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Abstract 

Understanding the functional impact of genomic variants is a major goal of modern genetics and 

personalized medicine. Although many synonymous and non-coding variants act through 

altering the efficiency of pre-mRNA splicing, it is difficult to predict how these variants impact 

pre-mRNA splicing. Here, we describe a massively parallel approach we used to test the impact 

of 2,059 human genetic variants spanning 110 alternative exons on pre-mRNA splicing. This 

method yields data that reinforces known mechanisms of pre-mRNA splicing, can rapidly 

identify genomic variants that impact pre-mRNA splicing, and will be useful for increasing our 

understanding of genome function.  

 

Background 

One of the main goals of personalized medicine is to understand how genetic variations 

between individuals impact health. Genetic variants can impact health in a number of different 

ways, one such way is through altering pre-mRNA splicing efficiency. Alternative splicing is a 

process that is important for regulatory function and a primary source of proteome diversity in 

humans [1]. Perturbations in splicing have also been shown to contribute to a number of 

different diseases [2,3]. These splicing changes can manifest themselves through interrupting 

well-known interactions between the spliceosome and splicing elements including the 3’ and 5’ 

splice sites, pyrimidine tract, or branchpoint sequences. However splicing can also be perturbed 

by disrupting other sequences known to modulate splicing. Exonic splicing enhancers and 

silencers (ESEs and ESSs), as well as intronic splicing enhancers and silencers (ISEs and 

ISSs) are examples of splicing regulatory elements that can be perturbed and result in different 

splicing outcomes. Modulation of these splicing regulatory elements have been shown to be 

disease associated (for a review see [4]). Thus understanding how both intronic and exonic 

variants impact splicing not only provides insights into the mechanisms of splicing, but also is 

important to understand the basis of certain genetic diseases. 
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Identifying variants that impact splicing regulatory elements and their splicing 

consequences are difficult to detect using conventional poly(A)+ RNA-seq alone because the 

variants are often spliced out of the mature mRNA. There have been a number of different 

studies that have aimed to address this issue. One approach has been the pursuit of 

deciphering the “splicing code”  using computational techniques such as deep learning [5–7]. 

While these studies have yielded useful knowledge about splicing and do have predictive 

power, experimental confirmation of the behavior of these variants has been limited and the 

predictions are not perfect. Other groups have pursued the use of random sequences to 

understand the splicing code, however it is hard to integrate datasets with contextual 

transcriptome information (i.e. CLIP) when studying the splicing behavior of random sequences 

[8]. A more recent study tested a number of exonic disease-associated variants in parallel using 

a mini-gene system [9]. The approach was to observe the allelic ratio of reference to variant in a 

plasmid pool, and compare with the ratios observed from splicing outcomes. This approach is 

useful for studying exonic variants, but is unable to test intronic variants. Here we present a 

method that address some of these shortcomings using a barcoding approach called Variant 

exon sequencing (Vex-seq). Vex-seq is capable of testing many exonic and flanking intronic 

variants for the same exon simultaneously. 

 

Results  

We set out to develop a high-throughput reporter system to determine the impact of 

genomic variants on pre-mRNA splicing. Our general approach is to generate a library of test 

exons flanked by two common constitutive exons (Figure 1). The library was introduced into 

tissue culture cells followed by RT-PCR and sequencing to determine the splicing frequency of 

the test exon. Importantly, the reporters also contain a barcode sequence that serves as an 

identifier of which exon was present in the reporter so that it is possible to associate the pre-

mRNA of origin in cases where the test exon was skipped. 
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We first designed a pool of 2,059 variants spanning 110 exons with reference, 

consensus splice site and mutated splice site control sequences for each exon. To insure 

reproducibility, each variant exon was associated with at least three unique eight nucleotide 

barcodes. Common primer sequences and restriction enzyme sites were also added for proper 

library construction. We included a minimum of 50 bases of the upstream intron, which should 

be adequate to include the majority of branchpoints [10], as well as the exon itself and at least 

20 bases of downstream intron. This allowed for construction of test exons up to 97 nucleotides 

in length. Exons between the size of 68 and 97 nucleotides were randomly selected from 

Ensembl GRCh37.p13 annotations and variants from the ExAC database were intersected with 

the selected exons and their flanking intron sequences [11].  

We amplified the oligonucleotide pool by PCR (Supp. Table 1). This product was then 

subcloned into a modified version of the splice reporter plasmid pcAT7-Glo1 in between the first 

intron and the 3’ UTR to generate a 1o library. Then restriction sites in between the barcode and 

the end of the test sequence were used to subclone in the second part of the second intron and 

third exon from the original plasmid (see Figure 1a). This results in a plasmid that encodes a 

transcript containing the first exon and part of the first intron of the globin gene, the test 

sequence, followed by the second intron and final exon of the reporter transcript, ending with 

the barcode and the 3’UTR. We refer to this final library pool as the 2o library. 

 In order to ensure that the variants are associated with the correct barcode, the 1o and 

2o libraries were sequenced using paired end amplicon sequencing (Figure 2a). The results 

from sequencing the 1o library show that the majority of barcodes are correctly associated with 

the correct variant (Figure 2b).  Barcodes excluded from the analysis due to having too few (less 

than 85%) of the correct variant reads associated with it only make up about 1.8% of the 

barcodes tested. Barcodes that were filtered out of the analysis also tended to have a lower 

read depth, suggesting that this may be related to the reason for their higher error rate (Figure 

2c). We are also able to measure a misassignment rate of 4.59% using this plasmid sequencing 
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technique. In order to ensure that the library contained a good diversity of sequences, we calculated 

a skew ratio between the 10th and 90th percentile of read depth for each barcode as done 

previously to check library diversity [12]. A skew ratio for the library established was calculated to be 

5.5, which is considered adequate. We conclude that despite some misassignment, the plasmid pool 

is robust enough to be used to study variant changes in splicing. 

The 2o library was then transfected into K562 and HepG2 cell lines in biological 

triplicate. cDNA was then synthesized from the RNA isolated from the cells using a mini-gene 

specific primer, a 10 nucleotide random sequence which serves as a unique molecular identifier 

(UMI) and an Illumina Read 2 sequencing primer. PCR amplified the cDNA to attach the other 

necessary sequences for Illumina paired end sequencing. The products were then sequenced 

on an Illumina MiSeq. 

The data analysis pipeline uses custom python scripts to ensure that read 2 contains the 

third exon, the correct restriction site next to the barcode, and sorts the reads by barcode into 

bins. PCR replicate reads are collapsed into a single read using the UMI from the reverse 

transcription primer. The reads in each bin are then aligned using STAR to a reference specific 

to each variant [13]. Percent spliced in (PSI or Ψ) and change in PSI (ΔΨ) from the reference 

sequence are then calculated (Figure 1b). An amplicon based paired-end sequencing reads 

contain an unambiguous splicing outcome for each read, making Ψ and ΔΨ calculations 

straightforward for alignment outputs alone. 

To assess how similar the barcodes associated with the same variant impacted the splicing 

behavior, we compared the Ψ value of the barcode replicates for each variant and reference exon 

and observed high correlations (Figure 3a). To ensure that these splicing values were robust to 

biological variation, we also examined the correlations of variants between 3 biological 

replicates for HepG2 and K562 cell lines (Figure 3b). This data shows similarly high correlation 

values between biological replicates of the same cell lines, showing robustness to biological 
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variation. This data shows that the splicing data from Vex-seq is robust to both technical and 

biological variation. 

 In order to ensure that splicing behavior reflects what is known about splicing, we examined 

the Ψ of the mutated and consensus splice site controls relative to reference and variant exons. For 

the mutated splice site controls, both splice sites were mutated such that the 3’ splice sites were 

changed from AG to TC and the 5’ splice sites were changed from GT to CA. For the consensus 

splice site controls, the variants contained a 20 nt pyrimidine tract, an AG at the 3’ splice site, and a 

consensus 5’ splice site of GTAAGT. The consensus and mutated splice site controls behave as 

expected with the mutated splice site controls displaying a low Ψ value and consensus splice sites 

having a higher Ψ value, while the variant and reference sequences are intermediate (Figure 4). 

These are consistent with expected splicing behaviors for these control sequences. 

Given the high correlation rates of Ψ values between the biological replicates of different 

cell lines, we sought to characterize this similarity further. Indeed, upon examining the 

correlation between the average Ψ value of each cell line, we observe a similar pattern (Figure 

5a). Similarly, when looking at changes in splicing (ΔΨ) we see a similar, but noisier trend  

(Figure 5b). This suggests that variant induced changes in splicing studied in Vex-seq are 

generally cell type independent. 

We next examined the changes in splicing efficiency (or ΔΨ) for each variant. Changes in 

splicing can be observed in many different positions relative to each of the splice sites, however 

perturbations in the 3’ and 5’ splice sites typically result in a dramatic reduction of ΔΨ (Figure 6). 

Many outliers can be observed changing ΔΨ negatively upstream of the 3’ splice site, which 

may correspond to changes in the pyrimidine tract or the branchpoint sequences. However 

variants in core splicing sequences alone do not account for the full diversity of splicing variation 

observed from this data. Evidence of potential ESS and ESE regulatory elements can be 

observed within the exon, as variants in the exon are capable of inducing strong ΔΨ changes in 

either directions.  
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To further characterize variants being studied and how they impact splicing we looked at 

other features including effect predictions. Using Variant Effect Predictor (VEP) [14] annotations we 

characterized the variants and their impact on ΔΨ (Figure 7). Annotations were selected based on 

the first reported annotation from VEP. The 5’ and 3’ splice site variants have the biggest 

negative impact on ΔΨ as expected. Intron, missense, synonymous, intron and splice region 

variants can also have a wide range of impacts on ΔΨ. This is consistent with previous findings 

about how missense and synonymous variants can change splicing inclusion levels [15]. It should 

also be noted that splice region variants alone do not account for many of the variants which 

changed splicing, consistent with the difficulty of predicting the impact of these variants based on 

impact annotations.  

 We were also interested in examining whether the variants that displayed the largest  ΔΨ 

were more or less conserved than variants that had little impact on ΔΨ. 100-way vertebrate 

conservation scores from PhyloP were used to examine how variants with impacts strong or 

weak impacts on splicing were conserved [16]. We observed that there is significantly more 

conservation in variants which tend to have a high impact on splicing (|ΔΨ| ≧ 5) compared to 

variants with a low impact on splicing (|ΔΨ| < 5) (Figure 8a). Much of the conservation observed 

is likely due to protein coding constraints on sequences, which may add noise to this signal. To 

investigate whether this splicing-sensitive conservation is stronger in variants without protein 

changing potential, we examined the same trend in variants without protein coding constraints 

(intron, synonymous, UTR, and splice region variants), and we observed a more significant 

difference (Figure 8b). Additionally, when we focus on synonymous variants only, the effect is 

much clearer, even with a smaller sample size (Figure 8c). Intron variants seem to show the 

same trend of higher conservation with higher |ΔΨ|, however it is a milder effect (Figure 8d). 

This suggests that ESEs and ESSs modulated by these variants are more conserved, while 

intronic regulatory regions in the window we are testing are relatively more flexible. Perhaps this 
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weaker conservation signal because ISSs and ISEs are not constrained by the context of the 

protein frame, and may be able to move around in linear space within the intron and still be 

effective in influencing splicing. 

 

Discussion and Conclusions 

 We have developed a new assay to assess how variants can impact pre-mRNA splicing 

efficiency called Vex-seq. This method builds upon previous high throughput splicing reporter 

assays. It utilizes a barcoding approach and designed sequences based on the transcriptome. 

This approach of using designed sequences allows for the possibility of not deeply sequencing 

the plasmid pool, because barcode variant associations are already known. This assay is able 

to test intronic variation which other recent methods have been unable to do [9]. Vex-seq is also 

able to account for the impacts that variants may have on transcription of reporter transcripts 

because of the barcoding approach. This assay could be applied to a number of different 

applications including fine mapping of GWAS variants that may be involved in splicing 

regulation, which has been shown to be linked to complex diseases [3]. Additionally this could 

be used to dissect the behavior of RNA binding proteins and their effect on splicing regulation, 

or even saturating mutagenesis of exons known to be important for diseases. Thus, Vex-seq 

has the potential to have an extremely high impact on our understanding of genome function 

and how non-coding sequence variants impact pre-mRNA splicing. 

While Vex-seq offers certain advantages over current methods, there remain some 

obstacles with all of these splice reporter approaches [8,9]. First, these massively parallel 

splicing assays lack the context of the entire gene and chromatin state of the native genes. 

Second, these assays have limitations in terms of barcode design and synthesis length 

constraints and also may have cryptic splice sites formed in the context of the mini-gene. As 

oligonucleotide synthesis technologies improve, more context can be added to exons tested in 

this way. With more context, we expect Vex-seq to be more accurate at identifying variants that 
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impact splicing. Third, these approaches also have some difficulty accounting for nonsense 

mediated decay, which may bias different variants compared to their impact in the context of the 

transcriptome. 

Despite only examining 110 alternative exons in this study, we are able to obtain some 

biological insights from this data. The first is the similarity between the splicing behavior of K562 

and HepG2 cell lines. 76.45% of variants agree in directionality of ΔΨ between cell lines, 

furthermore, when you restrict this analysis to only include variants that have a |ΔΨ|> 5 in 

HepG2, the agreement is even stronger (92.61%). This observation is consistent with the well 

correlated Ψ and ΔΨ values for variants (Figure 5). This may suggest that most variants tested 

in this context are acting upon splicing elements common across these cell lines. This 

observation may change when analyzing splicing changes in response to stimuli or in the 

context of a cells with more complex transcriptome regulation. Alternatively, this may suggest 

that regulatory factors important for cell type specific splicing are generally outside of the 

window that we are testing in Vex-seq. The predictive power of conserved intronic splicing 

regulatory elements on Ψ generally being within 100 nucleotides upstream and downstream 

may suggest that this is the case [17]. 

Data obtained from Vex-seq demonstrates the importance of variants on impacting pre-

mRNA splicing efficiency. It shows that variant effect prediction, while useful for predicting 

protein changing variants, is insufficient to predict all splicing changes induced by variants. We 

also show that variants that tend to change splicing more are also generally more conserved 

than nucleotides that do not, particularly when the variants are otherwise not predicted to 

change protein products. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191122doi: bioRxiv preprint 

https://doi.org/10.1101/191122
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Adamson et al 

 10 

Methods 

Plasmid alterations 

 pcAT7-Glo1 was provided by Kristen Lynch. To eliminate a splice acceptor site in the 

middle of intron 1, a deletion of the pyrimidine tract and splice acceptor sequence was deleted. 

This was done through digestion of the vector with AflII and PstI and PCR amplifying an insert 

using two primers (FWD 5’-AAACTCTTAAGCTAATACGACTCACTATAGG -3’) (REV 5’- 

GACTGAATGAGTCTGCAGAGGCAGAGAGAGTCAGTGG -3’). The insert digested with AflII 

and PstI and was ligated in the vector digested with the same enzymes resulting in the plasmid 

used for these studies. 

Assembly of Vex-seq plasmid 

The oligo pool (Supp Table 1) was amplified with a common primer set (FWD 5’- 

GTAGCGTCTGTCCGTCTGCA -3’) (REV 5’- CTGTAGTAGTAGTTGTCTAG -3’) for 20 cycles, 

then digested with PstI and XbaI. These were subcloned into the modified pcAT7-Glo1 also 

using PstI and XbaI sites. The resulting plasmid pool, referred to as 1o was then digested with 

SpeI and MfeI. Exon 3 and intron 2 were PCR amplified from the original plasmid with primers 

(FWD 5’- GTGTGGAAGTCTCAGGATCG -3’) (REV 5’- AACGGGCCCTCTAGAGC -3’) and 

digested with MfeI and XbaI. The resulting product was subcloned into the digested 1o vector 

resulting in the final plasmid pool (2o). 

Transfection and Cell culture 

HepG2 cells were grown to a density of 0.5 x 106 cells per well and transfected with 1 μg of 

plasmid DNA using Lipofectamine 2000. Transfected HepG2 cells were then selected with 1 

mg/mL zeocin for 8 days. K562 cells were grown to a density of 1.0 x 106 cells per well and 

electroporated with 5 μg of plasmid DNA. Transfected K562 cells were then selected with 200 

μg/mL of zeocin for 8 days. RNA from each cell line was isolated using Maxwell® 16 LEV 

simplyRNA Purification kits. 
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Sequencing Preparation 

Sequencing for the 1o library was constructed using a nested PCR reaction. The 1o library was 

amplified for 15 cycles using the following primers (FWD 5’- 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCACTGACTCTCTCTGCCTC -3’) (REV 5’- 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCGGGTTTAAACGGGCCCT -3’). The 

2o library was amplified for 15 cycles using the following primers (FWD 5’- 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCAGCTACAATCCAGCTACCA -3’) (REV 

5’- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCGGGTTTAAACGGGCCCT 

 -3’). Each of these products were then amplified for 10 cycles using the following primers (FWD 

5’- AATGATACGGCGACCACCGAGATCTACAC-i5-INDEX-

ACACTCTTTCCCTACACGACGCTCTTCCGATCT -3’) (REV 5’- 

CAAGCAGAAGACGGCATACGAGAT-i7-INDEX-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT -3’). The cDNA was synthesized from the 

K562 and HepG2 RNA using SuperScript™ III reverse transcriptase and a gene specific primer 

(5’- 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNGCAACTAGAAGGCACA

GTCGAGG -3’). The cDNA was then PCR amplified for 10 cycles using primers (FWD 5’- 

AATGATACGGCGACCACCGAGATCTACAC-i5-INDEX-

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGCAAGGTGAACGTGGATGAAG -3’) 

(REV 5’- CAAGCAGAAGACGGCATACGAGAT-i7-INDEX-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT -3’). Resulting samples were multiplexed 

and sequenced on a MiSeq using a v2 300-cycle kit.  

Data Analysis and Interpretation 

Plasmid Quality Control. Forward and reverse reads from plasmids were combined into 

a single read using FLASH [18]. 1o library reads were sorted into bins using the barcode and 

grouped by control exon backbone with separate bins for indels and control sequences. Reads 
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were then aligned using Novoalign V3.02.13 (http://www.novocraft.com). Sam2tsv was then 

used to identify variants in each read and identify the barcode sequence [19]. Barcodes with 

15% or more  of reads not containing the correct variant were filtered out during splicing 

analysis using custom python scripts. Barcodes were identified 2o library reads using custom 

python scripts and barcodes without reads were filtered out of the analysis.  

Splicing Alignments and Analysis. Reads were identified by barcode and sorted into bins 

for each variant. The duplicate reads in each bin were then collapsed into a single read by the 

UMI. Reads were then aligned to a variant specific reference using STAR version 2.5.2b [13]. 

The uniquely aligned annotated read junctions were identified and Ψ and  ΔΨ were calculated. 

Reads which spanned unannotated splice junctions were discarded for calculating  Ψ and ΔΨ.  

Ψ values for analysis, unless otherwise indicated were the mean of the K562 and HepG2 Ψ 

values. Mutated and Consensus splice site controls were removed for the correlation analyses 

corresponding to figures 3A, 3B and 5. Annotations for each variants was done using the 

Ensembl Variant Effect Predictor tool using assembly GRCh37.p13 and using the Ensembl 

transcript database [14].  The variants used in the analysis were selected based on the first 

annotation output by VEP. 100-way vertebrate PhyloP conservation scores were used to 

examine conservation [16].  
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Figure Legends 
 
Fig. 1. Assembly of test exon and experimental design. a) The test exon and flanking 
introns are subcloned into a reporter plasmid in a two step process, such that the 
barcode designating the sequence is near the end of the transcript. Once these 
plasmids are transfected into cultured cells, a transcript will be produced that may not 
contain the variant itself, but does contain the barcode (b) uniquely associated with the 
variant tested. A ten nucleotide UMI (N10) is attached during the reverse transcription 
step to collapse PCR duplicates downstream. Illumina flow cell binding sequences (FC) 
and indexes (I1 and I2) are attached via primers during PCR and the resulting DNA is 
sequenced on a MiSeq platform. b) Data analysis pipeline for splicing results. 
 
 
Fig. 2. Quality control for plasmid integrity. a) Quality control pipeline for plasmid 
integrity. Amplicon sequencing of the 1o and 2o plasmid configurations are done 
through PCR to attach Illumina flow cell binding sequences (FC) and indexes (I1 and 
I2). Poor quality barcodes are then filtered out by identification of reads not containing 
variants and excluding barcodes with less than 85% of reads containing the correct 
variant. b) A histogram of the barcodes with the percentage of reads with correct variant 
identified. c) Box plots of 1o library read depth for barcodes included and excluded from 
further analysis. 
 
Fig. 3. Behavior and reproducibility of of splicing outcomes. a) Spearman (s) and 
Pearson (p) correlations of barcode Ψ for the same variants. b) Spearman and Pearson 
correlations of biological replicate Ψ for each variant. 
 
Fig. 4. Box plots of mean Ψ for each type of control and test sequences. 
 
Fig.  5. Similar behavior of splicing between K562 and HepG2 cell lines. a) Correlation 
between Ψ values for each variant between K562 and HepG2 cell lines. b) Correlation 
between ΔΨ values between K562 and HepG2 
 
Fig. 6. ΔΨ from both K562 and HepG2 plotted for all variants relative to the 3' and 5' 
splice sites. 
 
Fig. 7. Variants classified by effect prediction and their impact on ΔΨ. 
 
Fig. 8. Conservation of variants with strong splicing impacts. a) Boxplots showing the 
relationship of PhyloP and magnitude of ΔΨ for all variants. b) Boxplots showing the 
relationship of PhyloP and magnitude of ΔΨ for variants without explicit protein coding 
annotation. c) Boxplots showing the relationship of PhyloP and magnitude of �� for 
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synonymous variants. d) Boxplots showing the relationship of PhyloP and magnitude of 
ΔΨ for intron variants. P-values are calculated using Mann-Whitney-U test. 
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