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Abstract: Power considerations for trials evaluating vaccines against infectious diseases are 

complicated by indirect protective effects of vaccination. While cluster-randomized trials 

(cRCTs) are less statistically efficient than individually randomized trials (iRCT), a cRCT’s 

ability to measure direct and indirect vaccine effects may mitigate the loss of efficiency due to 

clustering. Within cRCTs, the number and size of clusters affects three determinants of power: 

the effect size being measured, disease incidence, and intra-cluster correlation. We simulate trials 

conducted in a collection of small communities to assess how indirect protection and clustering 

affect the power of cRCTs and iRCTs during an emerging epidemic. Across diverse parameters, 

we find that within the same trial population, cRCTs are never more powerful than iRCTs, 

although the difference can be small. We also identify two effects that attenuate the loss of cRCT 

power traditionally associated with increased cluster size. First, if enrollment of fewer, larger 

clusters is performed to achieve higher vaccine coverage within vaccinated communities, this 

increases the effect to be measured and, consequently, power. Second, the greater rate of 

imported transmission in larger communities may increase the attack rate and similarly mitigate 

loss of power relative to a trial in many, smaller communities. 

Main Text: 

Cluster-randomized controlled trials (cRCTs) have become an increasingly common method for 

evaluating interventions for infectious diseases, including vaccines. Compared to individually 
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randomized controlled trials (iRCTs), cRCTs may offer logistical, operational, and acceptability 

advantages (1), and allow the measurement of direct and indirect effects of vaccination, which 

are often relevant for policy-makers (2). The statistical theory of cRCT design has largely 

focused on the effect of clustering, commonly measured by intracluster correlation, on power (3-

5). Intracluster correlation arises because outcomes of members of the same cluster are more 

similar than those from different clusters. Therefore, increasing the number of individuals within 

a cluster provides less information than would adding the same number of individuals in a new 

cluster.  

When the trial outcome is an infectious disease, correlation arises also because each case in a 

cluster can transmit infection to other cluster members. Thus, trials of vaccines against infectious 

diseases exhibit a more complicated relationship between statistical power and sample size than 

in trials for non-infectious outcomes (6, 7); in particular, the total or overall vaccine effect 

measured by a cRCT is generally larger than the direct effect measured by an iRCT. In principle, 

this increased effect size in a cRCT might partially or fully offset the loss of power due to 

within-cluster correlation. Understanding these complexities can aid in vaccine trial design for 

emerging epidemics. While an important consideration in any clinical trial, maximizing 

efficiency is particularly crucial in trials during infectious disease emergencies such as the 2014-

16 Ebola epidemic, where evaluation of experimental vaccines is especially urgent, and where 

limited available vaccine doses and/or changing disease incidence may constrain trial design (8). 

In this paper, we first compare the power of an iRCT with that of a cRCT in the same population 

across a broad range of realistic parameters, taking into account that the cRCT is generally 

measuring a larger effect size. We hypothesized that, when R0 is slightly above 1, a cRCT may 

have greater power to detect total vaccine effects than an iRCT would have to detect direct 
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effects. Our justification was twofold. First, a vaccine’s total effect is greater than its direct effect 

and thus more easily detected. Second, when an iRCT is conducted within numerous small 

communities, the indirect effects of vaccination may reduce incidence amongst control 

participants sufficiently as to erode the trial’s power (6). In a second analysis, we restrict our 

attention to cRCTs and consider two decisions an investigator must navigate when balancing the 

number of clusters with the size of a cluster, for a given trial population size (Fig. 1). Throughout 

we distinguish between communities that are targeted for enrollment, and clusters that comprise 

the individuals enrolled. When study clusters are sampled from communities, the first decision 

(enrollment proportion) concerns whether to enroll a larger proportion of each community from 

fewer communities, or to enroll a smaller proportion from a larger number of communities, 

fixing community size. The second decision (community size) concerns whether to recruit 

clusters from a smaller number of large communities or recruit from a larger number of small 

communities, fixing enrollment proportion. 

With regard to enrollment proportion, recruiting a higher proportion of each community leads to 

higher vaccine coverage in communities receiving vaccination and thus more indirect protection 

to individuals therein. The greater overall protection may lead to increased power. With regard to 

community size, larger communities may experience an increased rate of introduction into the 

community if, for example, disease importations are proportional to the number of travelers to 

and from the community, which likely scales with community size. Both the increased indirect 

protection and the increased importation rate may increase power because they increase the 

effect size and the average number of cases in the trial population, respectively. These effects 

may thus partially counterbalance the loss of power that is known to accompany having fewer, 

larger clusters. We use a transmission model of an emerging directly transmitted infection (such 
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as Ebola virus disease) to assess the contribution of these effects to the relative power of iRCTs 

and cRCTs. 

METHODS 

Theoretical Analysis 

We first explored the plausibility that cRCTs may be more efficient than iRCTs by using 

theoretical final size equations to calculate the expected outbreak probability and attack rate in 

clusters, varying enrollment proportion, R0, and vaccine efficacy (see Supplementary Material 

for details). While this analysis provides some insight into the trade-off between indirect effects 

and clustering, we conducted the following simulation-based analyses to more realistically 

account for how epidemic stochasticity may increase variability between communities. 

Simulated population structure 

We consider a population divided into two distinct groups: a main population in which a major 

epidemic is progressing, and a smaller population made up of multiple small communities from 

which the trial population is enrolled. The communities are represented with a stochastic block 

network model (9), in which contacts between individuals within the same block are far more 

common than those between blocks. This assumption is essential as it increases the strength of 

indirect effects within clusters relative to scenarios in which there is more between-cluster 

transmission (10). A connection between individuals in the network represents a single infectious 

contact per day, and we assume that the number of contacts per individual (degree) is Poisson-

distributed. 

Transmission models 
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To balance realism with computational feasibility we rely on distinct transmission models for the 

main population and for the communities, using a deterministic compartmental model and a 

stochastic compartmental model respectively. 

Both models use a susceptible-exposed-infectious-removed (SEIR) compartmental structure. We 

assume that infections are introduced into communities via transmission from the main 

population, and the daily hazard of infection for an individual is proportional to the prevalence of 

infection in the main population. The community-level rate of disease importation (“importation 

rate”) is defined as the number of cases per year arising solely as a function of these external 

transmission events. We assume that the importation rate varies with the size of the community. 

In particular, larger communities experience more disease importation events, with community 

importation rate Mi increasing with 𝑁", where Ni is the size of the ith community (11). See 

Supplementary Material for more details on importation rate and disease natural history. 

Vaccine trial design 

For both designs, the specified number of communities are enrolled on a fixed calendar day with 

a target proportion of community members enrolled at random from the susceptible and exposed 

individuals therein, forming that community’s study cluster. In the iRCT, half the individuals in 

each study cluster are randomized to vaccination with the other half to placebo control. In the 

cRCT all individuals in half the study clusters are assigned to vaccination, while those in the 

other half are assigned to placebo control. In this design, all enrolled individuals in clusters 

assigned to vaccination are vaccinated. 

Statistical analysis 
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Statistical analysis of the trial is based on time to symptom onset, with individuals censored after 

a fixed time. For the iRCT, a Cox proportional hazards (PH) analysis is performed to estimate 

the direct effect of the vaccine, stratifying by community (12). We define statistical significance 

at the α=5% level using a two-tailed Wald test, and for each combination of parameters we 

simulate 500 trials, estimating the power as the proportion of trials that reject the null hypothesis 

of no vaccine effect, which accounts for different estimands used by different designs. We 

calculate the median vaccine effect estimate across the simulated vaccine effect estimates. To 

estimate the Type I error of each design we repeat the above process with the true vaccine 

efficacy set to 0. To measure the magnitude of clustering in the cRCT we report the design 

effect, defined as 𝐷𝐸 = 1 + 𝜌(𝑚 − 1), where ρ is the intracluster correlation coefficient (ICC) 

calculated using (13), which is likely an underestimate of the ICC for time-to-event data (14), 

and m is the average size of a study cluster. The design effect increases with ICC, as subjects in 

the same cluster are more similar, and with the size of each cluster, as there are fewer, larger 

groups of similar individuals. The ICC is a measure of between-cluster variance relative to total 

variance in the outcome: if between-cluster variance is large relative to within-cluster variance, 

the ICC is large and individuals in the same cluster provide little information relative to 

individuals in different clusters. 

In this cRCT design, a Cox PH model estimates the total effect of vaccination. To ensure we 

used a cRCT analysis that maintains nominal Type I error when comparing cRCT power to that 

of an iRCT, we first compared Type I error between several methods to account for clustering 

when determining statistical significance within the cRCT design: namely, a Cox PH model with 

Gaussian- or gamma-distributed shared frailty, and a Cox PH model with robust standard error 

estimate. We excluded from analysis individuals who developed symptoms within 10 days after 
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vaccination (the average incubation/latent period) to avoid diluting the vaccine effect by 

analyzing infections that preceded vaccination. 

Choice of parameters 

Table 1 shows the parameters used in the model, their meanings, values under baseline 

assumptions, range explored (where applicable), and references or justifications. 

RESULTS 

Comparison of iRCT and cRCT 

In our theoretical analysis based on final size calculations, we found support for our initial 

hypothesis that cRCTs could be more efficient than iRCTs: when R0 in vaccinated clusters in the 

cRCT is just above 1, the measured total effect is close to 1, which increases power; on the other 

hand, indirect effects in the iRCT drive down the incidence of disease among controls, 

undermining its power. Increasing enrollment proportion increases power of the cRCT relative to 

the iRCT, and there were parameter ranges for which the cRCT was more powerful than the 

iRCT; for example, with communities of size 100 and enrollment proportion 60%, we estimated 

that a cRCT would be more efficient than an iRCT when R0 was close to 1.6 and vaccine 

efficacy was between 50% and 60% (see Figure S2). 

However, our simulation model reveals that, across a broad range of parameters, including 

population structure, trial design and vaccine efficacy parameters, iRCTs were always were more 

powerful than cRCTs in the same population, despite the larger effect size being measured in 

cRCTs. The discrepancy between the models arises because theoretical calculations 

underestimate the average cumulative incidence, as well as the variability in transmission across 
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clusters, when R0 is close to 1. Figure 2 illustrates the power of simulated iRCT and cRCT 

designs versus R0, and highlights two findings. Firstly, the cRCT generally yields greater effect 

size estimates than the iRCT, because it measures the total vaccine effect rather than solely direct 

effects (Fig. 2A). Secondly, the design effect is large and increases with increasing R0 (Fig. 2B), 

because large R0 leads to more outbreaks within communities, which increases between-cluster 

variance and thus the ICC (see Fig. S1). Therefore, the power that the cRCT gains by measuring 

a larger effect is more than compensated by loss of efficiency due to within-cluster correlation. 

These two points explain why cRCT power first increases and then decreases with increasing R0. 

As R0 increases past a certain threshold, the effect of clustering begins to dominate the effect of 

increased incidence in the study population, and the trial loses rather than gains power from the 

increased transmission.  

As hypothesized, we found that there was reduced incidence among controls in the iRCT 

compared to those in the cRCT due to indirect protection from vaccinated individuals (see online 

Shiny App at https://matthitchings.shinyapps.io/shiny), although this did not significantly affect 

the power of iRCTs in our simulations. This is likely because vaccine coverage was low in the 

iRCT (a maximum of 50% of individuals within clusters are vaccinated) such that there is still 

sufficient transmission amongst control participants to evaluate the vaccine, in part because 

importation events from the main population occur even in the presence of herd immunity. 

The above results focus on the gamma-frailty model for analyzing the cRCT. We found that the 

estimated vaccine effect from a Cox PH model with robust standard errors (robust SE model) 

decreased drastically as R0 increases. This occurred because the effect estimate from the robust 

SE model is not stratified by cluster, and is thus biased by heterogeneity in hazard of infection 

caused by stochastic variation in outbreak size (12). The gamma-frailty model can account for 
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this heterogeneity and performed better, yielding both Type I error rates below 5% and unbiased 

estimates of total vaccine effects for many of the parameter combinations. Still, when R0 was 

sufficiently small, the gamma-frailty model of cRCT designs did exhibit slightly elevated Type I 

error (see online Shiny App) due to sporadic and heterogeneous nature of outbreaks in the 

communities. 

Figure 2 shows that the power of the cRCT is strongly affected by the design effect (Fig. 2C), 

and that the difference in power between the cRCT and iRCT is smaller when there is low R0. 

This observation held when other parameters were varied, including trial start day (relative to 

epidemic onset), vaccine efficacy, importation rate, and population structure. In the setting of 

low R0, epidemics will die out stochastically in most clusters experiencing one or more case 

importation. The cluster-level attack rates are thus close to zero and the between-cluster variance 

is small (see online Shiny App).  

Varying community enrollment proportion in a cRCT 

Restricting attention to cRCTs, Figure 3 displays the vaccine effect estimate (Fig. 3A), design 

effect (Fig. 3B), and power (Fig. 3C) for a cRCT across varying community enrollment 

proportions (holding community sizes constant, but varying number of communities). As 

expected the estimate of total vaccine effect increases with increasing proportion enrolled 

because it increases vaccine coverage and, consequently, the indirect effects in vaccinated 

clusters. However, the increased effect size is counterbalanced by increases in the design effect 

(driven by larger clusters). Thus, for all values of R0 displayed except the highest considered 

R0=3 there is no clear trend in power with the community enrollment proportion. For R0=3, the 
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simulations follow the trend generally expected for cRCTs in which the use of more, smaller 

clusters increases trial power. 

Varying size of enrolled communities in a cRCT 

Figure 4 displays the attack rate in the study population (Fig. 4A), design effect (Fig. 4B) and 

power (Fig. 4C) for a cRCT with varying size of enrolled communities, holding the proportion of 

communities enrolled and the total number of trial participants constant. These results assume 

community importation rate scales with the square root of community size. As the community 

size increases, the per-community importation rate increases and with it the expected proportion 

of communities that receive an importation. When R0 is greater than 1 and many importations 

lead to outbreaks, fewer communities means that a higher proportion of communities experience 

outbreaks. In effect, to get fewer, larger communities one can imagine linking up small 

communities, meaning that an outbreak in one can spread to other small communities, boosting 

the attack rate. On the other hand, having many small communities means that outbreaks are 

limited by the size of the communities and the overall attack rate is lower. However, in this case 

the increased attack rate with fewer, larger communities is not large enough to offset the greater 

design effect and thus power decreases when increasing community size and decreasing 

community number. 

If community importation rate scales linearly with community size, there is an even greater 

increase in attack rate when there are fewer, larger communities (Fig. 4D), relative to the 

analysis above. In this case, even though the design effect increases with community size (Fig. 

4E), the higher attack rate offsets the increased design effect and power does not change 

appreciably with size of enrolled communities when transmission is moderate (Fig. 4F). 
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Analysis methods for a cRCT 

In answering our primary research questions, we explored a range of analysis methods for the 

cRCT. We found that a Cox PH model with Gaussian-distributed frailty had significantly 

elevated Type I error (see online Shiny App). Fortunately, two common approaches to analyzing 

clustered survival data, a Cox PH model with gamma-distributed frailty or robust standard error 

estimation, were the best methods in terms of power and validity. The robust SE analysis has 

higher power than the gamma-frailty model when transmission is low. However, the model 

doesn’t account for heterogeneity in hazard rates in its estimate of the vaccine effect, leading to a 

downward bias that is particularly apparent when R0 is high, as seen in Figure 2. The gamma-

frailty model is not susceptible to this bias. 

DISCUSSION 

Traditional comparisons of cRCTs versus iRCTs that focus on within-cluster correlation and the 

design effect should also consider other ways in which the unit of randomization affects RCT 

power. Although an iRCT and a cRCT answer different research questions (measuring direct and 

total effects, respectively), a positive finding for either could arguably lead to the same policy 

outcome, especially during an epidemic (15). For example, rVSV-EBOV was approved for use 

in the DRC in 2017 based on the findings of Ebola, ça suffit!, a cRCT (16). We show that a 

cRCT’s ability to measure both indirect and direct effects can partially compensate for the loss of 

power due to clustering. Theoretical calculations suggest that cRCTs may exhibit greater 

statistical efficiency than iRCTs in some low R0 scenarios. However, simulations that more 

realistically capture stochasticity in transmission suggest that iRCTs remain more powerful than 

cRCTs conducted in the same trial population. In low transmission settings the difference in 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2017. ; https://doi.org/10.1101/191163doi: bioRxiv preprint 

https://doi.org/10.1101/191163
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

power between them may be small, although for R0 values lower than considered here a risk-

prioritized design (such as ring vaccination) would be preferable, and these results should be 

examined separately in this context. 

The above comparisons between cRCTs and iRCTs can be extended to examine cRCTs of 

different cluster sizes (which is particularly apparent once noting an iRCT can be considered a 

cRCT with cluster size of one). For instance, within cRCT designs, enrolling more individuals 

from the same cluster is generally less statistically efficient than enrolling individuals in a new 

cluster. Previous work has argued that the ICC often decreases with cluster size, mitigating some 

loss of efficiency with larger clusters (10), and demonstrated how cross-contamination may 

increase when cRCTs are run in clusters of fewer individuals, reducing the effect to be estimated 

and thus power. Cross-contamination occurs either via transmission between intervention and 

control clusters or inadvertent receipt of intervention by control clusters, both of which are less 

likely when clusters are separated in space (17), or are sufficiently large that they are less 

impacted by external populations (10).  

Here, we show that, even in the absence of cross-contamination, indirect effects in themselves 

can mitigate the loss of efficiency caused by the increasing design effect associated with fewer, 

larger clusters. To our knowledge, this fact has been alluded to but the effect on power has never 

been quantified (18, 19). Another counter-intuitive finding arises from the fact that, because 

larger communities experience a greater influx of transmission imported from elsewhere, 

enrolling fewer but larger communities may yield a greater attack rate, and thereby partly or fully 

compensate for the loss in power due to the design effect. This result is dependent on the 

relationship between case importation rate and community size. Consequently, this will differ by 

disease and population setting and may only be true in scenarios when a pathogen is not endemic 
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to trial communities and the probability of pathogen introduction into a community is relatively 

low. 

Our findings highlighted the importance of adequately accounting for heterogeneity between 

study clusters while maintaining the nominal false positive rate and maximizing power. We 

limited the methods to those widely used and found that a Cox PH model with gamma-

distributed frailty performs best overall; although when R0 is low, a Cox PH model with robust 

SE may be superior. 

The results presented here are part of a body of work demonstrating the utility of simulation 

when considering the design of vaccine trials for infectious diseases (7). It is only by including 

transmission dynamics in models that we are able to quantify the relative strength of clustering 

and indirect protection in affecting trial power. Our study is intended to explore these effects 

more generally, but we expect our findings to be relevant to investigators considering cRCT 

design, whether or not they develop a full-fledged trial simulation study during the planning 

phase. Theoretical work on trial design can help prepare stakeholders to rapidly design trials in 

the face of unexpected epidemics of emerging pathogens. However, it is important to note that 

sample size is only one of many factors that must be taken into consideration when planning a 

vaccine trial. Considerations of logistics, cost, ethics, acceptability or the particular research 

question of interest may, in certain contexts, hold priority.  

There are at least two sources of intracluster correlation in a cRCT for an infectious disease: 

transmission between individuals within a cluster, and the shared characteristics of individuals 

within a cluster. When R0 is large enough, any outbreak that takes off will infect many 

individuals in a community so all clusters either have attack rate close to 0% or 100%. In such 
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cases, there is very little within-cluster variance and the total variance comprises chiefly 

between-cluster variance, leading to ICCs approaching 1. Clustering due to shared characteristics 

can arise for many reasons, e.g. within-community similarities in behavior, health, or proximity 

to source populations. Intracluster correlation, whether due to transmission or to shared 

characteristics in clusters, increases the design effect. Given these different sources of clustering, 

and the fact that we observed ICCs ranging from 0.05 to 0.8 in our simulations, it is critically 

important that ICCs are reported by study investigators when presenting the results of a cRCT as 

this may aid in planning for future trials (20).  

Our analysis neglects some aspects of a realistic population in which a trial is conducted. For 

example, we do not consider the second source of clustering described above (i.e. shared 

characteristics). More broadly, modeled individuals do not vary in characteristics other than 

degree and the community to which they belong, whereas real populations would vary in age 

structure, proximity to the epicenter of the epidemic, and other variables that would predict 

disease incidence. By ignoring these characteristics we underestimate the extent of clustering in a 

cRCT and overstate its power. This makes more robust our conclusion that the iRCT is always 

more powerful than the cRCT in the situations considered. 

We have conceptualized the population structure as being a number of small groups separated in 

space so that there is minimal transmission between communities; in reality, population structure 

is likely to be less distinct. We have not considered permanent or temporary migration, nor 

secondary structure within communities (i.e. households). Moreover, real-life degree 

distributions have a heavier tail (due to superspreading (21)) than considered here; though a 

sensitivity analysis shows our results are robust to this assumption (see online Shiny App).  
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We find that the general principle that enrollment of fewer, larger clusters leads to decreased 

power is strongly dependent on the relationship between community size and rate of importation. 

Our base assumption that importation frequency proportional to the square root of community 

size is based on a finding for measles (11). For other diseases the community-level importation 

rate may be independent of community size, in which case the increased design effect would 

entirely dictate the loss of power as community size increases. Our conclusions should thus be 

considered in the context of each specific disease and population. 

The indirect effect of vaccination should be considered along with clustering in calculating the 

power of a cluster-randomized trial and in comparing different trial designs for interventions 

against infectious diseases. Using simulation we show that it does not always increase power to 

enroll more, smaller clusters into a cRCT, when doing so is associated with reduced indirect 

protection to vaccinated individuals or importation of infection into the study population. Still, 

while cRCTs measure a greater vaccine effect than iRCTs, we found that iRCTs are generally 

more powerful, though their power may be comparable in low-transmission settings. 
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Figures legends:  

Fig. 1. Schematic of an iRCT (top) and a cRCT (bottom). Study clusters (solid outlined) are 

enrolled from communities (circles). In the iRCT, individuals within each cluster are 

randomized to vaccine (striped) or control (black). In the cRCT, half the clusters are 

randomized to vaccine and half to control. In the cRCT design, fixing the number of 

individuals enrolled, there are two ways to balance cluster size and number of clusters in 

the trial: (1) fixing the community size, vary the enrollment proportion and the number of 

communities enrolled, and (2) fixing the enrollment proportion, vary the community size 

and number of communities. 

Fig. 2. Comparison of vaccine effect estimates and power of individually- and cluster- 

randomized controlled trials. Vaccine effect estimates (A), design effect (B), and power 

(C) from an individually-randomized controlled trial (iRCT) and from a cluster-

randomized controlled trial (cRCT) analyzed either using a shared gamma frailty model 

or using a Cox PH model with robust standard error estimates (robust SE). The incidence 

rate of importations into an average community is 0.5 cases/year, the vaccine efficacy is 

60%, and other parameters are the baseline values listed in Table 1. 

Fig. 3. Relationship between power and community enrollment proportion for a cRCT. Vaccine 

effect estimates (A), design effect (B), and power (C) from a cRCT versus the percentage 

of individuals enrolled from each community, with total sample size held constant and 

assuming a vaccine efficacy of 60%. 

Fig. 4. Relationship between power and size of enrolled communities for a cRCT. Attack rates in 

the trial population (A and D), design effects (B and E), and power (C and F) for cluster-
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randomized vaccine efficacy trials versus the size of the communities recruited, with total 

sample size held constant. In the left-hand column, community case importation rate is 

proportional to the square root of community size, and in the right-hand column it is 

proportional to the community size. All results shown here assume 60% community 

enrollment. 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2017. ; https://doi.org/10.1101/191163doi: bioRxiv preprint 

https://doi.org/10.1101/191163
http://creativecommons.org/licenses/by-nd/4.0/


22 
 

Table 1. Model Parameter Names, Values and Ranges Varied Across, Meanings and References 

or Justifications. 

Parameter	 Meaning	 Value/Range	 Reference	

R0	 Average	number	of	secondary	

infections	generated	by	an	

infected	individual	

0.6-3	 Wide	range	spanning	most	

emerging	infectious	diseases.	

Calculated	for	network	

models	using	(22).	

Mean	

(latent)	

Mean	latent	period	length	(days)	 9.7	 (23)	

SD	(latent)	 Standard	deviation	of	latent	period	

length	(days)	

5.5	 (23)	

Mean	

(infectious)	

Mean	infectious	period	length	

(days)	

5.0	 Time	to	hospitalization	(23).	

SD	

(infectious)	

Standard	deviation	of	infectious	

period	length	(days)	

4.7	 (23)	

VE	 Individual	vaccine	efficacy	 0.6	(0.4-0.8)	 Baseline	assumption.	

Ni	 Size	of	community	i	 100	(50-200)	 Assumption	that	some	unit	of	

this	size	exists	in	the	

population.	
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Mi	 Importation	rate	into	communities	 0.025	

(0.0125-

0.05) 𝑁" 	

cases/1,000	

person-years	

Based	on	a	calculation	for	

measles	(11),	with	the	

magnitude	of	the	rate	chosen	

so	that	there	is	on	average	

0.5	importations	into	a	

community	of	size	100	over	a	

two-year	epidemic.	

Within-

community	

degree	

Average	total	number	of	contacts	

of	an	individual	within	the	same	

community	

14.85	

(14.83-

14.85)	

Based	on	Ebola,	ça	suffit!	trial	

(20)	(ring	size	of	90,	<20%	of	

which	were	primary	

contacts).	

Between-

community	

degree	

Average	total	number	of	contacts	

of	an	individual	from	outside	their	

community	

0	(0-0.02)	 Assumption	that	communities	

disconnected	to	minimize	

spillover	effect.	A	range	was	

explored	to	represent	one	or	

two	contacts	outside	each	

community.	

Trial	size	 Average	number	of	individuals	

enrolled	

4,000	 Assumption	to	achieve	

reasonable	power	for	chosen	

parameters.	
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Trial	start	

day	

First	day	of	enrollment,	

vaccination	and	start	of	follow-up,	

relative	to	the	first	day	of	the	

epidemic	in	the	main	population	

150	(100-

250)	

Assumed	the	trial	starts	

before	the	peak	of	the	

epidemic	in	the	main	

population	and	that	the	trial	

team	is	ready	to	go	when	

epidemic	starts.	

Trial	length	 Length	of	follow-up	after	trial	start	

(days)	

140	(70-210)	 Assumption	to	achieve	

reasonable	power	for	chosen	

parameters.	

 

List of supplementary material 

Supplementary Materials and Methods. 

Figure S1. Relationship between R0 and distribution of cluster-level attack rates. 

Figure S2. cRCT/iRCT necessary sample size ratio by R0 and vaccine efficacy from theoretical 

model. 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2017. ; https://doi.org/10.1101/191163doi: bioRxiv preprint 

https://doi.org/10.1101/191163
http://creativecommons.org/licenses/by-nd/4.0/


25 
 

Figures: 

Figure 1: 
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Figure 2:  
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Figure 3: 
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Figure 4 (previous page):  
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Supplementary Materials: 

Methods 

1. Theoretical model 

Our initial theoretical analysis is based on final size and outbreak probability calculations rather 

than simulation, but otherwise the trial population has the same structure as in the simulation 

model. In particular, we assume that a proportion of communities receive a single disease 

importation, and any outbreak that arises from an importation runs until there are no longer any 

infectious individuals. 

For a community in which there are no vaccinees, the standard final size equation (1) applies for 

the cumulative incidence, namely CI solves 𝐂𝐈 = 𝟏 −	𝐞2𝐑𝟎𝐂𝐈, when R0>1. Similarly, the 

proportion of communities with importations in which an outbreak will occur, x, solves the same 

equation. For a community in which a proportion p of the individuals are vaccinated with 

vaccine efficacy VE, the equations for the CI among the vaccinated and unvaccinated, CIV and 

CIU respectively, are 

𝐂𝐈𝐕 = 𝟏 − 𝐞2𝐑𝟎 𝟏2𝐕𝐄 𝟏2𝐩 𝐂𝐈𝐔9𝐩𝐂𝐈𝐕 , 

𝐂𝐈𝐮 = 𝟏 − 𝐞2𝐑𝟎 𝟏2𝐩 𝐂𝐈𝐔9𝐩𝐂𝐈𝐕 . 

The outbreak probability in a community in which a proportion p of the individuals are 

vaccinated, xV, solves the equation 𝐱𝐕 = 𝟏 − 𝐞2𝐑𝟎𝐕𝐱𝐕, where 𝐑𝟎𝐕 = 𝟏 − 𝐩𝐕𝐄 𝐑𝟎. Sample size 

calculations were based on a hazard rate analysis, with vaccine effect estimated in both trial 

designs as 𝑽𝑬 = 𝟏 − 𝐥𝐧 𝟏2𝑪𝑰𝑽
𝐥𝐧 𝟏2𝑪𝑰𝑼

 (2). Specifically, number of individuals needed to achieve 90% 
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power to detect vaccine effect was given by 𝑺 = (𝟏.𝟗𝟔9𝟏.𝟐𝟖)𝟐

𝟒∗𝑪𝑰𝑶∗𝐥𝐧	(𝟏2𝑽𝑬)𝟐
 (3), where CIO is the cumulative 

incidence of infection in the trial population. For the cRCT, this sample size is multiplied by the 

design effect as defined in the main text, with ICC calculated using the ANOVA method (4). We 

calculate necessary sample size to achieve 90% power for an iRCT (in which half of the 

vaccinees in each study cluster are vaccinated) and for a cRCT (in which half of the study 

clusters have all participants vaccinated, and the other half are given control), and plot the ratio 

of the necessary sample size for a cRCT compared to an iRCT. Areas of parameter space in 

which this ratio is less than 1 are indicative of parameters for which the cRCT is theoretically 

more efficient at detecting the total effect than the iRCT is at detecting the direct effect. 

When R0<1, the size of an outbreak in a large population is given by 𝟏
𝟏2𝑹𝟎

, but this formula does 

not apply to small communities, especially when R0 is close to 1. Therefore, we restrict the 

theoretical analyses to parameter combinations when R0 in vaccinated communities in the cRCT 

is greater than 1, assuming that any qualitative results we saw in this parameter space would be 

maintained as R0 crosses 1. 

2. Simulation 

The main population model is a standard deterministic susceptible-exposed-infectious-removed 

(SEIR) compartmental model, with three exposed and three infectious compartments to yield 

gamma-distributed incubation and infectious periods. We assumed a time-varying transmission 

rate in the main population, so that the importation rate into the communities is proportional to 

the prevalence of infection in the main population, and disease natural history parameters 

representative of the 2014-2015 Ebola epidemic in Liberia (5). 
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The disease model in the communities is a stochastic susceptible-exposed-infectious-removed 

(SEIR) model. Each susceptible individual has a daily hazard of becoming infected and moving 

into the exposed compartment from two sources: the daily hazard of infection from each 

infectious neighbor is β, and the daily hazard of infection for an individual in community i from 

the main population is FiI, where I is the prevalence of infectious individuals in the main 

population and Fi is a proportionality constant reflecting the degree of contact between the main 

population and the ith community. 

The hazard rate of introduction into the study population is time-varying with the progression of 

the epidemic in the main population, and we calibrate the constant of proportionality in each 

cluster Fi using an assumed rate of importation events, Mi cases/year. The formula that connects 

these two quantities is 𝐹" = 	−
OP	(Q2RS∗T)

U/W
, where f is the final size of the epidemic in the main 

population, µ is the mean infectious period, and T is the length of the epidemic in years. We 

model the relationship between importation rate and community size in two ways. Firstly, for 

community i we assume 𝑀" = 𝑎 𝑁", where Ni is the community size (6), and the per capita 

importation rate in community i is Z
[S

, where the constant a determines the magnitude of the 

importation rate. Secondly, we assume 𝑀" = 𝑎′𝑁", so that the per capita importation rate in 

community i is a’. The values for a and a’ were chosen so that a community of size Ni=100 had 

on average between 0.25 and 1 introductions over the course of a two-year epidemic. 

The transmission rate β in the main population varied with time using the formula 𝛽 𝑡 = 	𝛽(1 −

	 _`
Q9	abcd eb	cf

). Parameters were chosen to give a reasonable fit to weekly Ebola incidence data 
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from Liberia. Specifically, 𝛽 = 0.94, α1 = 0.19, α2 = 0.6, ατ = 27.79. The average 

incubation/latent period is 7.14 days and the average infectious period is 3 days. 

We assume that the incubation and latent periods are concurrent, meaning that symptom onset 

occurs when infectiousness begins. Once infected, individuals spend a number of days in the 

exposed compartment drawn from a gamma distribution with mean 9.7 days and SD 5.5 days 

before moving into the infectious compartment (7). They spend a number of days in the 

infectious compartment drawn from an independent gamma distribution with mean 5 and SD 4.7 

based on data on the time to hospitalization (7), after which they move into the removed 

compartment. For simplicity and to generalize away from the Ebola epidemic, we assume no 

post mortem transmission, meaning that whether an individual dies or recovers does not affect 

the estimated efficacy or power of the trial.  

Once enrolled, individuals are followed for a number of days and, for infected individuals, time 

from enrollment to symptom onset is recorded. Individuals who never develop symptoms are 

censored at the end of the study; there are no other sources of censoring. The vaccine is 

multiplicative leaky (8), reducing susceptibility to infection by a factor (1-VE) and having no 

effect on those who are already exposed or infectious when vaccinated, and no effect on the 

progression or infectiousness of vaccinated individuals who become infected. We assume the 

protective efficacy of the vaccine starts on the day of vaccination. 
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Fig. S1. Relationship between R0 and distribution of cluster-level attack rates. Histogram of 

cluster-level attack rate for R0=0.6 (A) and R0=3 (B). 
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Fig. S2. Ratio of necessary sample size for 90% power to detect vaccine effect for a cRCT (total 
effects) relative to an iRCT (direct effect) with a hazard rate-based analysis, varying R0 and true 
vaccine efficacy. Final size equations apply only when 𝑅hi > 1. 
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