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Figure 4. Unstable repeat expansion at the Fmr1 gene is associated with domain boundary 
disruption in Fragile X Syndrome. (A) 5C contact matrices in B-lymphocytes from a male 
Fragile X Syndrome patient with ~935 CGG repeats (Coriell Catalog ID GM09237) and a male 
healthy sibling (Coriell Catalog ID GM09236). The Fmr1 gene is highlighted in green. (B-C) 
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Zoom-ins on (B) the Fmr1 locus and (C) a locus ~3Mb downstream of Fmr1 are shown for the 
Fragile X Syndrome patient and healthy sibling. The log fold change between the diseased and 
healthy sibling highlights contacts gained (red) and contacts depleted (blue). (D) Schematic for 
the role of high CpG island density at 3D genome folding domain boundaries on repeat tract 
instability in the human genome. 
 

Syndrome and open up new possibilities into understanding how mutation-length repeats perturb 

three-dimensional chromatin structure in other unstable repeat expansion diseases. 

Genetic disruptions that alter chromatin domain integrity lead to ectopic, cross-boundary 

interactions and the disruption of gene expression 13,14,22-25. We reasoned that unstable daSTR 

expansion might lead to the loss of functional boundary insulation in patients with trinucleotide 

repeat expansion disorders. To test this idea, we analyzed data from two independent studies 

profiling genome-wide gene expression in human prefrontal cortex tissue from Huntington’s 

disease patients and healthy human controls 26,27 (Supplementary Methods). We found a 

decrease in insulation between TADs demarcating the repeat in the HTT gene, as evidenced by 

an increase in correlated expression of a cross-boundary gene pair (i.e. GRK4 vs. HTT) in 

patients vs. controls (Supplementary Figs. 18A-B, 19A). By contrast, and consistent with 

previous reports 13,25, genes residing in the same domain (i.e. GRK4 vs. MFSD10) did not show 

an alteration in expression correlation profiles in patients vs. controls (Supplementary Figs. 

18C, 19B). These data indicate that mutation-length expansion at the HTT boundary results in 

loss of insulation between adjacent domains in Huntington's disease and raise the intriguing 

possibility that boundaries might also be functionally disrupted in repeat expansion disorders. 

Our data support a working model that sheds new light on the fundamental question of 

why key locations in the genome undergo unstable STR expansion, whereas tens of thousands of 

normal-length STR tracts across the genome remain stable. We demonstrate that although repeat 

expansion disease associated STR loci are diverse in the type, length and location of the repeat 
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tract, they appear to share a common spatial placement at boundaries of 3D genome folding 

domains. We uncover that 3D genome folding domain boundaries are hotspots for high-density 

localization of CpG islands and CTCF sites, both of which are epigenetic features that have been 

linked to repeat instability 28-31. Studies in model organisms show that mutations in genes 

encoding key machinery involved in DNA replication, repair and recombination result in repeat 

expansion 1,4,5,32. In humans, a recent genome-wide association study in Huntington’s disease 

patients identified a link between genetic variation in DNA repair machinery and the age of onset 

of the disease33. Our study does not aim to address the genetic variation associated with 

individuals who get repeat expansion. Rather, we propose a working model in which 3D 

chromatin domain boundaries with high CpG island density are highly susceptible to unstable 

STR expansion in the case of predisposing genetic variation compared to any other location in 

the genome (Fig. 4D). There is a severe paucity of daSTRs at genomic loci internal to domains 

and boundaries without CpG islands.  

Recent high-resolution Chromosome-Conformation-Capture sequencing studies have 

revealed that TAD boundaries are perturbed in rare human limb malformation diseases 22 and 

certain types of cancers 23,25, leading to enhancer miswiring and pathogenic disruption of domain 

integrity. An important prediction from our model is that boundaries might be disrupted in 

unstable repeat expansion disorders (Fig. 4D). We report the first evidence to our knowledge 

suggesting that TAD boundaries can be structurally and functionally disrupted in Fragile X 

Syndrome and Huntington’s disease. Altogether, our data reveal a fundamentally new link 

between higher-order 3D genome folding and trinucleotide repeat expansion disorders. An 

exciting area of future inquiry will be determining whether pathologic repeat instability causes or 

is caused by domain boundary disruption. Future studies unraveling the causal relationship 
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between chromatin structure and repeat instability will illuminate the potential of topology-

directed therapy in treating disease. 
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