infectious cadaver that initiated the infection, thereby eliminating386

both replicative drift and transmission bottlenecks (fig. 1). For the third alternative model, we387

added purifying selection to the second alternative model, which lacked both replicative drift388

and transmission bottlenecks. We did this by assuming that each host was susceptible to only389
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a random subset of virus strains, so that exposure would only result in death if a host was390

susceptible to one or more virus strains in the cadaver to which it was exposed. The relative391

frequencies of virus strains released upon death was then equal to the relative frequencies of392

virus strains to which that host was susceptible to in the infecting cadaver.393

Baculovirus sequencing394

We collected larvae from outbreaking gypsy moth populations in Michigan between 2000 and395

2003 (Supplemental Information A), and we reared the larvae until they pupated or died of396

infection (Woods and Elkinton 1987). The virus population from each virus-killed larva was397

passaged once by infecting 75 larvae with liquefied cadaver to generate enough virus for DNA398

extraction. We then extracted DNA following a standard baculovirus DNA extraction protocol,399

and we amplified the DNA using whole genome amplification (REPLI-g UltraFast Mini kit400

from Qiagen).401

We constructed sequencing libraries using the Nextera DNA Sample Prep Kit402

(Illumina-compatible, #GA0911-96) with custom barcodes to distinguish between the virus403

communities of different hosts. Our barcodes consisted of the first 96 indexes proposed404

by Meyer and Kircher (2010) (Supplemental Information A). Sequencing was carried out as405

two sets of libraries, run on individual lanes of a HiSeq2000 at the University of Illinois406

at Urbana-Champaign, producing 100 cycle single-end reads. Samples were separated by407

barcode using the standard Illumina pipeline, and adaptor contamination was removed using408

‘trim galore’. Reads were mapped to the first sequenced gypsy moth baculovirus genome409

(Kuzio et al. 1999) using ‘bowtie2’ (Langmead and Salzberg 2012) with parameter set410

‘very-fast’ (Supplemental Information A). Overall mean coverage was 886x, and varied across411

samples from 202x to 1497x (fig. S3). Variant calling was carried out using ‘VarScan’ version412

2.3.9 (Koboldt et al. 2012). More details can be found in Supplemental Information A.413
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Data and code availability414

Sequence data generated in this study are available through the Sequence Read415

Archive (SRA) of the National Center for Biotechnology Information (NCBI)416

under BioProject ID PRJNA386565. Author-generated code is available at GitHub417

repository: https://github.com/dkenned1/KennedyDwyer.418
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Figure 1: Schematic of the nested model. Bottom, the host population size Ng and the583

infectious cadaver population size Zg in generation g depend on host and pathogen population584

sizes in generation g − 1 and the disease dynamics in that generation. Following the epizootic,585

surviving hosts reproduce and virus-killed cadavers overwinter at rate φ to start the epizootic586

in the following year. Middle, the disease dynamics in generation g − 1 follow a stochastic587

SEIR model (Keeling and Rohani 2008), such that a susceptible host Si becomes exposed Ej588

to infectious cadaver Pk at rate νiq, where νi is the risk of exposure for host i and q is the589

probability of death given exposure, which arises from the within host virus dynamics. Note590

that the “Removed” class R, corresponding to inactivated cadavers, is not explicitly shown.591

The probability of a host dying from virus infection at time τ post exposure p(τ), is determined592

by the dynamics of the pathogen within a host. q is related to p(τ) in that q =
∫∞
0
p(τ)dτ . Top,593

within a host, virus particles x can reproduce or interact with immune cells y, resulting in the594

removal of both the virus particle and the immune cell. An infection fails to kill the host if all595

virus particles are cleared so that x = 0, but the host dies if the total number of virus particles596

reaches an upper threshold C. Further details are in Supplemental Information C. To produce597

a model that lacks replicative drift, we assume that the frequency of a virus strain l at time of598

death τ , fl(τ), is equal to the frequency of that strain immediately after the time of exposure599

fl(0). To produce a model that lacks transmission bottlenecks, we assume that the number of600

copies of a virus strain l at the beginning of an infection xl(0) is equal to the total number of601

virus particles that invade the host
∑

l xl(0), times the relative frequency of that virus strain in602

the cadaver that caused exposure Pl/(
∑

p Pp). In the model that lacks transmission bottlenecks603

and replicative drift, host death occurs only if a larva was susceptible to one or more of the604

virus strains in the cadaver to which it was exposed. If so, the virus strains that the host was605

susceptible to are released upon host death at frequencies equal to those in the infecting cadaver.606

607
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Figure 2: Simulations of the nested model. In all panels (A)-(F), colored curves represent608

the pathogen population sizes of different virus strains, and the black curve shows the609

total pathogen population size. The colored bar at the top of each panel shows the relative610

frequencies of virus strains over time. Panels (A)-(C) show three realizations of the within-host611

virus growth model. A re-exposure event, marked by a dashed, vertical red line, is also shown612

in panel (C). The top colored panel left of time 0 shows the frequency of virus strains in a613

cadaver that a host was exposed to at time 0 (and re-exposed to at time 50 in panel (C)). Death614

occurs when the total number of virus particles within a host hits an upper threshold. To aid615

visualization, here we set the pathogen population size at host death to be 104, as opposed616

to the more realistic value of 109 that we use when comparing our models to data. The time617

of death differs between simulations due to demographic stochasticity in virus growth, and618

in each simulation it is marked by a dashed, vertical black line. Panels (D) and (E) show619

two realizations of our stochastic SEIR-type epizootic model starting from identical initial620

conditions. Note that the curves here show cadaver quantities, rather than virus particles621

as in panels (A)-(C). Epizootics are initiated by overwintered cadavers that infect emerging622

larvae. As these cadavers decay, total cadaver quantity drops to low levels, such that the623

pathogen population is almost entirely composed of virus particles inside living hosts. These624

hosts then die initiating future rounds of infections. Panel (F) shows a realization of our625

between-generation pathogen model, with trajectories showing the total number of virus-killed626

hosts in each generation. The frequency of pathogen strains can drift over time, an effect that is627

particularly noticeable during troughs of infection.628

629

Figure 3: Comparison of the predictions of our models (gray-shaded areas, showing 95630

percent confidence intervals of model realizations) to the distribution of nucleotide diversity631

within 143 individual infected hosts calculated from our sequence data (black dots show632
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data on nucleotide diversity within hosts). (A) shows the predictions of a model that lacks633

both transmission bottlenecks and replicative drift, (B) shows the predictions of a model that634

includes transmission bottlenecks but not replicative drift, (C) shows the predictions of a model635

that includes both transmission bottlenecks and replicative drift, and (D) shows the predictions636

of a model that includes purifying selection within hosts but not transmission bottlenecks or637

replicative drift.638

639

Figure 4: Representative distributions of allele frequencies from individual hosts in our best640

model (A-E) and in our data (F-J). Each plot shows the distribution of allele frequencies within641

a single individual at 712 segregating sites, showing only the frequency of the most common642

allelic variant at each locus within that host. The number on each plot is the mean nucleotide643

diversity within that particular host. Model plots are aligned with similar data plots. The lack644

of diversity in panels A and F suggests that the virus population within these hosts consist of645

only a single virus strain. The bimodal distributions in panels B, C and G suggest that these646

virus populations contain exactly two virus strains. The high diversity but lack of bimodality647

in panels D, E, H, I, and J suggests that these virus populations consist of more than two virus648

strains.649

650

Figure 5: Model predictions of the effects of changes in the populations of susceptible and651

infected hosts on within-host pathogen diversity, over the host-pathogen population cycle. (A)652

The population size of uninfected hosts. (B) The population size of infectious cadavers (blue)653

and the mean nucleotide diversity (red).654
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