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Abstract: 

Fourier-transform mass spectrometry (FT-MS) allows for the high-

throughput and high-resolution detection of thousands of metabolites. Observed 

spectral features (peaks) that are not isotopologues do not directly correspond to 

known compounds and cannot be placed into existing metabolic networks. 

Spectral artifacts account for many of these unidentified peaks, and 

misassignments made to these artifact peaks can create large interpretative 

errors. Without accurate identification of artifactual features and correct 

assignment of real features, discerning their roles within living systems is 

effectively impossible.  

We have observed three types of artifacts unique to FT-MS that often 

result in regions of abnormally high peak density (HPD), which we collectively 

refer to as HPD artifacts: i) fuzzy sites representing small regions of m/z space 

with a ‘fuzzy’ appearance due to the extremely high number of peaks present; ii) 

ringing due to a very intense peak producing side bands of decreasing intensity 

that are symmetrically distributed around the main peak; and iii) partial ringing 

where only a subset of the side bands are observed for an intense peak. Fuzzy 

sites and partial ringing appear to be novel artifacts previously unreported in the 

literature and we hypothesize that all three artifact types derive from Fourier 

transformation-based issues. In some spectra, these artifacts account for roughly 

a third of the peaks present in the given spectrum.  We have developed a set of 

tools to detect these artifacts and approaches to mitigate their effects on 
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downstream analyses.  

 

Introduction  

 Fourier Transform Mass Spectrometry (FT-MS) provides high 

performance in terms of sensitivity, resolution, and mass accuracy 

simultaneously over many other types of MS commonly used for biomolecular 

detection and quantification. These combined capabilities provide tangible 

analytical and interpretative improvements including: i) the ability to resolve 

isotopologues with identical unit masses but different real masses enabling multi-

element isotopic natural abundance correction (H. N. Moseley, 2010) (Carreer, 

Flight, & Moseley, 2013) in multiple labeling experiments (Yang, Fan, Lane, & 

Higashi, 2017); ii) improved assignment accuracy (although often not fully 

unambiguous assignments) (Kind & Fiehn, 2006); and iii) the detection of low 

concentration metabolites in the subfemtomolar range (Eyles & Kaltashov, 2004) 

(Dettmer, Aronov, & Hammock, 2007). In the metabolomics field, these 

improvements permit more complicated, but more informative experimental 

designs such as the use of multiple isotope-labeled precursors for use in stable 

isotope-resolved metabolomics (SIRM) experiments (Yang et al., 2017). These 

experiments can provide the information needed to elucidate unknown metabolic 

pathways (Creek et al., 2012) (Higashi, Fan, Lorkiewicz, Moseley, & Lane, 2014), 

quantify the relative flux through metabolic pathways (Hiller, Metallo, Kelleher, & 

Stephanopoulos, 2010), identify multiple metabolite pools (T. W. M. Fan et al., 

2012), and identify active metabolic pathways under various cellular conditions 
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(Sellers et al., 2015). In turn, these informational gains enable researchers to 

build more complete models of cellular metabolism and to better understand life 

processes, both healthy and pathological, more completely at a mechanistic 

level. These models facilitate the identification of potential targets for 

pharmaceutical intervention (T. W. Fan et al., 2009) and the quantification of 

differential drug response at a molecular level (Harris et al., 2012). 

 While the potential benefits of FT-MS are significant, so are the limitations. 

In addition to the increased cost and complexity of the instruments, the amount of 

data produced by a single run on an FT-MS instrument can be quite large and 

when deployed in a high-throughput environment as with all high data capture 

‘omics techniques, necessitates the use of automated tools for data reduction, 

data quality assessment and control, peak (feature) assignment, and other 

downstream analyses enabling information extraction and interpretation within 

reasonable timeframes. In particular, the extraction and interpretation of 

meaningful data from MS spectra often necessitates correct peak assignment. 

While peak assignment is relatively straight-forward and well-validated in 

targeted MS experiments, especially when combined with chromatography 

and/or done in tandem (Ogura, Bamba, & Fukusaki, 2013) (Zhang & Brodbelt, 

2004) (Astarita, Ahmed, & Piomelli, 2009), assignment of untargeted MS 

analyses of non-polymeric biomolecules remains harder to perform in a rigorous, 

error-limiting manner, even with the advanced capabilities of FT-MS.   

In untargeted FT-MS metabolomics approaches, m/z database-based 

assignment tools such as LipidSearch (Peake, Yokoi, Wang, & Yingying, 2013) 
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and PREMISE (in-house tool developed within the Center for Environmental and 

Systems Biochemistry (CESB)) have been used to assign FT-MS features 

observed in direct infusion experiments (Lorkiewicz, Higashi, Lane, & Fan, 2012) 

(Yang et al., 2017). These database approaches have the advantage of low 

computational overhead and a priori knowledge when the m/z database is 

tailored to the biological system being studied.  However, tailored m/z databases 

limit discovery – a stated goal of many untargeted analyses (H. N. B. Moseley, 

2013), introduce assignment bias, and have difficulty disambiguating possible 

assignments.  Also, these assignment approaches are often based on the 

matching of a single spectral feature to an m/z value in the database, which are 

statistically error-prone due to a lack of aggregate, cross-validating evidence.  

 However, the ability to identify true signal is essential for the accurate 

assignment and interpretation of all MS datasets, including FT-MS datasets, as 

all analytical techniques have the potential to generate artifactual signals. 

Artifactual signals are signals not representative of the sample composition but 

rather arise from instrumental or data processing limitations. Such signals 

obviously do not represent the underlying biochemistry of a sample, and at best 

complicate data interpretation and at worst lead to incorrect interpretations. As 

the scale of experiments increase and untargeted analyses become increasingly 

prevalent, as is the case with the field of metabolomics (Goodacre, 

Vaidyanathan, Dunn, Harrigan, & Kell, 2004), the ability to distinguish sample-

related signal and artifactual signal becomes increasingly important.  
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 Fundamentally, artifactual MS peaks can be divided into two major types. 

First are artifactual peaks that result from unexpected ions during spectral 

acquisition. For example, the presence of contaminant compounds (Keller, Sui, 

Young, & Whittal, 2008) (e.g. plasticizers and keratin) and spontaneous chemical 

reactions during analysis (e.g. molecular rearrangements (McLafferty, 1959)) are 

just two of many mechanisms by which unexpected ions can be produced and 

subsequently detected by a spectrometer. In this case, the peak signals 

represent real analytes; however, these detected analytes are not representative 

of the sample. The second type of artifactual peaks are those that do not 

correspond to ions present during spectral acquisition. The cause of these 

second types of artifacts typically depends upon the mass spectrometry platform 

on which the spectrum was acquired. Examples for FT-MS will be described 

below.  Also, characteristics of real peaks can be artifactual.  For example, ion 

suppression and overloading an ion trap can distort acquired spectral intensities.  

 The use of the Fourier transformation in the processing of FT-MS raw data 

introduces new avenues for generating artifactual peaks in resulting FT-MS 

spectra. This is generally well known, especially for other analytical techniques 

that utilize the Fourier transform with common FT-specific artifacts like sinc 

wiggles in NMR (Hore, 1985) and side lobes in FTIR (Griffiths & Pariente, 1986). 

However, previous studies regarding FT-MS specific artifacts have focused 

almost exclusively on “harmonic peaks” (Mathur & O’Connor, 2009) and 

“sidebands” or “peak ringing” (Miladinović, Kozhinov, Tsybin, & Tsybin, 2012), 

which do not cover all the artifact types we have observed in our FT-MS spectra.  
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We have observed two additional FT-MS artifacts which we have named fuzzy 

sites and partial peak ringing.  

 In summary we have observed three distinct artifact types in our FT-MS 

spectra that have the potential to confound meaningful assignment and 

interpretation of FT-MS datasets. Furthermore, of the three observed artifact 

types only one appears to have been previously mentioned in literature. We have 

developed tools for detecting these artifacts and mitigating their effects on data 

interpretation.  

 

Materials and Methods:  

 

HPD Artifact detection. 

 Although the three FT-MS artifacts outlined above (ringing, partial ringing 

and fuzzy sites) have distinct appearances, they all result in regions of high peak 

density (HPD). These artifacts can be collectively referred to as HPD artifacts 

due to this shared property and we leverage this property to create an automated 

tool for their detection. Our HPD-detector is implemented using the Python 

programming language (Van Rossum & Drake Jr, 1995)  version 3.4 and makes 

extensive use of the Numpy library (Walt, Colbert, & Varoquaux, 2011) to 

accelerate calculations. Starting with a peaklist in a Javascript Object Notation 

(JSON) format (Supplemental Figure 2), the detector first parses and sorts the 

peaks in ascending order of their m/z values, enabling the use of algorithmically 

efficient methods for searching the peaklist by m/z, namely a binary search. Next, 
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a 1 m/z window is slid across the spectrum in 0.1 m/z increments. At each 

increment, a pair of binary searches are used to find the peaks within the window 

that are then counted to give a peak density metric (the value D in Step 1 of 

Figure 1) that is assigned to the mean m/z of the window.  

  

Figure 1: Automated HPD-Site Detection. The HPD-site detection algorithm 
requires three steps. First, a peak density metric is calculated for the spectrum 
using a sliding window method. Second, a set of K+1 windows and the peak 
density metric are used to calculate a density statistic for each portion of the 
spectrum. This metric flattens out density differences due to signal-to-noise 
differences or baseline differences and highlights spectra with HPD artifacts (Fig 
2E, F, G, H). Filtering this metric reveals the location of the HPD artifacts. The 
color of variables in the equation above reflect which window or step in the 
algorithm from which they were derived.  
 
 By comparing these peak density statistics to one another, HPD artifacts 

can be found. This comparison requires applying another window operation to 

the density metrics calculated previously. In this operation, N pairs of non-

overlapping ‘reference’ windows distributed symmetrically around a single ‘test’ 

window are moved across the spectrum in 0.1 m/z increments. The test window 

(the single black box in the peak density plot in Figure 1) is the region of 
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spectrum being tested for HPD phenomena using the reference windows as 

estimates of “normal” peak densities (the yellow and purple boxes flanking the 

black box). At each increment, the mean and standard deviation of the peak 

density in the test window and each pair of reference windows are calculated. 

Each window is 3 m/z in width. The mean of the test window is then compared to 

the mean of each pair of reference windows and normalized by the standard 

deviation of the corresponding pair of reference windows yielding N chi-squared-

inspired statistics for each test window and the max value is assigned to the 

mean m/z of the test window (Step 2 in Figure 1). Taking the maximum 

comparison value across multiple pairs of reference windows increases the 

sensitivity of the test and insulates the method against the edge case where all 

reference windows and the test window contain HPD artifacts and thus do not 

appear statistically different from one another. Although higher values of N are 

theoretically superior, testing showed no significant improvement for N > 2.  

 In the final step, the continuous subdomains of m/z space at least 0.3 m/z 

in width with density statistic values over 100 are reported (Step 3 in Figure 1). 

These regions likely contain some form of HPD phenomena as they have 

significant differences in peak density compared to neighboring regions. 

 

Ringing detection. 

 The HPD-detector outlined above detects fuzzy sites and some instances 

of ringing and partial ringing, but has lower sensitivity for ringing artifacts. Partial 

ringing often does not increase peak density sufficiently to be detected by the 
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HPD-detector, while true ringing can often occupy a very wide m/z window, 

making their detection more difficult. Therefore, we created a dedicated ringing 

detector in Python 3.4 that identifies sets of peaks that are possibly assignable to 

the same compound and has matching m/z differences to other expected 

compounds.  

 The ringing detector requires as input a peaklist in JSON, a list of 

expected m/z values in JSON (Supplemental Figure 3), and a description of the 

adducts to consider for each ion (Supplemental Figure 4).  The provided list of 

expected m/z values was built using the MaConDa database (Weber, Li, Bruty, 

He, & Viant, 2012) of common mass spectrometry contaminants and each entry 

represents the non-adducted monoisotopic form of a contaminant while the 

adduct and isotopologue file was created manually.  

In the first step of the analysis, the ringing detector expands the list of 

expected m/z values by generating their adducts and a set of expected 

isotopologues as specified by the adduct and isotopologues file. This expansion 

ensures that we are searching for the most likely forms of the provided 

compounds. With the expanded set of expected m/z values calculated, the 

detector parses the peaklist and sorts the peaks in ascending m/z order to 

enable binary searching by m/z value. Next, an estimate of the noise intensity 

level is calculated. From an ascending list of peak intensities, the ringing detector 

first identifies the first quartile of the intensity values, i.e. the lowest quartile of 

intensities, and copies them to a noise intensity list. While the standard deviation 

of the noise intensity list is less than 1.2 times the mean of the noise intensity list, 
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the next 100 intensities are copied to the noise intensity list. Once this process is 

complete, the median of the noise intensities is calculated. Five times the median 

noise intensity is considered the intensity cutoff for the spectrum and intensities 

above the cutoff are very likely “true” signal. A noise sample is then generated by 

selecting a random set of peaks below the noise cutoff equal in size to the 

number of peaks above the cutoff.  

 In this noise sample, the ringing detector searches for the expected m/z 

values and for every expected m/z in the set of expanded m/z values, a binary 

search is used to find all peaks within +/-0.05 m/z of the expected m/z value. The 

m/z difference between each found peak and all other peaks in the noise sample 

is calculated (peak mass difference vector), as is the m/z difference between the 

expected m/z and all other expected m/z values (query mass difference vector). 

The number of matching m/z differences within a match-difference m/z tolerance 

between the peak mass difference vector and the query mass difference vector 

are counted.  For the ultra-high resolution FT-MS spectra analyzed in this study, 

we used a tight match-difference tolerance of ±0.00005 m/z. The peak with the 

most matching m/z differences and the number of matches is reported. Since 

these are noise peaks, these matches are unlikely to be correct and the number 

of m/z difference matches is due to random chance. Therefore, the ringing 

detector uses this sample of mostly false matches to estimate a cutoff for 

accepting true matches. The detector calculates this cutoff as the mean of noise 

matching count plus three times the standard deviation of the distribution of noise 

matching counts.  
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 Finally, the ringing detector repeats the search procedure using the entire 

peaklist. During this search, only peaks with many matching m/z differences 

greater than the match cutoff calculated from the noise peaks are reported as 

assignments. When ringing or partial ringing occurs, multiple assignments occur 

for an expected m/z value as there are many peaks close to the primary peak 

that have similar m/z differences to other expected compounds.  

 

 FT-MS instruments. 

 To determine the instrument dependence of various artifacts described 

here, spectra from several different FT-MS instruments were used. The first set 

of instruments were three Thermo Tribrid Fusion instruments. Fusion 1 and 

Fusion 2 are maintained by the Center for Environmental and Systems 

Biochemistry (CESB) at the University of Kentucky, while Fusion 3 (Serial # FSN 

10144) is maintained by National Resource for the Mass Spectrometric Analysis 

of Biological Macromolecule at the Rockefeller University. Fusion 1 (Serial # 

FSN10115) was delivered to CESB in October 2013. In March of 2016, Fusion 1 

had its firmware upgraded to the most recent version at that time. Pre-firmware 

upgrade Fusion 1 (Fusion 1 – Before) has different HPD artifact patterns than 

post-firmware Fusion 1 (Fusion 1 – After). Fusion 2 (Serial # FSN10352) was 

delivered to CESB in May 2015 with the upgraded firmware. Spectra from a 

Thermo Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer (Serial # 

FSN20208, delivery data July 2016), which is maintained by the Proteomics 

Resource Center at the New York University Langone Medical Center, were also 
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examined. The Lumos represents an improvement upon the original version of 

the Tribrid Fusion. In addition to the Fusion instruments, we examined spectra 

from a Thermo Q-Exactive+ instrument, which is another Orbitrap instrument 

maintained by High Resolution Metabolomics Laboratory (HRML) at the Institute 

of Biological, Environmental and Rural Sciences at the Aberystwyth University in 

the United Kingdom. Also, spectra from a Bruker Solarix instrument (Serial # 

150506 A), an ICR-type FT-MS delivered to CESB in April 2014, were examined.  

 

Samples analyzed by FT-MS. 

 

Sample A: Solvent Blanks with and without Avanti Lipid Standards 

The solvent blank was composed of Isopropanol:MeOH:Chloroform 

800μl:344μl:200μl. The solvent blank was mixed with 28μl 1 M ammonium 

formate (final ~20 mM; Aldrich #516961), and without or with 70μl Avanti 

SPLASH™ Lipidomix® Mass Spec Standard (cat# 330707) in MeOH. The 

solvent blank without or with lipid standards was loaded onto a 96-well 

polypropylene PCR plate (USA Scientific cat# 1402-9800) and 15 μl was injected 

into the Fusion 1 by direct infusion through an Advion nanomate. Various 

resolution and microscan settings were tested for the Orbitrap mass analyzer in 

positive mode with 7 min acquisition, normal mass range between 150-1600 m/z, 

S-lens RF level 60%, AGC target 1e5, maximum injection time 100 ms, and 

Easy-IC on. 
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Sample B: Mouse Liver ICMS Standard 

Mouse livers were excised from NSG mice within 5 minutes of 

euthanization, and flash frozen in liquid nitrogen and ground into powder under 

liq. N2 to <10 um particles. Approximately 0.5 g of the powder was extracted with 

50 mL Acetonitrile: water (6:4, v/v). After centrifugation at 22 k rpm and 4 ˚C for 

20 min, the supernatant containing polar extracts was distributed into aliquots 

and lyophilized for long-term storage at -80 ˚C. Immediately before injection, the 

lyophilized powder was reconstituted with water and 10 μL was injected onto an 

ICS5000+ system (Dionex) interfaced to the FT-MS (Fusion 2). Data were 

acquired in negative mode at a resolving power of 500,000 (at m/z=200) over 52 

min of chromatography. The mass range was set between m/z 80-700, maximum 

injection time was 100 ms with 1 microscan, AGC target was 2e5, S-lens RF 

level was 60%, and Easy-IC was turned on for internal mass calibration. 

 

Sample C: ECF Solvent Standard 

The ECF solvent blank was composed of acetonitrile: water 9:1 (v/v) with 

a concentration of 20 μM NaCl to convert positively charged ions into sodium 

adducts (Yang et al., 2017). 

 

Sample D: Paired Human NSCLC Cancer and Non-Cancer Tissue Samples 

The samples analyzed are the lipids extracted from flash frozen resected 

lung tissues from human subjects with resectable stage I or IIa NSCLC (non-

small cell lung cancer) collected under a University of Louisville approved 
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Internal Review Board (IRB) protocol.  Paired cancerous and non-cancerous 

tissue 5 cm form the tumor margins in the same lobe of the lung were cut by the 

surgeon and immediately flash frozen in liq. N2, and stored at <-80°C prior to 

metabolite extraction as previously described (Sellers et al., 2015). Samples 

were pulverized under liq. N2 to <10 um, and extracted using a modified Folch 

method as previously described (Ren et al., 2014). 1 mM butylated hydroxytolune 

was added to the lipid layer and then dried by vacuum cetrifugatin at room 

temperature. Samples for FT-MS analysis were redissolved in 

isopropanol/methanol/chloroform 4/2/1 (v/v/v) with 20 mM ammonium formate 

(95 μl of solvent, 5 μl of sample). 

 

Mass Spectrometry Analysis of Samples C and D 

Ultrahigh resolution (UHR) mass spectrometry was carried out on a 

Thermo Orbitrap Fusion interfaced to an Advion Nanomate nanoelectrospray 

source using the Advion “type A” chip, also from Advion, inc. (chip p/n 

HD_A_384).  The nanospray conditions on the Advion Nanomate were as 

follows: sample volume in wells in 96 well plate – 50 µl, sample volume taken up 

by tip for analysis – 15 µl, delivery time – 16 minutes, gas pressure – 0.4 psi, 

voltage applied – 1.5 kV, polarity – positive, pre-piercing depth – 10 mm. The 

Orbitrap Fusion Mass Spectrometer method duration was 15 minutes, and the 

conditions during the first 7 minutes were as follows: scan type – MS, detector 

type – Orbitrap, resolution – 450,000, lock mass with internal calibrant turned on, 

scan range (m/z) – 150 – 1600, S-Lens RF Level (%) – 60, AGC Target – 1.0e5, 

maximum injection time (ms) – 100, microscans – 10, data type – profile, polarity 
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- positive. For the next 8 minutes, the conditions were as follows for the MS/MS 

analysis: MS properties: detector type – Orbitrap, resolution – 120,000, scan 

range (m/z) – 150 – 1600, AGC Target – 2.0e5, maximum injection time (ms) – 

100, microscans – 2, data type – profile, polarity – negative; monoisotopic 

precursor selection – applied, top 500 most intense peaks evaluated with 

minimum intensity of 5e3 counts; data dependent MSn scan properties: MSn level 

– 2,  isolation mode – quadrupole, isolation window (m/z) – 1, activation type – 

HCD, HCD collision energy (%) – 25, collision gas – Nitrogen,  detector – 

Orbitrap, scan range mode – auto m/z normal, Orbitrap resolution – 120,000, first 

mass (m/z) – 120, maximum injection time (ms)-500, AGC target – 5e4,  data 

type – profile, polarity –  positive. The ion transfer tube temperature was 275 oC.  

(Yang et al., 2017). 

 

Sample E: Human Plasma 

Pooled lithium heparin treated plasma (Seralab) was extracted using the 

methods described by Koulman et al, 2017 (Acharjee et al., 2017).  Briefly, 15 µL 

of plasma was extracted with 100 µL of ultra-pure H2O in a glass vial (2 mL). 250 

µL of MeOH was added, and lipids were partitioned into 500 µL of Methyl-

tertiary-butyl ether. Following centrifugation (13,000 rpm, 4°C, 4mins), a 20 µL 

aliquot of the organic layer was then transferred to a 96-well glass coated plate 

(ThermoFisher).  95 µL of a solution containing 7.5mM ammonium acetate in 

IPA:MeoH [2:1] was also added to the well.  Direct infusion high-resolution mass 

spectrometry was performed using on a Q-Exactive+ Orbitrap (Thermo), 

equipped with a Triversa Nanomate (Advion).  The Nanomate infusion mandrel 
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was used to pierce the seal of each well before analysis, after which, with a fresh 

tip, 5 μL of sample was aspirated, followed by an air gap (1.5 μL).  

 

 

Results 

  

Manual Investigation of Artifacts 

 Before developing automated tools for their detection, many spectra were 

manually inspected and artifacts with HPD properties (Figure 2) were observed 

and characterized (Figure 3). Figure 3 illustrates three major types of HPD 

artifacts observed: fuzzy sites, peak ringing and peak partial ringing and all three 

appear distinct at the aggregate and scan level. All three artifacts are obvious 

upon manual inspection, but the growing popularity of FT-MS-based experiments 

necessitates automated methods for their efficient identification.  

 

Figure 2: Peak Density and Peak Density Statistics. Peak density metric plots 
produced by our HPD-detector tool highlight the impact of the instrument on peak 
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density and HPD artifact location. All instruments have higher peak densities at 
lower m/z representing trends in signal-to-noise with respect to m/z in FT-MS. 
The sharp spikes in peak density correspond to HPD artifacts. The location of 
these spikes on Fusion 1 is different before and after the firmware update (A, B), 
suggesting instrument-level processing of the data is related to HPD generation. 
E-H show the effectiveness of our peak density statistic metric for flattening the 
non-constant baseline observed in plots of the raw peak density. Without this 
correction, identifying HPD regions reliably is difficult. The presence of severe 
HPD regions in effectively all of our tested Fusion spectra contrasts with the lack 
of severe HPD results in Q Exactive spectra supports an instrument level 
explanation for HPD phenomena. A, B, C, E, F, G were generated from spectra 
acquired using sample C. D and H were acquired using sample E.  
 

General HPD detection across FT-MS instruments. 

 Using the HPD artifact detector, we generated plots of peak density for a 

variety of example spectra across various FT-MS instruments (Figure 2). For 

most Orbitrap instruments, the peak density decreases monotonically with 

respect to m/z. While the same general decreasing trend is observed in our ICR 

instrument and a Lumos Orbitrap instrument, the overall curve is not monotonic 

(Supplemental Figure 1).  These trends are partially explained by differences in 

signal-to-noise ratio at different m/z values and between different instruments. 

The peak density properties demonstrate that a statistical approach is necessary 

to identify HPD as there exists no sufficiently sensitive and selective cutoff on 

raw peak density for all m/z or all instruments. However, our statistical approach 

effectively normalizes the base peak density in the regions of spectra we are 

testing and, in turn, compensates for changes in baseline peak densities 

revealing regions of significantly higher peak densities (Figure 2E-H).  

 Although fluctuations in peak densities are expected due to differences in 

the distribution of compounds in m/z space, this fails to explain the massive 
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difference in peak density statistics present in the spectra and similar patterns 

are observed in blanks and in scans from failed injections, which resulted in little 

analyte or solvent. Furthermore, analytical samples derived from the same 

biological sample have HPD regions at different locations with different 

instruments and the location of these artifacts differs before and after a firmware 

update on the Fusion 1 machine (Figures 2A, 2B, 2E, 2F). Manual inspection of a 

subset of the detected HPD regions consistently failed to identify patterns 

between peaks that are explainable by chemical phenomena (e.g. isotopologues, 

different charges, etc.). Together, these findings support an artifactual basis for 

these regions of spectra and suggest an instrument-level effect leading to their 

production.  

 

Detection and characterization of fuzzy sites.  

 The fuzzy site artifacts were first observed and described as “ugly sites”. 

At the aggregate spectrum level (Figure 3A, 4A,C), fuzzy sites have HPD 

characteristics and a pseudo-Gaussian distribution of peak intensities between 

the noise baseline and presumed signal peaks. The intermediate intensities of 

these peaks make identifying and filtering these regions by intensity alone 

difficult. Fuzzy regions, like other HPD artifacts, have peak m/z differences that 

are not explainable by isotopologue, charge, or harmonic patterns. A typical 

fuzzy site occupies a small m/z window (e.g., 0.5 to 1.5 m/z approximately), with 

larger ranges typically occurring at higher m/z values. Fuzzy sites rarely occur 

singly: many fuzzy sites are typically observed in a single spectrum. Collectively, 
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these sites can represent a significant portion of the peaks over a much smaller 

amount of the total m/z range. Fuzzy site location varies between analytical 

replicates on the same instrument and with sample composition (Supplemental 

Figure 6). Fuzzy sites have been observed in samples with failing or no injection 

as well.  

 

Figure 3: Three Types of HPD Artifacts. There are three subclasses of HPD 
artifacts we have investigated. The first is the fuzzy site which we believe is a 
novel artifact type (A, Sample A). A fuzzy site appears pseudo-Gaussian at the 
aggregate level. Second is ringing, a well-known FT-MS artifact where a single 
intense peak has many side peaks (B, Sample B). We only observed ringing at 
the scan level. The third artifact is partial ringing which is a ringing-like artifact at 
the aggregate level (C, Sample C). Partial ringing appears like ringing but has not 
been discussed in the literature.  
 

Fuzzy sites also have interesting properties at the scan-level as well. 

While the timing between scans and injection as well as inconsistencies between 

injections can result in non-perfect scan-to-scan correspondence between peaks 

(e.g. a peak is present in scan X, but not in scan Y), peaks of the same chemical 

origin should appear consistently between scans near their true m/z, roughly 
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within the resolution of the instrument. At the scan level, the peaks in a mass 

range identified as a fuzzy site at the aggregate level have very low peak 

correspondence (Figure 4B). In any given scan, only sections of the fuzzy site 

region will have peaks and those sections that are populated with peaks change 

from scan to scan. However, as increasingly more scans are averaged together, 

the Gaussian-like distribution of a fuzzy site at the aggregate level becomes 

clearer (Figure 4A,C). Fuzzy sites appear distinct from either peak ringing or 

partial peak ringing and represent a novel class of artifact not previously 

described in the FT-MS literature.  

 

Figure 4: Fuzzy sites at the Aggregate and Scan Level. A typical fuzzy site (A) 
occupies .5 to 2 m/z at the aggregate level and has a distinct ‘fuzzy’ appearance 
due to very high peak density (this image is identical to 3A). At the scan level, 
only a subdomain of the m/z occupied by the fuzzy site contains peaks; the 
subdomain that is occupied varies from scan-to-scan (B). As increasingly more 
scans are aggregated together, the peak distribution converges to the pattern 
observed at the aggregate level (C). All panels were generated using Sample A.  
 

The initial studies into fuzzy site HPD artifacts were performed on our 

Fusion 1 instrument where they were first observed. After developing our tools on 
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this data, spectra from other instruments were examined for fuzzy sites to 

determine if these artifacts were limited to only one instrument. Spectra from the 

Fusion 2 instrument also contained fuzzy sites as did spectra from Fusion 3. To 

date, we have observed fuzzy sites in spectra from every non-Lumos Tribrid 

Fusion instrument examined.  However, we did not find fuzzy sites in spectra 

examined from any other type of FT-MS instrument (Lumos, Q Exactive+, 

SolariX)   

 

 Fuzzy site characteristics varies with resolution and microscan settings. 

 With fuzzy sites found in non-Lumos Tribrid Fusion spectra, we began 

investigating the effect of two instrument parameters on the appearance of these 

artifacts. The first parameter examined was resolution, which was a parameter 

that was improved by the firmware update that changed the HPD properties of 

Fusion 1. The most up-to-date Fusion has a maximum resolution of 500K at 200 

m/z (450K before update) and the second parameter was the number of 

microscans per scan. The number of microscans is the number of FIDs acquired 

and summed to create the FID that is transformed to produce the scan-level 

spectrum. Due to the high scan-level variability of fuzzy sites, these settings were 

of interest as it directly impacts how scan-level FIDs are acquired and processed.  

 Using a series of analytical replicates created using the same sample of 

solvent blank with lipid standards, spectra were acquired on the Fusion 1 

instrument at 3 resolutions (120 k, 240 k and 500 k at m/z=200) and 4 microscan 

settings (1,2,5, and 10 microscans, but only 1,5, and 10 microscans are shown in 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/191205doi: bioRxiv preprint 

https://doi.org/10.1101/191205
http://creativecommons.org/licenses/by/4.0/


23 

 

Figure 5). No combination of settings eliminated the fuzzy sites, but they do 

change the general appearance of the fuzzy sites. Higher resolution results 

increased the peak density of fuzzy sites, indicating that the peaks within these 

regions may be sharper (smaller peak widths) than what is indicated at the 

highest resolution.  Higher microscan settings increased the variability in peak 

intensities. Also, extremely high microscan settings (e.g. µS = 350) resulted in 

broad uniform regions for these fuzzy sites (Supplemental Figure 5).  

 

Figure 5: Effect of Resolution and Microscan (µS) on Fuzzy Sites. Permuting 
over multiple resolution and µS settings shows that no combination of tested 
settings eliminated fuzzy sites, but these settings do change their appearance (A-
I). Number of scans collected were set so that total acquisition time was 
constant. Higher µS increases intensity variance with minimal impact on peak 
density. Increasing resolution increases peak density but has a lesser impact on 
peak intensity variance. All panels were generated using Sample A.  
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Fuzzy site locations are sample specific, confounding these artifacts with 

sample class 

 As shown in Supplemental Figure 6, fuzzy site location varies between 

spectra and appears to shift significantly (a shift greater than the resolution of the 

instrument) with changes in sample composition. A potential hypothesis 

explaining this observation is that sample composition is related to fuzzy site 

location.  

 If this hypothesis is correct, fuzzy site artifacts are a potential problem for 

real biological applications of FT-MS. To illustrate this potential problem, consider 

sample D, the paired cancer and non-cancer lung tissue slices. Due to the 

differences in the concentrations of various metabolites between cancer and non-

cancer, we would anticipate that features assigned to spectra of different sample 

classes could be used to distinguish sample classes. However, if fuzzy sites vary 

with sample class as well, artefactual features will also distinguish sample class 

without reflecting the underlying biochemical differences between the classes 

directly.  

This creates a potential confounding factor in all downstream statistical 

analyses and reduces robustness of acquired spectra if spurious changes in 

sample conditions introduce new sample-specific artifacts.  For example, 

machine learning methods such as random forest (Breiman, 2001) are trained 

with known classes of samples in order to classify unknown samples into one or 

more known classes based on spectral features identified in the training set of 

samples.  However, these techniques rely upon an important assumption that 
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detectable artifacts are not confounded with sample class, which may not be 

true. The large number of sample-specific artifactual peaks produced by these 

fuzzy sites can hijack the classifier training, anchoring the classification to 

artifacts that may change due to unforeseen sample conditions in unknown 

samples or changes in the analytical instrument. This effect is demonstrated in 

Table 1 and can greatly reduce the robustness of the classification of other 

samples analyzed (Table 1A).  In addition, it is non-trivial to remove HPD 

features correctly. If a feature within an HPD region in any spectrum is just 

removed, this actually encodes the HPD region due to the absence of a peak 

(Table 1B). Therefore, the proper action is to remove the HPD-tainted feature 

from all spectra (Table 1C).  

Table 1: Fuzzy Sites are Class Specific. 20 random forests were trained using 
lipid search assignments from sample D and the mean importance of each 
feature was reported. HPD features in red were within an HPD region in at least 
one sample.  (A) Without HPD feature removal, on average 6 out of the top 30 
features are HPD features. (B) Simple removal of HPD features only within the 
specific HPD region encodes the HPD region into the features, which falsely 
boosts its importance.  (C) The proper action is to remove that feature occurring 
within HPD regions across any spectra from all peaklists.   All three classifiers 
could disambiguate cancer and non-cancer with 100% accuracy. 
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Peak ringing. 

 Peak ringing is an HPD artifact characterized by the presence of many 

peaks symmetrically centered around a very intense primary peak. The intensity 

of these side peaks decreases with increasing distance from the primary peak 

and the m/z interval between each side peak is consistent across the entire 

artifact. This pattern is clear in Figures 3B and 6A. Unlike fuzzy sites, where 

artifactual peaks appear and disappear from scan-to-scan, peak ringing is an all-

or-none phenomenon at the scan level (Figure 6A); however, ringing peaks may 

not ring in all scans (Figure 6B) and may exhibit other artifact types (Figure 6C, 

D).  In general, only peaks with high relative intensity in a scan will exhibit ringing 

behavior. Peak ringing is a well-known artifact type in FT-based instruments and 
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can be caused by Fourier transformation of a truncated FID (Wood & Mark 

Henkelman, 1985). We hypothesize that this is the cause in our examples as 

well. There are well-known solutions to suppressing these artefacts using 

processing in the time domain (Guan & Marshall, 1997). 

 

Figure 6: Ringing Artifacts. Ringing results in many artifactual peaks for an 
intense peak at the scan-level with a distinctive pattern of decaying intensity with 
increasing distance from the central peak (A). A complete complement of ringing 
peaks is present for a primary peak in a scan with true ringing. A peak that rings 
in one scan, does not necessarily ring in other scans; some scans demonstrate 
partial ringing (C, D) while other scans show no ringing (B). All panels were 
generated using Sample B.  
 

Peak partial ringing. 

Like ringing, partial ringing occurs around intense peaks (i.e., primary peaks) 

(Figure 7A) but much like fuzzy sites, the artifactual peaks vary significantly at 

the scan-level. The artifactual peaks appear symmetrically centered around the 

primary peak (Figure 7A), occupying several tenths of an m/z, but they rarely 

occur in the immediate vicinity of the primary peak (Figure 7B, C). Side peaks 
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from partial ringing are of lower intensity than the primary peak, but their 

intensities do not necessarily decrease with increasing distance from the primary 

peak. Although the symmetry of the peaks and the intensity pattern is less 

apparent in some scans (Figure 7D), when sufficient scans are aggregated, 

partial ringing appears smoother and more akin to true ringing except near the 

main peak (Figure 7A). We speculate that partial ringing is the result of 

incomplete ringing suppression at the scan level.  

 

Figure 7:  Partial Ringing. (A) Partial ringing produces peak patterns at the 
aggregate-level that are similar to ringing at the scan-level. Unlike ringing, partial 
ringing does not strictly decrease with increasing distance from the main peak 
and partial ringing is often absent (or greatly diminished) near the main peak. 
(B,C,D) At the scan level, the location of the artifactual peaks is highly variable .  
All panels were generated using Sample C. 
 

Discussion: 

Origin of FT-MS artifacts 
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FT-related artifacts are ubiquitous in essentially all analytical techniques 

that leverage FT to process data. A common cause of ringing artifacts (Fig. 3B & 

6) is the transformation of a truncated FID and/or improper apodization and these 

artifacts have analogs in both FT-NMR (i.e. sinc-wiggles (Hore, 1985)) and FT-IR 

(i.e. sidelobes (Philip B Tooke, 1989) (Herres & Gronholz, 1984)) . The classic 

experimental reason is due to insufficient acquisition time combined with 

inadequate data processing, which results in the Fourier transformation of a 

truncated FID.  In our analysis, ringing was the least commonly observed artifact 

and was only observed in IC-MS spectra. Under these conditions, there are 

limitations on FID acquisition time and the separation of compounds by IC results 

in some scans observing only a small number of compounds with high relative 

concentrations. In discussions with the instrument vendor (ThermoFisher 

Scientific), ringing artifacts in our Orbitrap instruments are due to a rare failure in 

processing software to handle an edge case when the minimum acquisition 

frequency approaches the Nyquist frequency under a specific range of injection 

times.  Thus, the edge case condition results in a software failure that mimics a 

classic Fourier transform truncation artifact.  

 Partial ringing is more difficult to explain; however, the observation of 

peaks that exhibit ringing in one scan and partial ringing in other scans indicate 

that the two phenomena are most likely related.  Also, partial ringing itself rarely 

occurs next to an intense peak, but rather in relative vicinity of an intense peak.  

Both observations suggest that partial ringing may result from ringing 

suppression on the instrument. The exact mechanism by which ringing is 
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suppressed remains unclear without access to the raw time domain data 

acquired by the instrument and more detail on the algorithms used to process 

and transform this data.  From discussions with ThermoFisher Scientific, these 

artifacts may be experimentally due to amplitude modulation of the FID that could 

have an electronic or vibrational origin. 

 Scan-level inconsistency of fuzzy sites and the absence of chemical 

phenomena with explanatory m/z patterns strongly suggests an artifactual origin 

for fuzzy sites. We hypothesize that fuzzy sites are another form of Fourier 

transformation artifact; specifically, they are the mass spectrometry equivalent to 

Gibbs phenomena, where transformation of an FID containing a discontinuity 

results in the production of many oscillations in a small subdomain of the 

transformed space. These oscillations would result in many peaks in a small m/z 

window, which is consistent with the scan-level appearance of fuzzy sites. At first 

glance, this scan-level manifestation appears inconsistent with the pseudo-

Gaussian appearance of fuzzy sites at the aggregate level. This discrepancy can 

be explained by the central limit theorem. As increasingly more scan-level fuzzy 

sites are aggregated together around an expected point or region, which is 

essentially equivalent to averaging multiple small distributions together, the 

aggregate will converge to a larger Gaussian-like distribution.   

 In discussions with ThermoFisher Scientific, background electronic signals 

from accidentally oscillating electronic components either inside the instrument or 

from outside sources could give rise to phenomena that we detect as fuzzy sites 

in our non-Lumos Fusion spectra.  These signals would appear to “hop” around 
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from scan to scan since they are fundamentally unstable with respect to 

frequency and amplitude.  Furthermore, a range of experimental conditions could 

influence this hopping, including proximity, temperature and other atmospheric 

conditions, and sample ion complexity.  

 

Fuzzy sites reduce robustness of downstream data analyses 

 This hypothetical possibility of impacting data analysis is demonstrated in 

the following classification results (Table 1). In this example, spectra ranging 

from 150 to 1600 m/z were acquired from paired cancer and non-cancer lung 

tissue sample non-polar extracts in an approximately random order with respect 

to sample class (see Supplemental Figure 7). Random forest was then used to 

train a classifier that would classify the samples based on LipidSearch peak 

assignments to expected lipids. The resulting classifier effectively classifies the 

samples into the appropriate class; however, these classifiers make extensive 

use of peaks that are present within fuzzy sites. Although these classifications 

are accurate, the classification is heavily based on artifactual features without 

direct molecular interpretation. Also, these same issues would have significant 

impact on differential abundance analyses as well.  

 

Mitigating the effects of fuzzy sites on downstream data analyses 

 The fuzzy-site/sample-class confound can be mitigated by simply 

removing fuzzy site assignments from the assignment lists prior to training the 

classifiers. However, care must be taken when performing this operation as a 
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sample-by-sample removal of these sample class specific features can encode 

artifactual class information into the peaklist.  For example, if the cancer class of 

spectra has a fuzzy site from 500 to 502 m/z but not the non-cancer, removal of 

and therefore absence of peaks from 500 to 502 m/z is also cancer-specific and 

therefore artifactually usable by machine learning methods. One solution is to 

remove the union of the m/z regions of all fuzzy sites from all spectra in an 

experiment. This prevents the accidental absence encoding of class information 

into the data, but has the disadvantage of removing larger regions of spectrum as 

the number of samples and classes increases. Table 1 shows the effect of fuzzy 

site removal on feature importance in classification. Twenty random forests were 

trained on LipidSearch assignment features derived from Thermo Tribrid Fusion 

FT-MS spectra collected on cancer and non-cancer lung tissue samples (Sample 

D). The top features based on mean importance of each feature across the 20 

random forests are reported. Features in red came from the HPD region of a 

fuzzy site in at least one sample (HPD features). Without HPD feature removal, 

on average 6 out of the top 30 features are HPD features. But as mentioned 

earlier, it is non-trivial to remove HPD features correctly. If a feature is within an 

HPD region in any spectrum, the proper action is to remove that feature from all 

spectra, else these features may still contribute to classification. In the latter 

case, the artificial absence of that feature in some spectra can falsely boost its 

importance in the spectra that still contain that feature ad indicated by the 

encoding removal results in Table 1B. But when HPD features are removed in a 

non-encoding manner, no HPD feature makes it into the top 30 mean importance 
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list (Table 1C).  In this example, perfect disambiguation of cancer and non-

cancer was possible with and without proper HPD removal; however, proper 

HPD feature removal is crucial to ensuring that important features represent true 

biological variance between the sample classes. Additionally, this demonstrates 

that classification accuracy is not necessarily an indication of classifier quality or 

robustness, especially when artifacts are present.  

 

Conclusions: 

 With our HPD detector and ringing detector tools, we have identified and 

characterized three distinct types of artifacts that produce large numbers of 

peaks: fuzzy sites, ringing and partial ringing. In some cases, these artifacts can 

account for roughly 1/3 of the peaks detected in a given spectrum but only a 

small portion of total m/z range.  Ringing is a known Fourier transformation 

artifact and we hypothesize that partial ringing and fuzzy sites are Fourier 

transformation-based artifacts as well. Partial ringing appears similar to ringing 

but suppressed at the scan level, with the ringing pattern only visible with multiple 

scans aggregated. Fuzzy sites have a more distinct pseudo-Gaussian 

appearance and were only observed in spectra from non-Lumos Fusion Tribid 

instruments. 

 All three artifacts complicate assignment and confound experimental 

interpretation; however, our study focused primarily on the fuzzy sites as they 

differed significantly from known artifacts and were particularly problematic for 

our classification studies. The correlation between fuzzy site location and sample 
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class increases the probability of class-specific misassignment, introducing 

sample-specific artifactual features. Ultimately the presence of these artifacts 

produces brittle classifiers and complicates the characterization of true biological 

variance between sample classes using mass spectrometry. The results 

presented in this study reflect both the severity of this artifact for untargeted 

experiments, but also the deficiency in assignment tools specifically designed for 

untargeted analyses. The methods and tools presented in this study detect and 

remove HPD-sites in a non-encoding manner (i.e. will not encode sample class 

into spectra in the condition that HPD location is class specific), while providing 

sufficient protection from fuzzy sites with existing assignment methods.  

Ultimately, better assignment pipelines will be necessary as experiments grow in 

scale. A spectral analysis approach that can leverage peak correspondence 

between scans to infer if a peak is artifactual or real would produce higher quality 

peaklists for downstream data analysis, assignment, and interpretation.  

 

Resource Sharing: 

Code and data used for this manuscript are available here: 
https://figshare.com/s/700ea5fde9c2229c1f9c. 
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Supplemental Figure 1: Additional Peak Density Examples 

 We have performed peak density analyses on both our Solarix ICR 

instrument and a Thermo Lumos Tribrid Fusion instrument, a more advanced 

version of the Tribrid Fusion. In the ICR, severe HPD phenomena are present 

due to ringing phenomena. It is not clear if the ringing artifacts from ICR are 

identical in origin to those in Orbitrap spectra. Our Lumos examples show no 

obvious HPD artifacts of any kind. In both the ICR and the Lumos, the peak 

density decreases with increasing peak density but not monotonically.  

  

Supplemental Figure 2: Peaklist JSON 

{ 

 “Peaks”: [ 

  { 

  “ObservedMZ”: 141.421, 

  “Intensity”: 314.159 

  }, 

  { 

  “ObservedMZ”: 161.803, 

  “Intensity”: 54.7356, 

  } … 

 ] 

} 

Supplemental Figure 3: Contaminants JSON 
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{ 

 “Contaminants”: [ 

  { 

  “Formula”: “C18H34O4”, 

  “Name”: “Dibutyl Sebacate”, 

  “Mass”: “314.245697”, 

  “Class”: “Plasticiser”, 

  },  

  { 

  “Formula”: “C8H18O3”, 

  “Name”: “Dibutyl carbitol”, 

  “Mass”: “162.125595”, 

  “Class”: “Scintillation cocktail”, 

  }, … 

 ] 

} 

Supplemental Figure 4: Adducts JSON  

{ 

 “Components”: { 

  “[M+1H1-e_POS]”: { 

   “Max”: 1, 

   “ExtraGroups”: [“Adducts”], 

   “Mass”: 1.007276452191, 
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  } 

} 

 

Supplemental Figure 5: High uS Fuzzy Site 
At very high microscan settings (Sample A), fuzzy sites become almost uniform 

and span a wide m/z window. Although still responsible for artifactual peaks, the 

significant intensity difference allows the distinguishing of true signal.  

 

  

uS = 350 
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Supplemental Figure 6: Fuzzy Sites vary with Sample Composition 

A small change in chemical composition (Sample A with and without lipid 

standards) changes fuzzy site location. With only solvent, there is a fuzzy site at 

354.8 m/z. With lipid standards, this fuzzy site shifts to 352.1 m/z. The number of 

fuzzy sites will remain constant, but will all be shifted by roughly the same m/z.  
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Supplemental Figure 7: Spectral Acquisition Times for Sample D 
 
Spectra for sample D show no significant “batches” with respect to time. Most 
samples were run sequentially over a time period from 7/2014 to 9/2015.  
 

Sample # Class Start Acquisition Time 

1 normal 7/27/2014 10:36 

2 cancer 7/27/2014 18:54 

3 normal 7/27/2014 19:27 

4 normal 7/27/2014 20:35 

5 cancer 7/27/2014 21:09 

6 normal 7/27/2014 21:43 

7 cancer 7/27/2014 22:16 

8 normal 7/27/2014 22:50 

9 cancer 7/27/2014 23:23 

10 normal 7/27/2014 23:57 

11 cancer 7/28/2014 0:31 

12 normal 7/28/2014 1:05 

13 cancer 7/28/2014 1:39 

14 cancer 7/28/2014 2:46 

15 normal 7/28/2014 3:20 

16 cancer 7/28/2014 3:53 

17 normal 7/28/2014 4:28 

18 cancer 7/28/2014 5:01 

19 normal 7/28/2014 5:35 

20 cancer 7/28/2014 6:09 

21 cancer 7/28/2014 10:39 

22 normal 7/28/2014 11:13 

23 normal 8/6/2014 13:01 

24 normal 8/6/2014 13:46 

25 normal 12/19/2014 17:09 

26 normal 12/19/2014 18:16 

27 cancer 12/19/2014 18:50 

28 cancer 12/19/2014 19:58 

29 normal 12/19/2014 20:31 

30 cancer 12/20/2014 16:26 

31 cancer 12/20/2014 17:51 

32 cancer 12/20/2014 18:07 

33 normal 12/20/2014 18:57 

34 cancer 12/20/2014 19:15 

35 normal 12/20/2014 19:32 

36 cancer 12/20/2014 19:49 

37 cancer 1/7/2015 19:38 
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38 normal 1/7/2015 19:54 

39 normal 1/7/2015 21:36 

40 normal 1/7/2015 22:09 

41 normal 1/7/2015 22:26 

42 normal 1/8/2015 12:11 

43 cancer 1/8/2015 12:28 

44 cancer 1/8/2015 13:19 

45 cancer 1/8/2015 13:52 

46 normal 1/8/2015 15:37 

47 normal 8/18/2015 21:11 

48 normal 8/18/2015 21:45 

49 cancer 8/18/2015 22:02 

50 normal 8/18/2015 22:18 

51 cancer 8/18/2015 22:52 

52 normal 8/18/2015 23:09 

53 cancer 8/18/2015 23:26 

54 normal 8/18/2015 23:44 

55 cancer 8/19/2015 0:17 

56 cancer 8/19/2015 22:49 

57 normal 8/19/2015 23:06 

58 cancer 8/19/2015 23:22 

59 normal 8/19/2015 23:39 

60 cancer 8/19/2015 23:56 

61 normal 8/20/2015 0:47 

62 cancer 8/20/2015 1:04 

63 normal 8/20/2015 1:21 

64 cancer 8/20/2015 1:38 

65 normal 8/20/2015 2:12 

66 cancer 8/20/2015 2:28 

67 normal 8/20/2015 2:45 

68 cancer 8/20/2015 3:02 

69 normal 8/20/2015 3:19 

70 cancer 8/20/2015 3:36 

71 normal 8/20/2015 4:10 

72 cancer 8/20/2015 4:27 

73 normal 8/20/2015 4:43 

74 cancer 8/20/2015 5:00 

75 normal 8/20/2015 19:20 

76 cancer 8/20/2015 19:37 

77 normal 8/20/2015 19:54 

78 cancer 8/20/2015 20:10 

79 normal 8/20/2015 20:28 

80 cancer 8/20/2015 20:44 
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81 normal 8/20/2015 21:18 

82 cancer 8/20/2015 21:34 

83 normal 8/20/2015 21:52 

84 cancer 8/20/2015 22:08 

85 normal 8/20/2015 22:25 

86 cancer 8/20/2015 22:42 

87 normal 8/20/2015 23:16 

88 cancer 8/20/2015 23:33 

89 normal 8/20/2015 23:50 

90 cancer 8/21/2015 0:06 

91 normal 8/21/2015 0:23 

92 cancer 8/21/2015 0:41 

93 normal 8/21/2015 1:15 

94 cancer 8/21/2015 1:31 

95 normal 8/21/2015 1:48 

96 cancer 8/21/2015 2:05 

97 normal 8/21/2015 2:22 

98 cancer 8/21/2015 2:38 

99 normal 8/21/2015 3:12 

100 cancer 8/21/2015 3:30 

101 normal 8/21/2015 3:46 

102 cancer 8/21/2015 4:03 

103 normal 8/21/2015 4:21 

104 cancer 8/21/2015 4:37 

105 normal 8/21/2015 5:11 

106 cancer 8/21/2015 5:28 

107 normal 8/22/2015 15:11 

108 cancer 8/22/2015 15:28 

109 normal 8/22/2015 15:46 

110 cancer 8/22/2015 16:03 

111 normal 8/22/2015 19:17 

112 cancer 8/22/2015 19:34 

113 cancer 8/22/2015 20:08 

114 normal 9/4/2015 0:14 

115 cancer 9/4/2015 0:31 

116 normal 9/4/2015 1:05 

117 cancer 9/4/2015 1:21 

118 normal 9/4/2015 1:39 

119 cancer 9/4/2015 1:55 

120 normal 9/4/2015 2:12 

121 cancer 9/4/2015 2:47 

122 normal 9/4/2015 3:04 

123 cancer 9/4/2015 3:20 
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124 normal 9/4/2015 3:37 

125 cancer 9/4/2015 3:54 

126 normal 9/4/2015 4:27 

127 cancer 9/4/2015 4:45 

128 normal 9/4/2015 5:02 

129 cancer 9/4/2015 5:18 

130 normal 9/4/2015 5:36 

131 cancer 9/4/2015 6:09 

132 normal 9/4/2015 6:26 

133 cancer 9/4/2015 6:44 

134 normal 9/4/2015 7:00 

135 cancer 9/4/2015 7:17 

136 normal 9/4/2015 7:50 

137 cancer 9/4/2015 8:08 

138 normal 9/4/2015 20:14 

139 cancer 9/4/2015 20:30 

140 normal 9/4/2015 20:48 

141 cancer 9/4/2015 21:05 

142 normal 9/4/2015 21:21 

143 cancer 9/4/2015 21:55 

144 normal 9/4/2015 22:12 

145 cancer 9/4/2015 22:29 

146 normal 9/4/2015 22:46 

147 cancer 9/4/2015 23:03 

148 normal 9/4/2015 23:36 

149 cancer 9/4/2015 23:53 

150 normal 9/5/2015 0:10 

151 cancer 9/5/2015 0:27 

152 normal 9/5/2015 0:44 

153 cancer 9/5/2015 1:18 

154 normal 9/5/2015 1:34 

155 cancer 9/5/2015 1:52 

156 normal 9/5/2015 2:08 

157 cancer 9/5/2015 2:25 

158 normal 9/5/2015 2:59 

159 cancer 9/5/2015 3:17 

160 normal 9/5/2015 3:33 

161 cancer 9/5/2015 3:50 

162 normal 9/5/2015 4:07 

163 cancer 9/5/2015 4:40 

164 normal 9/5/2015 4:58 

165 cancer 9/5/2015 5:15 

166 normal 9/5/2015 5:31 
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167 cancer 9/5/2015 5:48 

168 normal 9/5/2015 6:22 

169 cancer 9/5/2015 6:39 

170 normal 9/5/2015 6:56 

171 cancer 9/5/2015 7:13 

172 normal 9/5/2015 7:30 

173 cancer 9/5/2015 8:03 

174 normal 9/5/2015 8:20 

175 cancer 9/5/2015 8:38 

176 normal 9/5/2015 8:54 

177 cancer 9/5/2015 9:11 

178 normal 9/16/2015 19:22 

179 cancer 9/21/2015 20:28 

180 normal 9/21/2015 20:45 

181 normal 9/23/2015 19:04 

182 cancer 9/23/2015 19:22 

183 normal 9/23/2015 19:39 

184 cancer 9/23/2015 19:56 

185 cancer 9/23/2015 20:13 

186 cancer 9/23/2015 20:29 
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