Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Neuronal rhythms orchestrate cell assembles to distinguish perceptual categories

Morteza Moazami Goudarzi, Jason Cromer, Jefferson Roy, Earl K. Miller
doi: https://doi.org/10.1101/191247
Morteza Moazami Goudarzi
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason Cromer
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jefferson Roy
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Earl K. Miller
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ekmiller@mit.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Categories are reflected in the spiking activity of neurons. However, how neurons form ensembles for categories is unclear. To address this, we simultaneously recorded spiking and local field potential (LFP) activity in the lateral prefrontal cortex (lPFC) of monkeys performing a delayed match to category task with two independent category sets (Animals: Cats vs Dogs; Cars: Sports Cars vs Sedans). We found stimulus and category information in alpha and beta band oscillations. Different category distinctions engaged different frequencies. There was greater spike field coherence (SFC) in alpha (∼8-14 Hz) for Cats and in beta (∼16-22 Hz) for Dogs. Cars showed similar differences, albeit less pronounced: greater alpha SFC for Sedans and greater beta SFC for Sports Cars. Thus, oscillatory rhythms can help coordinate neurons into different ensembles. Engagement of different frequencies may help differentiate the categories.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted September 20, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Neuronal rhythms orchestrate cell assembles to distinguish perceptual categories
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Neuronal rhythms orchestrate cell assembles to distinguish perceptual categories
Morteza Moazami Goudarzi, Jason Cromer, Jefferson Roy, Earl K. Miller
bioRxiv 191247; doi: https://doi.org/10.1101/191247
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Neuronal rhythms orchestrate cell assembles to distinguish perceptual categories
Morteza Moazami Goudarzi, Jason Cromer, Jefferson Roy, Earl K. Miller
bioRxiv 191247; doi: https://doi.org/10.1101/191247

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Animal Behavior and Cognition
Subject Areas
All Articles
  • Animal Behavior and Cognition (4095)
  • Biochemistry (8787)
  • Bioengineering (6493)
  • Bioinformatics (23388)
  • Biophysics (11766)
  • Cancer Biology (9168)
  • Cell Biology (13292)
  • Clinical Trials (138)
  • Developmental Biology (7423)
  • Ecology (11386)
  • Epidemiology (2066)
  • Evolutionary Biology (15120)
  • Genetics (10414)
  • Genomics (14024)
  • Immunology (9145)
  • Microbiology (22109)
  • Molecular Biology (8793)
  • Neuroscience (47450)
  • Paleontology (350)
  • Pathology (1423)
  • Pharmacology and Toxicology (2483)
  • Physiology (3711)
  • Plant Biology (8068)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2216)
  • Systems Biology (6021)
  • Zoology (1251)