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Abstract 

Genome-wide  transcriptional  profiles provide  broad  insights into  cellular activity. One 

important use  of such  data  is to  identify relationships between  transcription  levels and  patient 

outcomes. These  translational  insights can  guide  the  development of biomarkers for predicting 

outcomes in  clinical  settings. Over the  past decades, data  from many translational-biomarker 

studies have  been  deposited  in  public repositories, enabling  other scientists to  reuse  the  data  in 

follow-up  studies. However, data-reuse  efforts require  considerable  time  and  expertise  because 

transcriptional  data  are  generated  using  heterogeneous profiling  technologies, preprocessed 

using  diverse  normalization  procedures, and  annotated  in  non-standard  ways. To  address this 

problem, we  curated  a  compendium of 45  translational-biomarker datasets from the  public 

domain. To  increase  the  data's utility, we  reprocessed  the  raw expression  data  using  a  standard 

computational  pipeline  and  standardized  the  clinical  annotations in  a  fully reproducible  manner 

(see  https://osf.io/ssk3t). We  believe  these  data  will  be  particularly useful  to  researchers seeking 

to  validate  gene-level  findings or to  perform benchmarking  studies—for example, to  compare 

and  optimize  machine-learning  algorithms' ability to  predict biomedical  outcomes. 

Background &  summary 

DNA encodes a  cell’s instruction  manual  in  the  form of genes and  regulatory 

sequences1. Cells behave  differently, in  part, because  genes are  transcribed  into  RNA at 

different levels within  those  cells2. Researchers examine  gene-expression  levels to  understand 

cellular dynamics and  the  mechanisms behind  cellular aberrations, including  those  that lead  to 

disease  development. Modern  technologies now make  it possible  to  profile  expression  levels for 

thousands of genes at a  time  for a  modest expense 3. Using  these  high-throughput technologies, 
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scientists have  performed  thousands of studies to  characterize  biological  processes and  to 

evaluate  the  potential  for precision-medicine  applications. One  such  application  is to  derive 

transcriptional biomarkers—patterns of expression  that indicate  disease  states or that predict 

medical  outcomes, such  as relapse, survival, or treatment response 4–10. Indeed, already to  date, 

more  than  100  transcriptional  biomarkers have  been  proposed  for predicting  breast-cancer 

survival  alone 11. 

Many funding  agencies and  academic journals have  imposed  policies that require 

scientists to  deposit transcriptional  data  in  publicly accessible  databases. These  policies seek to 

ensure  that other scientists can  verify the  original  study's findings and  can  reuse  the  data  in 

secondary analyses. For example, Gene  Expression  Omnibus (GEO) currently contains data  for 

more  than  2  million  biological  samples12. Upon  considering  infrastructure  and  personnel  costs, 

we  estimate  that these  data  represent hundreds of millions—if not billions—of dollars (USD) of 

collective  research  investment. Reusing  these  vast resources offers an  opportunity to  reap  a 

greater return  on  investment—perhaps most importantly via  informing  and  validating  new 

studies. Unfortunately, although  anyone  can  access GEO data, researchers vastly underutilize 

this treasure  trove  because  preparing  data  for new analyses requires considerable  background 

knowledge  and  informatics expertise. 

In  GEO, data  are  typically available  in  two  forms: 1) raw data, as produced  originally by 

the  data-generating  technology, and  2) processed  data, which  were  used  in  the  data  generators' 

analyses. In  most cases, researchers process raw data  in  a  series of steps that might include 

quality-control  filtering, noise  reduction, standardization, and  summarization  (e.g., summarizing 

to  gene-level  values and  excluding  outliers). Data  from different profiling  technologies must be 

handled  in  ways that are  specific to  each  technology. However, even  for datasets generated 

using  the  same  profiling  technology, the  methods employed  for data  preprocessing  vary widely 
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across studies. This heterogeneity makes it difficult for researchers to  perform secondary 

analyses and  to  trust that analytical  findings are  driven  primarily by biological  mechanisms 

rather than  differences in  data  preprocessing. In  addition, when  data  have  not been  mapped  to 

biologically meaningful  identifiers, it may be  difficult for researchers to  draw biological 

conclusions from the  data. 

Sample-level  annotations accompany each  GEO dataset. For biomarker studies, such 

metadata  might include  medical  diagnoses or treatment outcomes, as well  as covariates such 

as age, sex, or ethnicity. Although  GEO publishes metadata  in  a  semi-standardized  format and 

bioinformatics tools exist for downloading  and  parsing  GEO data 13,14, it is difficult for many 

researchers to  extract these  data  into  a  form that is suitable  for secondary analyses. Within 

annotation  files, values are  often  stored  in  key/value  pairs with  nondescript column  names. 

Many columns are  not useful  for analytical  purposes (e.g., when  all  samples have  the  same 

value). When  values are  missing, the  columns often  become  shifted; accordingly, data  for a 

given  variable  may be  spread  across multiple  columns. Moreover, a  variety of descriptors (e.g., 

“?”, “N/A”, or “Unknown”) are  used  to  indicate  missing  values, thus requiring  the  analyst to 

account for these  differences. In  addition, seemingly minor errors, such  as spelling  mistakes or 

inconsistent capitalization, can  hamper secondary-analysis efforts. 

In  response  to  these  challenges, we  compiled  the  Biomarker Benchmark, a  curated 

compendium of 45  transcriptional-biomarker datasets from GEO. These  datasets represent a 

variety of human-disease  states and  outcomes, many related  to  cancer. We  obtained  raw 

gene-expression  files,  renormalized  them using  a  common  algorithm, and  summarized  the  data 

using  gene-level  annotations (Figure  1). We  used  two  techniques to  check for quality-control 

issues in  the  gene-expression  data. For datasets where  gene-expression  data  were  processed 

in  multiple  batches—and  where  batch  information  was available—we  corrected  for batch 
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effects. Finally, we  prepared  a  version  of the  data  that is suitable  for direct application  in 

machine-learning  analyses. We  standardized  continuous values, one-hot encoded  discrete 

values, and  imputed  missing  values. 

Methods 

Selecting data 

To  select datasets, we  executed  a  custom search  in  Gene  Expression  Omnibus (GEO). 

First, we  limited  our search  to  data  series that were  associated  with  the  Medical  Subject 

Heading  (MeSH) term "biomarker" and  that came  from Homo sapiens subjects. Next we  limited 

the  search  to  data  generated  using  Affymetrix gene-expression  microarrays and  for which  raw 

expression  data  were  available  (so  we  could  renormalize  the  data). For each  dataset, we 

examined  the  metadata  to  ensure  that each  series had  at least one  biomarker-relevant clinical 

variable. These  included  variables such  as prognosis, disease  stage, histology, and  treatment 

success or relapse. Lastly, we  selected  series that included  data  for at least 70  samples (before 

additional  filtering, see  below). 

Based  on  these  criteria, we  identified  36  GEO series. Two  series (GSE6532  and 

GSE26682) contained  data  for two  types of Affymetrix microarray. To  avoid  platform-related 

biases, we  separated  each  of these  series into  two  datasets; we  used  a  suffix for each  that 

indicates the  microarray platform (e.g., GSE6532_U133A and  GSE6532_U133Plus2). For both 

of these  datasets, the  biological  samples profiled  using  either microarray platform were  distinct. 

The  GSE2109  series—known  as the  Expression  Project for Oncology (expO)—had  been 

produced  by the  International  Genomics Consortium and  contains data  for 129  different cancer 

types. To  avoid  confounding  effects due  to  tissue-specific expression  and  because  the 
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metadata  differed  considerably across the  cancer types, we  split GSE2109  into  multiple 

datasets based  on  cancer type  (Table  1). We  excluded  tissue  types for which  fewer than  70 

samples were  available; we  also  excluded  the  "omentum" cancer type  because  it was relatively 

heterogeneous and  had  relatively few samples. 

We  used  publicly available  data  for this study and  played  no  role  in  contacting  the 

research  subjects. We  received  approval  to  work with  these  data  from Brigham Young 

University's Institutional  Review Board  (E 14522). 

Preparing clinical annotations 

For each  dataset, we  wrote  custom R scripts15 that download, parse, and  reformat the 

clinical  annotations. Initially, these  scripts download  data  using  the  GEOquery package 13. Next 

they generate  a  tab-delimited  text file  for each  dataset that contains all  available  clinical 

annotations, except those  with  identical  values for all  samples (for example, platform name, 

species name, submission  date) or that were  unique  to  each  biological  sample  (for example, 

sample  title). In  addition, these  scripts generate  Markdown  files 

(https://daringfireball.net/projects/markdown/syntax) that summarize  each  dataset and  indicate 

sources. 

In  some  cases, multiple  data  values are  included  in  the  same  cell  in  GEO annotation 

files. For example, in  GSE5462, one  patient's clinical  demographics and  treatment responses 

are  listed  as "female;breast tumor;Letrozole, 2.5mg/day,oral, 10-14  days; responder." We 

parsed  these  values and  split them into  separate  columns for each  sample. After these  cleaning 

steps, the  datasets contained  7.8  variables of metadata, on  average  (Table  1). Next we 

searched  each  dataset for missing  values. Across the  datasets, 11  distinct expressions had 

been  used  by the  original  data  generators to  represent missingness; these  included  "N/A", "NA", 
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"MISSING", "NOT AVAILABLE", "?", and  others. To  support consistency, we  standardized  these 

values across the  datasets, using  a  value  of "NA". On  average, 17.0% of the  metadata  values 

were  missing  per dataset; this proportion  differed  considerably across the  datasets (Figure  2). 

We  anticipate  that many researchers will  use  these  data  to  develop  and  benchmark 

machine-learning  algorithms. Accordingly, we  have  prepared  secondary versions of the  clinical 

annotations that are  ready to  use  in  machine-learning  analyses. First, we  identified  class 

variables that have  potential  relevance  for biomarker applications. In  many cases, these 

variables were  identical  to  those  used  in  the  original  studies; we  also  included  class variables 

that had  not been  used  in  the  original  studies. On  average, the  datasets contain  2.9  class 

variables. Second, we  identified  clinical  variables that could  be  used  as predictor variables (or 

covariates). Using  these  data, we  generated  one  output file  per class variable  or predictor 

variable  and  named  the  output files using  descriptive  prefixes (e.g., "Prognosis", "Diagnosis", or 

"Stage"). The  same  variable  can  be  used  as a  class variable  in  one  context and  a  predictor in  a 

different context. When  a  given  sample  was missing  data  for a  given  class variable, we 

excluded  that sample  from the  respective  output file  for that class variable. After this filtering 

step, we  identified  class variables with  fewer than  40  samples and  excluded  these  class 

variables. When  predictor variables were  missing  more  than  20% data  (Figure  2), we  did  not 

generate  an  output file  for these  variables. When  predictor variables were  missing  less than 

20% data, we  imputed  missing  values using  median-based  imputation  for continuous variables 

and  mode-based  imputation  for discrete  variables16. We  scaled  continuous predictor variables to 

have  zero  mean  and  unit variance. We  transformed  discrete  predictor variables using  one-hot 

encoding; each  unique  value, except the  first, was treated  as a  binary variable. In  cases where 

discrete  values were  rare, we  merged  values. For example, in  GSE2109_Breast, we  merged 

Pathological_Stage values 3A, 3B, 3C, and  4  into  a  category called  "3-4" because  relatively few 
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patients fell  into  the  individual  categories (38, 8, 22, and  5  samples, respectively). In  addition, 

some  class variables were  ordinal  in  nature  (e.g., cancer stage  or tumor grade); we  transformed 

these  to  binary variables. Finally, some  clinical  outcomes were  survival  or relapse  times; we 

transformed  these  data  to  (discrete) class variables, using  a  threshold  to  distinguish  between 

"long-term" and  "short-term" survivors and  excluding  patients who  were  censored  after the 

survival  threshold  had  been  reached. Our computer scripts (see  Code availability) encode  these 

decisions for each  dataset. 

Preprocessing  gene-expression  data 

 We  created  a  computational  pipeline  (using  R and  shell  scripts) that downloads, 

normalizes, and  standardizes the  raw-expression  data. We  used  the  GEOquery package 13 to 

download  the  CEL  files and  then  normalized  them using  the  SCAN.UPC package 17. Some 

heterogeneity exists even  among  platforms from the  same  manufacturer (Affymetrix). The 

number of probes and  the  probe  sequences used  in  designing  the  microarray architectures 

vary. To  help  mitigate  this heterogeneity and  to  aid  in  biological  interpretation, we  summarized 

the  data  using  gene-level  annotations from Brainarray18. 

Code availability 

Our computer scripts are  stored  in  the  open-access Biomarker Benchmark repository 

(https://osf.io/ssk3t). Accordingly, other researchers can  reproduce  our curation  process and 

produce  alternative  versions of the  data. 
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Data  records 

After filtering  (see  Methods), we  collected  data  for 7,037  biological  samples across 45 

datasets (Table  1). On  average, the  datasets contain  values for 18,043  genes (Table  1). In  total, 

our repository contains 129  class variables (2.8  per dataset) and  2.1  unique  values per class 

variable. 

All  output data  are  stored  in  tab-delimited  text files and  are  structured  using  the  "tidy 

data" methodology19. Accordingly, data  users can  import the  files directly into  analytical  tools 

such  as Microsoft Excel, R, or Python. All  data  files are  publicly and  freely available  in  the 

open-access Biomarker Benchmark repository (https://osf.io/ssk3t). The  original  data  files are 

available  via  Gene  Expression  Omnibus using  the  accession  numbers listed  in  Table  1. 

Technical validation 

We  evaluated  each  sample  using  the  IQRray20 software, which  produces a  quality score  for 

individual  samples. Using  these  metrics, we  applied  Grubb’s statistical  test (outliers package 21) 

to  each  dataset, identified  poor-quality outliers (Figure  3), and  excluded  these  samples (Table 

2). Next we  used  the  DoppelgangR package 22 to  identify samples that may have  been 

duplicated  inadvertently. We  manually reviewed  sample  pairs that DoppelgangR flagged  as 

potential  duplicates. We  excluded  most sample  pairs that were  flagged  (Table  2), even  if the 

clinical  annotations for both  samples were  distinct, under the  assumption  that these  samples 

had  somehow been  mislabeled. In  GSE46449, many samples were  biological  replicates, and 

we  retained  one  of each  replicate  set. GSE5462, GSE19804, and  GSE20181  contained 
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samples that had  been  profiled  in  a  paired  manner (e.g., pre- and  post-treatment); we  retained 

these  samples. 

When transcriptomic data are processed in multiple batches, batch assignments can           

lead to confounding effects23. In the clinical annotations, we identified batch-processing           

information for datasets GSE25507, GSE37199, GSE39582, and GSE40292. We corrected for           

batch effects using the ComBat software 24. The Biomarker Benchmark repository contains pre-            

and post-batch-corrected data. For dataset GSE37199, we identified two variables that could            

have been used for batch correction ("Centre" and "Plate"). Our repository contains            

batch-corrected  data  for both  of these  batch  variables (the  default is "Plate"). 
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Figure  1 : Flow  diagram that illustrates the process we used to  collect and curate the data. We 

wrote  computer scripts that downloaded  the  data, checked  for quality, normalized  and 

standardized  data  values, and  stored  the  data  in  analysis-ready file  formats. The  specific steps 

differed  for clinical  and  expression  data  (see  Methods). 
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Figure  2 : Histogram showing the proportion of missing clinical-annotation values per dataset. 

Some  datasets contained  no  missing  values, while  others were  missing  as many as as 72.3% of 

data  values. 
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Figure  3 : Distribution of IQRay quality scores for each dataset. Sample  qualities are  plotted  for 

each  dataset. Low-quality samples were  identified  using  Grubb’s test. Samples that fall  on  or 

below the  red  threshold  were  excluded  from the  data  repository. 
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Tables 

Table  1: Overview of data sources used in this study. 
 Series IDa  Tissue type(s) # Samples  Clinical variable(s) # Genes Affymetrix Platform(s) 

GSE145625 Breast cancer  157 Elston grade; overall  survival  status; 
overall  survival  time; relapse status; 
relapse time 

11832 Genome U133A 

GSE210926 Breast 263 Age; alcohol  consumption; days from 
diagnosis to excision; ER status; ethnic 
background; ethnic background; family 
history of cancer; fibrocystic disease; 
Her2 status; histology; hormonal 
therapy duration; mammogram status 
and findings; metastasis; metastatic 
sites; multiple tumors; node 
involvement; oophorectomy status; oral 
contraceptive use; PR status; prior 
therapy status; quality metric; relapse 
time; retreatment states; sex; stage; 
tobacco use; tumor grade; tumor size 

20024 Genome U133 Plus 2.0 

GSE210926 Colon  255 Age; alcohol  consumption; days from 
diagnosis to excision; diagnosis 
method; Dukes’  stage; ethnic 
background; family history of cancer; 
histology; metastasis; metastatic sites; 
multiple tumors; node involvement; 
primary site; prior screening status; 
prior therapy status; quality metric; 
relapse time; retreatment states; sex; 
stage; symptoms; tobacco use; tumor 
grade; tumor size 

20024 Genome U133 Plus 2.0 

GSE210926 Endometrium  51 Age; alcohol  consumption; days from 
diagnosis to excision; ethnic 
background; family history of cancer; 
histology; metastasis; metastatic sites; 
multiple tumors; node involvement; 
primary site; quality metric; stage; 
symptoms; tobacco use; tumor grade; 
tumor size 

20024 Genome U133 Plus 2.0 

GSE210926 Kidney  209 Age; alcohol  consumption; days from 
diagnosis to excision; ethnic 
background; family history of cancer; 
histology; metastasis; metastatic sites; 
multiple tumors; primary site; prior 
therapy status; quality metric; relapse 

20024 Genome U133 Plus 2.0 
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time; retreatment states; sex; stage; 
tobacco use; tumor grade; tumor size 

GSE210926 Lung  103 Age; alcohol  consumption; days from 
diagnosis to excision; ethnic 
background; family history of cancer; 
histology; metastasis; metastatic sites; 
multiple tumors; node involvement; 
primary site; prior therapy status; 
quality metric; relapse time; 
retreatment states; sex; stage; 
symptoms; tobacco use; tumor grade; 
tumor size 

20024 Genome U133 Plus 2.0 

GSE210926 Ovary  158 Age; alcohol  consumption; days from 
diagnosis to excision; esophagitis 
reflux history; ethnic background; 
family history of cancer; fibrocystic 
disease; histology; mammogram 
history; metastasis; metastatic sites; 
multiple tumors; node involvement; 
node involvement; oophorectomy 
status; primary site; prior therapy 
status; quality metric; relapse time; 
retreatment states; screening history; 
stage; symptoms; tobacco use; tumor 
grade; tumor size 

20024 Genome U133 Plus 2.0 

GSE210926 Prostate  79 Age; alcohol  consumption; days from 
diagnosis to excision; diagnosis 
method; ethnic background; family 
history of cancer; Gleason score; 
histology; metastasis; multiple tumors; 
node involvement; prior therapy status; 
prostate-specific antigen (PSA) testing 
history; PSA finding; quality metric; 
stage; symptoms; tobacco use; 
tobacco use; tumor grade; tumor size 

20024 Genome U133 Plus 2.0 

GSE210926 Uterine  112 Age; alcohol  consumption; days from 
diagnosis to excision; ethnic 
background; family history of cancer; 
histology; human papilloma virus 
diagnosis history; metastasis; 
metastatic sites; multiple tumors; node 
involvement; primary site; prior therapy 
status; quality metric; relapse; stage; 
symptoms; tobacco use; tumor grade; 
tumor size 

20024 Genome U133 Plus 2.0 

GSE427127,28 Glial  100 Age; recurrence status; sex; survival 
status; survival  time; WHO grade 

11832 Genome U133A 
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GSE546029 Breast cancer  127 ER status; Her2 status; histological 
type; lymphovascular invasion; node 
status; tumor grade; tumor size 

20024 Genome U133 Plus 2.0 

GSE546230,31 Breast cancer  52 Treatment history; treatment response 11832 Genome U133A 

GSE653232 Breast carcinoma 317 Age; distant metastasis-free survival 
time/status; ER status; genomic grade 
index; node involvement; PR status; 
recurrence-free survival  time/status; 
tumor grade; tumor size 

11832 Genome U133A 

GSE653232 Breast carcinoma 87 Age; distant metastasis-free survival 
time/status; ER status; genomic grade 
index; node involvement; PR status; 
recurrence-free survival  time/status; 
tumor grade; tumor size 

20024 Genome U133 Plus 2.0 

GSE1032033 Wilms Tumor 144 Relapse 11832 Genome U133A 

GSE1529634 Peripheral  Blood 75 Kidney transplant rejection; subtype 20024 Genome U133 Plus 2.0 

GSE1980435 Paired tumor and normal 
tissues 

60 Age; tissue type; tumor stage 20024 Genome U133 Plus 2.0 

GSE2018131,3

6 
Breast cancer 50 Treatment history; treatment response 11832 Genome U133A 

GSE2018937 Lung adenocarcinoma 162 Case/control  status; morphology; 
smoking status; stage 

11832 Genome U133A 2.0 

GSE2151038 Laser capture 
microdissection and 
homogenized tissues 
(surgically resected 
material) 

104 Metastasis; stage; tissue type 20024 Genome U133 Plus 2.0 

GSE2550739 Peripheral  blood 
lymphocyte 

146 Case/control  status (autism); paternal 
age, maternal  age, subject age 

20024 Genome U133 Plus 2.0 

GSE2668240–4

2 
Colorectal  tumor 140 Age; microsatellite instability status; 

sex 
11832 Genome U133A 

GSE2668240–4

2 
Colorectal  tumor 160 Age; microsatellite instability status; 

sex 
20024 Genome U133 Plus 2.0 

GSE2727943 Posterior Fossa 
Ependymoma 

100 Age; sex; tumor location 16632 Exon 1.0 ST 
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GSE2734244,4

5 
Paired gastric tumor and 
normal  tissue 

72 Age; sex; stage; tissue type; tumor 
grade 

16632 Exon 1.0 ST 

GSE2785446 Colorectal  tumor 115 Metastasis; stage 20024 Genome U133 Plus 2.0 

GSE3021947 Lung  293 Age; follow-up time; histology; 
metastasis; node involvement; relapse 
status; sex; survival; survival  time; 
tumor size 

20024 Genome U133 Plus 2.0 

GSE3078448 Oral  squamous cell 
carcinoma 

229 Age; case/control  status; sex 20024 Genome U133 Plus 2.0 

GSE3264649 Breast  115 Age; ER status (IHC); Her2 status 
(FISH); histological  grade; lymph node 
involvement; pathologic complete 
response; PR status (IHC); stage; 
tumor size 

20024 Genome U133 Plus 2.0 

GSE3714750 Bronchial  sample 238 Age; case/control  status (COPD); 
FEV1/FVC score/percentage; inhaled 
medication status; sex; smoking status; 
tobacco use 

21614 Gene 1.0 ST 

GSE3719951 Blood sample 94 Disease stage (advanced castration 
resistant prostate cancer) 

20024 Genome U133 Plus 2.0 

GSE3774552 Non-small  cell  lung 
cancer 

196 Adjuvant treatment status; age; 
histology; recurrence time/status; sex; 
stage; survival  time/status; WHO 
performance status 

20024 Genome U133 Plus 2.0 

GSE3789253 Stage-II colon carcinoma 130 Age; diagnosis history; localisation; 
stage; time until  metastasis 

20024 Genome U133 Plus 2.0 

GSE3895854 Peripheral  blood 
mononuclear cell 

115 Age; diagnosis (Idiopathic pulmonary 
fibrosis); ethnicity; predicted FVC 
percent; sex 

16632 Exon 1.0 ST 

GSE3949155 Esophageal  and gastric 
samples 

120 Tumor cell  type 11832 Genome U133 Plus 2.0 

GSE3958256 Colon cancer 566 Adjuvant chemotherapy; age; BRAF 
mutation status; chromosome 
instability status; CIMP status; KRAS 
mutation status; mismatch repair 
status; overall  survival  time/status; 
recurrence-free survival  time/status; 
sex; stage; TP53 mutation status; 
tumor location 

20024 Genome U133 Plus 2.0 
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GSE4029257 Afferent limb tissue and 
whole-blood sample 

195 Diagnosis; sex 21614 Gene 1.0 ST 

GSE4317658 Leukemic blast sample 104 Cytogenetics; disease state; FAB 
stage; KRAS mutation status; NRAS 
mutation status; subtype 

11832 Genome U133A 

GSE4644959 Peripheral  blood 
leukocyte 

53 Age; diagnosis (bipolar disorder) 20024 Genome U133 Plus 2.0 

GSE4669160 Prostate  545 Gleason score; metastasis 16632 Exon 1.0 ST 

GSE4699561 Leukocyte 85 Age; disease status (biliary atresia) 21614 Gene 1.0 ST 

GSE4839162 Breast  81 ER status; gene-expression subtype; 
Her2 status; recurrence status; survival 
time/status 

20024 Genome U133 Plus 2.0 

GSE5869763 Desmoid tumor 72 Age; follow-up time; recurrence time; 
sex; tumor location; tumor size 

20024 Genome U133 Plus 2.0 

GSE6388564 Ovarian cancer surgical 
sample 

101 Adjuvant chemotherapy; BRCA 
mutation status; clinical  status at last 
follow-up, clinical  status after 1st line 
chemotherapy; disease-free survival; 
FIGO stage; histopathological  type; 
overall  survival; residual  tumor size; 
TP53 accumulation in cancer cells 
(IHC); TP53 mutation status; TP53 
mutation status; tumor grade 

20024 Genome U133 Plus 2.0 

GSE6778465 Peripheral  blood sample 309 Sex; V30M mutation status; whether 
exhibiting symptoms 

21614 Gene 1.1 ST 

a  These  identifiers represent data  series in  Gene  Expression  Omnibus. Some  identifiers are  listed  multiple 
times; in  these  cases, we  used  a  subset of the  series data  (for a  specific tissue  type  or microarray 
platform). 
 
Table  2 : Summary  of excluded samples. We  excluded  samples that did  not pass our 
quality-control  criteria  or that appeared  to  be  duplicated. The  Gene  Expression  Omnibus series 
and  sample  identifiers are  listed, along  with  the  reason  we  excluded  each  sample. 

Series Sample Reason 

GSE15296 GSM382283 Poor Quality 

GSE19804 GSM494596 Poor Quality 

GSE19804 GSM494654 Poor Quality 
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GSE19804 GSM494657 Poor Quality 

GSE20181 GSM506289  Duplicate 

GSE20181 GSM506294  Duplicate 

GSE20181 GSM506304  Duplicate 

GSE20181 GSM125198 Duplicate 

GSE20181 GSM125210 Duplicate 

GSE20181 GSM125230 Duplicate 

GSE2109_Breast GSM53059 Duplicate 

GSE2109_Breast GSM53027 Duplicate 

GSE2109_Colon GSM89040  Duplicate 

GSE2109_Colon GSM152664  Duplicate 

GSE2109_Colon GSM152632  Duplicate 

GSE2109_Colon GSM179922  Duplicate 

GSE2109_Colon GSM89044 Duplicate 

GSE2109_Colon GSM152666 Duplicate 

GSE2109_Colon GSM179820 Duplicate 

GSE2109_Colon GSM179924 Duplicate 

GSE2109_Lung GSM203652 Poor Quality 

GSE2109_Ovary GSM76554  Duplicate 

GSE2109_Ovary GSM203725  Duplicate 

GSE2109_Ovary GSM76567 Duplicate 

GSE2109_Ovary GSM231913 Duplicate 

GSE2109_Ovary GSM46839 Poor Quality 

GSE2109_Prostate GSM179790  Duplicate 

GSE2109_Prostate GSM179843 Duplicate 

GSE2109_Prostate GSM179903 Duplicate 
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GSE25507 GSM627091  Duplicate 

GSE25507 GSM627087  Duplicate 

GSE25507 GSM627096  Duplicate 

GSE25507 GSM627078  Duplicate 

GSE25507 GSM627085 Duplicate 

GSE25507 GSM627196 Duplicate 

GSE25507 GSM627153  Duplicate 

GSE25507 GSM627180  Duplicate 

GSE25507 GSM627099  Duplicate 

GSE25507 GSM627115  Duplicate 

GSE25507 GSM627118 Duplicate 

GSE25507 GSM627124 Duplicate 

GSE25507 GSM627154 Duplicate 

GSE25507 GSM627204 Duplicate 

GSE25507 GSM627209 Duplicate 

GSE25507 GSM627215 Duplicate 

GSE26682 GSM656833  Duplicate 

GSE26682 GSM656770 Duplicate 

GSE26682_U133PLUS2 GSM656860 Poor Quality 

GSE26682_U133PLUS2 GSM656613 Poor Quality 

GSE26682_U133PLUS2 GSM656839 Poor Quality 

GSE26682_U133PLUS2 GSM656721 Poor Quality 

GSE27342 GSM675945  Duplicate 

GSE27342 GSM675947  Duplicate 

GSE27342 GSM675933  Duplicate 

GSE27342 GSM675935 Duplicate 
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GSE27342 GSM676040 Poor Quality 

GSE27342 GSM687519 Poor Quality 

GSE27854 GSM687525 Poor Quality 

GSE30219 GSM748210  Duplicate 

GSE30219 GSM748212  Duplicate 

GSE30219 GSM748218 Duplicate 

GSE30219 GSM748219 Duplicate 

GSE30219 GSM748255 Poor Quality 

GSE30219 GSM748247 Poor Quality 

GSE30219 GSM748057 Poor Quality 

GSE30219 GSM748266 Poor Quality 

GSE30784 GSM764928  Duplicate 

GSE30784 GSM764930 Duplicate 

GSE30784 GSM764904 Poor Quality 

GSE30784 GSM764970 Poor Quality 

GSE32646 GSM809214  Duplicate 

GSE32646 GSM809248  Duplicate 

GSE32646 GSM809251 Duplicate 

GSE32646 GSM809254 Duplicate 

GSE37147 GSM912230  Duplicate 

GSE37147 GSM912296  Duplicate 

GSE37147 GSM912296  Duplicate 

GSE37147 GSM912305  Duplicate 

GSE37147 GSM912291  Duplicate 

GSE37147 GSM912296  Duplicate 

GSE37147 GSM912305  Duplicate 
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GSE37147 GSM912342  Duplicate 

GSE37147 GSM912273 Duplicate 

GSE37147 GSM912305 Duplicate 

GSE37147 GSM912342 Duplicate 

GSE37147 GSM912342 Duplicate 

GSE37147 GSM912348 Duplicate 

GSE37147 GSM912376  Duplicate 

GSE37147 GSM912376 Duplicate 

GSE37147 GSM912376 Duplicate 

GSE37147 GSM912463 Poor Quality 

GSE37147 GSM912197 Poor Quality 

GSE37147 GSM912300 Poor Quality 

GSE37199 GSM913439 Poor Quality 

GSE37745 GSM1019319  Duplicate 

GSE37745 GSM1019246  Duplicate 

GSE37745 GSM1019325 Duplicate 

GSE37745 GSM1019247 Duplicate 

GSE37745 GSM1019194 Poor Quality 

GSE37745 GSM1019195 Poor Quality 

GSE37745 GSM1019176 Poor Quality 

GSE37745 GSM1019192 Poor Quality 

GSE37745 GSM1019232 Poor Quality 

GSE37892 GSM929512 Poor Quality 

GSE39491 GSM970152 Poor Quality 

GSE39582 GSM972249 Duplicate 

GSE39582 GSM972472 Duplicate 
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GSE39582 GSM972243  Duplicate 

GSE39582 GSM972044  Duplicate 

GSE39582 GSM972091  Duplicate 

GSE39582 GSM972090  Duplicate 

GSE39582 GSM972245  Duplicate 

GSE39582 GSM972473 Duplicate 

GSE39582 GSM972515 Duplicate 

GSE39582 GSM972248 Duplicate 

GSE43176 GSM1057835 Poor Quality 

GSE46449 GSM1130404 Duplicate 

GSE46449 GSM1130406 Duplicate 

GSE46449 GSM1130413 Duplicate 

GSE46449 GSM1130417 Duplicate 

GSE46449 GSM1130426 Duplicate 

GSE46449 GSM1130428 Duplicate 

GSE46449 GSM1130430  Duplicate 

GSE46449 GSM1130434 Duplicate 

GSE46449 GSM1130436 Duplicate 

GSE46449 GSM1130468 Duplicate 

GSE46449 GSM1130471 Duplicate 

GSE46449 GSM1130483 Duplicate 

GSE48390 GSM1176924 Poor Quality 

GSE48390 GSM125120 Poor Quality 

GSE5462 GSM125123 Duplicate 

GSE5462 GSM125125 Duplicate 

GSE58697 GSM1417097 Poor Quality 
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GSE63885 GSM1559328  Duplicate 

GSE63885 GSM1559360  Duplicate 

GSE63885 GSM1559385  Duplicate 

GSE63885 GSM1559370 Duplicate 

GSE63885 GSM1559375 Duplicate 

GSE63885 GSM1559386 Duplicate 

GSE63885 GSM1559361 Poor Quality 

GSE6532_U133PLUS2 GSM151294 Poor Quality 

GSE6532_U133PLUS2 GSM151280 Poor Quality 
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