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BACKGROUND: The increasing number of metagenomic and genomic sequences has dramatically improved 26 

our understanding of microbial diversity, yet our ability to infer metabolic capabilities in such datasets 27 

remains challenging. FINDINGS: We describe the Multigenomic Entropy Based Score pipeline (MEBS), a 28 

software platform designed to evaluate, compare and infer complex metabolic pathways in large ‘omic’ 29 

datasets, including entire biogeochemical cycles. MEBS is open source and available through 30 

https://github.com/eead-csic-compbio/metagenome_Pfam_score. To demonstrate its use we modeled the 31 

sulfur cycle by exhaustively curating the molecular and ecological elements involved (compounds, genes, 32 

metabolic pathways and microbial taxa). This information was reduced to a collection of 112 characteristic 33 

Pfam protein domains and a list of complete-sequenced sulfur genomes. Using the mathematical 34 

framework of relative entropy (H’), we quantitatively measured the enrichment of these domains among 35 

sulfur genomes. The entropy of each domain was used to both: build up a final score that indicates whether 36 

a (meta)genomic sample contains the metabolic machinery of interest and to propose  marker domains in 37 

metagenomic sequences such as  DsrC (PF04358). MEBS was benchmarked with a dataset of 2,107 non-38 

redundant microbial genomes from RefSeq and 935 metagenomes from MG-RAST. Its 39 

performance, reproducibility, and robustness were evaluated using several approaches, including random 40 

sampling, linear regression models, Receiver Operator Characteristic plots and the Area Under the Curve 41 

metric (AUC). Our results support the broad applicability of this algorithm to accurately classify (AUC=0.985) 42 

hard to culture genomes (e.g., Candidatus Desulforudis audaxviator), previously characterized ones and 43 
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metagenomic environments such as hydrothermal vents, or deep-sea sediment.  CONCLUSIONS: Our 44 

benchmark indicates that an entropy-based score can capture the metabolic machinery of interest and be 45 

used to efficiently classify large genomic and metagenomic datasets, including uncultivated/unexplored 46 

taxa. 47 

Keywords:  48 

Metabolic machinery, metagenomics, omic-datasets, Pfam domains, Relative entropy, sulfur cycle, 49 

Multigenomic Entropy-based Score.  50 

 51 

Background  52 

 53 

Over the last 15 years, the enormous advances in high-throughput sequencing technologies have 54 

revolutionized the field of microbial ecology, dramatically improving our understanding of life’s 55 

microbial diversity to an unprecedented level of detail [1–4].  56 

Nowadays, accessing the total repertoire of genomes within complex communities by means of 57 

metagenomics is becoming a standard and routine procedure in order to attain the full insight of 58 

the diversity, ecology, evolution and functional makeup of the microbial world [5]. Furthermore, 59 

the accurate reconstruction of microbial genomes and draft-populations from environmental 60 

metagenomic studies has been shown to be a powerful approach [6–10], providing clues about the 61 

potential metabolic strategies of hard-to-culture microbial lineages by linking the functional 62 

mechanisms that support specific metabolisms with taxonomic, systematic, and ecological contexts 63 

of that lineage [8].  64 

Despite the accelerated accumulation of large collections of metagenomic and genomic sequences, 65 

our ability to analyze, evaluate and compare complex metabolic capabilities in large-scale ‘omic’ 66 

datasets remains biologically and computationally challenging [11]. Predicting the metabolic 67 

potential is a key step in describing the relationship between a microbial community and its 68 

ecosystem function. This is largely performed by mapping the protein coding genes of ‘omic’ data 69 

onto reference pathway databases such as MetaCyc [12] or KEGG [13] based on their homology to 70 

previously characterized genes [14]. The current available methods for metabolic pathway 71 

prediction or reconstruction rely on the use of several metrics to infer the overall repertoire of 72 

metabolic pathways present in a given metagenomic dataset (e.g., MinPath [14], HUMAnN[15], 73 

PRMT [16], MetaPathways [17]).  74 
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However, due to the challenges involved in testing meaningful biological hypotheses with complex 75 

data, only a small proportion of the metabolic information derived from these datasets is 76 

eventually used to draw ecologically relevant conclusions. In this regard, most of the microbial 77 

ecology-derived ‘omic’ studies have been mainly focused on either: i) developing broad description 78 

of the metabolic pathways within a certain environment e.g., [18,19]; ii) analyzing the relative 79 

abundance of marker genes involved in several metabolic processes and in certain ecosystems 80 

(e.g., primary productivity, decomposition, biogeochemical cycling [20–24]; or iii) discovering 81 

differentially abundant, shared or unique functional units (genes, proteins or metabolic pathways) 82 

across several environmental metagenomic samples [25–27].  83 

Therefore, in order to address some of the limitations of these methods, we propose a novel 84 

approach to reduce the complexity of targeted metabolic pathways involved in several integral 85 

ecosystem processes -- such as entire biogeochemical cycles -- into a single informative score, 86 

called Multigenomic Entropy-Based Score (MEBS). This approach is based on the mathematical 87 

rationalization of Kullback-Leibler divergence, also known as relative entropy H’ [28]. Relative 88 

entropy has been widely applied in physics, communication theory, and statistical inference, and it 89 

is interpreted as a measure of disorder, information and uncertainty, respectively [29]. Here we 90 

use the communication theory concept of H’ to summarize the information derived from the 91 

metabolic machinery encoded by the protein coding genes of ‘omic’ datasets. The application of 92 

this metric in biology was originally developed by Stormo and colleagues identifying binding sites 93 

that regulate gene transcription sites [30].    94 

In order to evaluate the performance of our approach, we selected the sulfur cycle (from now on S-95 

cycle) because this is one of the most metabolically- and ecologically complex biogeochemical 96 

cycles, but there are few studies analyzing the complete repertoire (genes, proteins, or metabolic 97 

pathways) involved in the mobilization of inorganic-organic sulfur compounds through microbial-98 

catalyzed reactions at a planetary scale [20,31–35]. 99 

 100 

 101 

 102 

 103 
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MEBS description 104 

 105 

MEBS (Multigenomic Entropy-Based Score, RRID: 015708)  runs in Linux systems and is available at 106 

[36]. For practical purposes, the MEBS algorithm was divided into four stages summarized in Figure 107 

1 and explained below.  108 

 109 

STAGE 1: Manual curation of Sulfur cycle and ‘omic’ datasets  110 

Sulfur taxonomic representatives. A data set comprehensively covering the currently known 111 

representatives of the S-cycle was obtained from primary literature and the MetaCyc database 112 

[12]. Each taxonomic representative (at genus or species level) was selected under the criteria of 113 

having evidence suggesting their physiological and biochemical involvement in the degradation, 114 

reduction, oxidation, or disproportionation of sulfur compounds. Then, each taxonomic 115 

representative was scanned against our Genomic dataset (see further details below), in order to 116 

obtain a list containing the completely sequenced and non-redundant genomes of the S-cycle. The 117 

resulting Sulfur list (or ‘Suli’) currently contains 161-curated genomes, and was used as the first 118 

input of the pipeline. Both the manually curated taxonomic representatives and Suli can be found 119 

in Table S1.  120 

 121 

Random taxonomic representatives (RList). As a negative control, we generated 1000 lists of 122 

genomes that are not particularly enriched on sulfur metabolic preferences. Each list contains 161 123 

random genomes, the same number of microorganisms included in Suli. These lists were obtained 124 

by randomly subtracting from the Genomic dataset (see below) 161 Refseq accession numbers and 125 

their corresponding names.  126 

 127 

Metabolic pathways and genes. We gathered and classified the metabolic pathways involved in the 128 

S-cycle from the primary literature and two experimentally validated curated databases: KEGG 129 

(KEGG, RRID:SCR_012773) [13] and MetaCyc (MetaCyc , RRID:SCR_007778) [12] . All the molecular 130 

information was then combined into a single database named Sucy (for Sulfur cycle). Sucy currently 131 

contains 152 genes and 48 enzyme classification numbers annotated in the Enzyme classification  132 
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[37] (Table S2). The 152 FASTA sequences of the proteins encoded by these genes were 133 

downloaded from UniProt [38] and used as the second input of the pipeline. 134 

 135 

Genomic dataset (Gen). At the time of the analysis (December 21, 2016), a total of 4,158 genomes 136 

were available from RefSeq database [39]. For comparative genomic purposes, we removed 137 

redundancy in this large data set by using the Web interface [40] described in [41]. As 138 

phylogenomic distance measure, we used a modified version of the Genomic Similarity Score 139 

defined as GSSb in [41]; we selected the most tolerant threshold of 0.95 (so as not to drop many 140 

sequenced genomes) and default parameters, resulting in 2,107 clusters containing similar 141 

genomes, ordered by size (largest to smallest). Then, the largest genome representative for each 142 

group was searched in the NCBI genome assembly summary file [42] and downloaded from the 143 

NCBI FTP site [43].  144 

Metagenomic dataset (Met). We used the Meta Genome Rapid Annotation using Sub- system 145 

Technology server (MG-RAST, RRID:SCR_004814)  [44] to download metagenomes that: i) were 146 

publicly available; ii) contained associated metadata; and iii) had been isolated from well-defined 147 

environments (i.e., rivers, soil, biofilms), discarding host associated microbiome sequences (i.e., 148 

human, cow, chicken). In addition we also included 35 unpublished metagenomes derived from 149 

sediment, water and microbial mats from Cuatro Ciénegas, Coahuila (CCC), Mexico. The latter were 150 

also submitted and annotated in the MG-RAST server, and will be described in depth elsewhere. 151 

The resulting collection of 935 FASTA files (≈ 500 GB), containing gene-called protein sequences 152 

(MG-RAST stage 350), were downloaded from the RESTful MG-RAST API 153 

(http://api.metagenomics.anl.gov/api.html). While these metagenomes were evaluated and scored 154 

in STAGE 4, they were also analyzed to estimate their mean sequence length, considering that the 155 

fragmented nature of metagenomic sequences would have an impact on homology detection,  156 

depending on the length of the reads [45,46]. Therefore, we measured the Mean Size Length (MSL) 157 

of the peptide sequences of the 935 metagenomes in Met and the 152-curated proteins in Sucy, 158 

which are summarized in Figure S1. It was observed that the MSL of Met varies broadly, with a 159 

majority of metagenomic peptides with MSL ≤ 30 aa, and that Sucy proteins range from 49 to 1,020 160 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191288doi: bioRxiv preprint 

https://doi.org/10.1101/191288
http://creativecommons.org/licenses/by-nc-nd/4.0/


aa, with MSL=349 aa. According to this distribution, the metagenomes in Met were grouped into 161 

seven well-defined categories: MSL≤30, ≤60, ≤100, ≤150, ≤200, ≤250, ≤300 aa.  162 

 163 

Fragmented genomic dataset (GenF). In order to simulate the observed variability of MSL across 164 

metagenomes, protein sequences encoded in the genomic dataset (Gen, containing 2,107 165 

genomes) were in silico sheared with Perl script get_protein_fragments.pl into the seven MSL 166 

categories defined above (30 to 300). This produced the GenF dataset, which currently requires up 167 

to 104GB of disk space.   168 

 169 

STAGE 2: Domain composition of the input proteins  170 

The annotation of protein domains in Sucy was conducted using Interproscan 5.21-60.0 [47] 171 

against databases Pfam-A v30 (Pfam, RRID:SCR_004726) [48], TIGRFAM v13 (JCVI TIGRFAMS , 172 

RRID:SCR_005493) [49] and Superfamily v1.75 (SUPERFAMILY , RRID:SCR_007952) [50]. Then, the 173 

Hidden Markov Models (HMMs) from matched Pfam domains (n=112) were extracted from Pfam-A 174 

using script extract_hmms.pl. These selected HMMs were subsequently scanned against the 175 

Genomic, Genomic Fragmented and Metagenomic datasets (from now on ‘omic’ datasets, see 176 

subsequent stages) using HMMER 3.0 hmmsearch --cut_ga option [51]. 177 

 178 

STAGE 3: Relative entropy and its use in detecting informative domains 179 

In order to detect protein domains enriched among sulfur-based microorganisms (Suli), we used a 180 

derivative of the Kullback-Leibler divergence [28] — also known as relative entropy H’(i) — to 181 

measure the difference between probabilities P and Q (see Eq. 1 below). In this context, P(i) 182 

represents the frequency of protein domain i in the 161 Suli genomes (observed frequency), while 183 

Q(i) represents its frequency in the 2,107 genomes in Gen (expected frequency). The script to 184 

compute the entropy (entropy.pl) requires the list of the genomes of interest (Suli) and the tabular 185 

output file obtained in from the scanning of Gen and GenF against Pfam-Sucy database. The 186 

obtained values of H’ (in bits) capture to what extent a given Pfam domain informs about the 187 

metabolism of interest. In this case, domains with H’ values close or greater than one, correspond 188 

to the most informative Pfam domains (enriched among S-based genomes), whereas low H’ values 189 
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(close to zero) indicate non-informative ones. Negative values correspond to those observed less 190 

than expected. 191 

 192 

�� � ������	� ����

����
 193 

 194 

As a negative control, the H’ of the 112 Pfam domains were recalculated in both Gen and GenF 195 

datasets, but replacing Suli with 1,000 equally sized lists of random-sampled genomes (Rlist).  196 

We evaluated the impact of the MSL in the computed entropy values using Gen and GenF.  First, 197 

we focused on detecting informative Pfam domains that could be used as possible molecular 198 

marker genes in variable length, metagenomic sequences. Specifically, we looked for domains 199 

displaying stable H’ values across both Gen and GenF by using the script 200 

plot_cluster_comparison.py, which implements the following methods: K-Means, Affinity 201 

propagation, Mean-shift Spectral, Ward hierarchical, Agglomerative, DBSCAN and Birch. All of 202 

these are part of the scikit-learn Machine Learning Python module [52].  203 

 204 

STAGE 4: Final score, interpretation, properties and benchmark  205 

Peptide sequences from a given genome or metagenome of interest are evaluated by first scanning 206 

their Pfam domains and then producing a final score, defined as the sum of the precomputed 207 

entropies of matched S-related Pfam domains (see Equation 2). This score (Sulfur Score ‘SS’ in our 208 

case) summarizes the information content of the metabolic machinery of interest. In this context, 209 

informative sulfur protein domains would contribute to higher SS, whereas non-informative ones 210 

would decrease it. This is an extension of procedures originally developed for the alignment of DNA 211 

and protein motifs, in which individual positions are independent and additive, and can be simply 212 

summed up to obtain the total weight or information content [30]. Instead of aligning sequences, 213 

in our context we added up the entropy values of the Pfam domains matched in a given ‘omic’ 214 

sample (resulting from scanning the sample of interest against Pfam-Sucy), from which a total 215 

weight (SS) is computed by using script pfam_score.pl.  216 

 217 

Eq. 1  
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 218 

Datasets in which the majority of informative S-cycle protein domains are represented will yield a 219 

high SS; in contrast, low SS values should be expected if proteins involved in the S-cycle are not 220 

particularly enriched.  221 

  222 

MSL. As the calculation of the SS depends on the MSL of the omic sample of interest, script 223 

pfam_score.pl supports option –size, in amino acid residues (aa). In this way, appropriate 224 

precomputed H’ values for Pfam domains can be selected to produce the final score. Currently 30, 225 

60, 100, 150, 200, 250, 300 and real sizes are supported. 226 

 227 

Metabolic pathway completeness and KEGG visualization. The presence-absence patterns of Pfam 228 

domains belonging to particular pathways can be exploited to compute metabolic completeness. 229 

This optional task is invoked with parameter –keggmap  and a TAB-separated file mapping Pfam 230 

identifiers to KEGG Orthology entries (KO numbers) and the corresponding pathway in Sucy (see 231 

Table  S3). To compute completeness, the total number of domains involved in a given pathway 232 

(i.e., sulfate reduction, sulfide oxidation) must be retrieved from the Sucy database (See Table S2). 233 

Then, the protein domains currently present in any given sample are divided by the total number 234 

of domains in the pre-defined pathway. The script produces: i) a detailed report of the metabolic 235 

pathways of interest; and ii) a list of KO numbers with Hex color codes, corresponding  to KO 236 

matches in the omic sample, which  can be exported to the  KEGG Mapper – Search & Color 237 

Pathway tool [53] (see Figure S2). 238 

    239 

Properties and performance of SS. Since the outcome of the final score (SS) largely depends on the 240 

list of microorganisms involved in the metabolism of interest (in our case Suli) and the Pfam 241 

domains found in the input protein sequences (n=112), we evaluated its robustness and 242 

reproducibility with several approaches. First, we compared our results with a benchmark 243 

performed three years ago in which we used Pfam-A v27 (instead of version 30), a genomic dataset 244 

 Eq. 2  
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containing 1,528 non-redundant genomes (579 less genomes than our current Genomic dataset), 245 

and an input list of 156 genomes of interest (five less that our current Suli). Second, SS estimates 246 

were compared with scores obtained by randomly selecting ≈50% of the 112 Pfam domains with 247 

both Gen and Met. This analysis was performed a thousand times with pfam_score.pl –random. 248 

Third, we benchmarked the predictive capacity of the SS in order to accurately classify genomes of 249 

S-related organisms (Suli, n=161, positive instances), in contrast with a larger set of non-redundant 250 

genomes (Gen - Suli, n=1.946, negative instances). Therefore, we computed the True Positive Rates 251 

(TPR), False Positive Rates (FPR), Receiver Operating Characteristic (ROC) plots and the resulting 252 

Area Under the Curve (AUC) using the scikit-learn module described in [52]. 253 

 254 

Results and discussion  255 

 256 

We present MEBS a new open source software to evaluate, quantify, compare, and predict the 257 

metabolic machinery of interest in large ‘omic’ datasets. The pipeline includes four stages. The first 258 

one consists on the systematic and targeted acquisition of the molecular and ecological 259 

information describing the metabolism of interest, represented by a list of curated microorganisms 260 

and a FASTA file of proteins involved in that metabolic network. In the second stage, the domain 261 

composition of the curated proteins is evaluated. Then, the domains enriched among the 262 

microorganisms of interest are identified by using the mathematical framework of the relative 263 

entropy (H’, third stage). Finally, the summation of the entropy of individual Pfam domains in a 264 

given genome or metagenomic dataset yields the final score (see Figure 1). 265 

To test the applicability of this approach, we evaluated the metabolic machinery of the S-cycle. 266 

Due to its multiple redox states and its consequences on microbiological and geochemical 267 

transformations, S-metabolism can be observed as a complex metabolic machinery, involving a 268 

myriad of genes, enzymes, organic substrates and electron carriers, which largely depend on the 269 

surrounding geochemical and ecological conditions.  For these reasons, the complete repertory 270 

involved in the metabolic machinery of S-cycle has remained underexplored despite the massive 271 

data produced in ‘omic’ experiments. Here, we performed an integral curation effort to describe all 272 

the elements involved in the S-cycle and then used, as explained in the following sections, to score 273 

genomic and metagenomic datasets in terms of their Sulfur relevance.  274 
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 275 

Manual curation: the complex metabolic machinery of the Sulfur cycle  276 

In order to integrate the complete biogeochemical S-cycle, we manually curated and modeled the 277 

major processes involved in the mobilization and use of S-compounds through Earth biosphere. 278 

This effort resulted in two comprehensive databases. The first one includes most of the known 279 

microorganisms (with and without complete genomes) described in the literature to be closely 280 

involved in the S-cycle (Table S1). In this database, we included representative taxa from the 281 

following metabolic sulfur guilds: i) chemolithotrophic, colorless sulfur bacteria (CLSB: 24 genera); 282 

ii) anaerobic phototrophs, purple sulfur bacteria (PSB:25 genera),  and green sulfur bacteria (GSB:9 283 

genera); iii) sulfate reducing bacteria (SRB: 40 genera); and iv)  deep-branch sulfur 284 

hyperthermophilic microorganisms,  such as elemental sulfur reducing (SRM:19 genera) and 285 

oxidizers (SO:4 genera). From all the microorganisms described to be involved in the S-cycle, at the 286 

time of the analysis, a total of 161 were found to be completely sequenced and non-redundant 287 

genomes, and were used as the first input of the pipeline (Suli). 288 

The second database (Sucy) contains genes, proteins, and pathways with experimental evidence 289 

linking them to the S-cycle. To compile this database, we first gathered the most important S-290 

compounds derived from biogeochemical processes and biological catalyzed reactions. Then we 291 

classified each S-compound according to their chemical and thermodynamic nature (Gibbs free 292 

energy of formation, GFEF). Finally, we classified weather each compound can be used as a source 293 

of carbon, nitrogen, energy or electron donor, fermentative substrate, or terminal electron 294 

acceptor in respiratory microbial processes. The schematic representation of the manual curated 295 

effort summarizing the complexity of the sulfur biogeochemical cycle in a global scale is shown in 296 

Figure 2.  297 

Once we selected the microorganisms, genes, and biogeochemical processes involved, we 298 

systematically divided the metabolic machinery of the S-cycle into 28 major metabolic pathways 299 

described in Table 1. In general terms we included pathways involved in: i) the oxidation/reduction 300 

of inorganic S-compounds, used as source of energy, electron donor or acceptor (P1-P7, P11 and 301 

P20 and P21); ii) the degradation of organic S-compounds, such as aliphatic sulfonates, sulfur 302 

amino acids, and organosulfonates (P8-P10, P12-P19, P22,P23,P27); iii) the methanogenesis from 303 
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methylated thiols, such as dimethyl sulfide DMS (P24), metylthio-propanoate (P25) and 304 

methanethiol(P26), which are generated in nature by different biogeochemical processes [12]; and 305 

finally, iv) the biosynthesis of sulfolipids (SQDG) (P28), because it has been observed that some 306 

bacteria living in S-rich and P-lacking environments are able to synthetize sulfolipids, instead of 307 

phospholipids, in the membrane as an adaptation to the selective pressures of these particular 308 

environments [54].The synthetic pathway P29 is explained in further detail in the next sections  309 

(Table 1).  310 

After the comprehensive metabolic inventory was compiled, we linked all the elements in a single 311 

network representation of the S-metabolic machinery (Figure 3). To the best of our knowledge, this 312 

is the first molecular reconstruction of the cycle that considers all the sulfur compounds, genes, 313 

proteins and the corresponding enzymatic steps resulting into higher order molecular pathways. 314 

The latter representation also highlights the interconnection of pathways in terms of energy flow 315 

and the interplay of the redox gradient (organic/inorganic) of the intermediate compounds that act 316 

as key axes of organic and inorganic reactions (e.g., sulfite). 317 
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a
 Metabolism: Assimilative (A) inorganic compounds are reduced during  biosynthesis; Dissimilative 318 

(DS) inorganic compounds used as electron acceptors in energy metabolism. A large amount of 319 

electron acceptor is reduced and the reduced product is secreted.  320 

b
 Chemical Process: Oxidation (O): Reduction (R), Degradation (DE), Biosynthesis (B), 321 

Methanogenesis (M), Disproportionation (D). 322 

c 
Compound Type: Organic (O): sulfur atoms with covalent bonds to carbon atoms. Inorganic (I): 323 

sulfur compounds with non-carbon atoms.  324 

 325 
d 

Source: sulfur compound used as source of energy (E), sulfur (S), carbon (C), nitrogen (N). 326 

  327 
e
 Number of Pfam domains belonging to each metabolic pathway described in Sucy (Table S2) 328 

 329 

 330 

 331 

 332 

Table 1. Metabolic pathways of global biogeochemical S-cycle   

Pathway 

number 
Metabolism

a 
Chemical 

process
b 

Sulfur compound Type
c 

Chemical 

formula 
Source

d 
Number of 

Pfam domais
e
 

P1 DS O Sulfite I SO32- E 9 

P2 DS O Thiosulfate I S2O3

2- E 10 

P3 DS O Tetrathionate I S4O6

2- E 2 

P4 DS R Tetrathionate I S4O6

2- E 17 

P5 DS R Sulfate I SO42- E 20 

P6 DS R Elemental sulfur I Sº E 20 

P7 DS D Thiosulfate I S2O3

2- E 9 

P8 DS O Carbon disulfide O CS2 E 1 

P9 A DE Alkanesulfonate O CH3O3SR S 5 

P10 A R Sulfate I SO4

2- S 20 

P11 DS O Sulfide I H2S E/S 29 

P12 A DE L-cysteate O C3H6NO5S C/E 1 

P13 A DE Dimethyl sulfone O C2H6O2S C/E 3 

P14 A DE Sulfoacetate O C2H2O5S C/E 2 

P15 A DE Sulfolactate O C3H4O6S C/S 14 

P16 A DE Dimethyl sulfide O C2H6S C/S 16 

P17 A DE Dimethylsulfoniopropionate O C5H10O2S C/S/E 12 

P18 A DE Methylthiopropanoate O C4H7O2S C/S 7 

P19 A DE Sulfoacetaldehyde O C2H3O4S C/S 7 

P20 DS O Elemental sulfur I S° C/S/E 7 

P21 DS D Elemental sulfur I S° C/S/E 1 

P22 A DE Methanesulfonate O CH3O3S C/S/E 7 

P23 A DE Taurine O C2H7NO3S C/S/E 11 

P24 DS M Dimethyl sulfide O C2H6S C 1 

P25 DS M Metylthio-propanoate O C4H7O2S C 1 

P26 DS M Methanethiol O CH4S C 1 

P27 A DE Homotaurine O C3H9NO3S N 1 

P28 A B Sulfolipid O SQDG  4 

P29   Markers  Markers  12 
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Annotation of Pfam domains within Sulfur proteins 333 

Our approach requires the detection of structural and evolutionary units, also known as domains, 334 

in the curated list of protein sequences involved in the metabolism of interest (S-cycle in this case). 335 

The annotation of protein domains against the Pfam-A database resulted in a total of 112 domains 336 

identified in 147 proteins (out of 152). These 112 domains constitute the Pfam-Sucy database and 337 

represent all the pathways listed in Table 1. Two other protein family databases were tested 338 

(TGRFAM and Superfamily), but the number of proteins with positive matches was lower than with 339 

Pfam (57 and 137, respectively) and thus were not further considered.  340 

 341 

Preparation of omic datasets: Gen, GenF and Met 342 

The genomic dataset required for computing domain entropies (Gen) was obtained from public 343 

databases, as explained above in MEBS Description. A fragmented version of Gen, called GenF, was 344 

generated by considering the Mean Size Length (MSL) distribution of metagenomic sequences 345 

(Figure S1).  346 

In order to benchmark MEBS with real environmental metagenomic samples, a collection of 900 347 

public metagenomes was obtained from MG-RAST, to which we added 35 metagenomes sampled 348 

from an ultra-oligotrophic shallow lake in México (CCC). Altogether, these 935 metagenomes set 349 

up the Met dataset.  350 

 351 

Using the relative entropy to recognize S-cycle domains and candidate markers 352 

The next stage consists on the quantitative detection of informative domains (enriched among 353 

organism in Suli), by computing its relative entropy (H’) using Equation 1. The occurrences of each 354 

of the 112 Pfam domains in Suli and the genomic datasets were taken as observed and expected 355 

frequencies, respectively. Figure 4A summarizes the computed H’ values in real (Gen) and 356 

fragmented genomic sequences of increasing size (GenF). The results indicate that only a few Pfam 357 

domains are equally informative regardless of the length of sequences. When H’ values inferred 358 

from real, full-length proteins are compared to those of fragmented sequences, it can be seen that 359 

shorter sequences (MSL 30 & 60 aa) yield larger entropy differences than sequences of length > 360 

100 aa (see in Figure 4B). Therefore, in order to shortlist candidate marker genes we selected those 361 
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Pfam domains displaying constant, high mean H’ values in Gen and GenF, low H’ standard deviation 362 

(std) and a clear separation from the random distribution.   363 

We tested several clustering methods, summarized in Figure S3, with Ward and Birch performing 364 

best in grouping together informative protein domains with low std. However, the Ward 365 

classification was eventually selected as Birch failed to include a few Pfam domains relevant in the 366 

S-cycle (see Figure S4). By using Ward method, three well-defined clusters of Pfam domains were 367 

generated, as observed in Figure 4C. Cluster 0 included 94 domains containing H’ values ranging 368 

from [-0.4, 0.4] and overlapping with the values obtained in the negative control explained in the 369 

next section. Cluster 1 consistently grouped together 12 Pfam domains listed in Table 2 with high 370 

entropy and low std, and can therefore be proposed as molecular markers in metagenomic 371 

sequences of variable length. Among the proposed marker domains are APS-Reductase (PF12139: 372 

H’=1.2), ATP-sulfurilase (PF01747: H’=1.03) and DsrC (PF04358: H’=0.52), key protein families in 373 

metabolic pathways involved in both sulfur oxidation/reduction processes. Finally, cluster 2 374 

includes Pfam domains displaying high entropy values and high std, such as the PUA-like domain 375 

(PF14306: H’=1). We presume that domains within this cluster are also key players in S-376 

metabolism; however, their high std makes them unsuitable for markers, particularly with 377 

metagenomic sequences of variable MSL. We suggest that further analyses will be required to test 378 

the implication in S-energy conservation processes of proteins containing domains such as 379 

PF03916, PF02665 or PF14697 (see complete list in Table S4). 380 

Table 2 Informative Pfam domains with high H’ and low std. Novel proposed molecular marker 

domains in metagenomic  data of variable MSL 

Pfam ID 

( Suli 

ocurrences) 

H’ 

mean 

H’ 

std 
Description 

PF12139 

58/161 

 

1.2 0.01 Adenosine-5'-phosphosulfate reductase beta subunit: Key protein domain for both sulfur 

oxidation/reduction metabolic pathways. Has been widely studied in the dissimilatory sulfate 

reduction metabolism. In all recognized sulfate-reducing prokaryotes, the dissimilatory process is 

mediated by three key enzymes: Sat, Apr and Dsr. Homologous proteins are also present in the 

anoxygenic photolithotrophic and chemolithotrophic sulfur-oxidizing bacteria (CLSB, PSB, GSB), in 

different cluster organization [35].  

PF00374 

135/161 

1.1 0.09 Nickel-dependent hydrogenase: Hydrogenases with S-cluster and selenium containing Cys-x-x-Cys 

motifs involved in the binding of nickel. Among the homologues of this hydrogenase domain,  is the 

alpha subunit of the sulfhydrogenase I complex of Pyrococcus furiosus, that catalyzes the reduction 
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of polysulfide to hydrogen sulfide with NADPH as the electron donor [55].  

PF01747 

103/161 

1.03 0.06 ATP-sulfurylase: Key protein domain for both sulfur oxidation and reduction processes. The enzyme 

catalyzes the transfer of the adenylyl group from ATP to inorganic sulfate, producing adenosine 5B-

phosphosulfate (APS) and pyrophosphate, or the reverse reaction [56].   

PF02662 

62/161 

0.82 0.03 Methyl-viologen-reducing hydrogenase, delta subunit: Is one of the enzymes involved in 

methanogenesis and encoded in the mth-flp-mvh-mrt cluster of methane genes in 

Methanothermobacter thermautotrophicus. No specific functions have been assigned to the delta 

subunit  [48].  

PF10418 

122/161 

0.78 0.06 Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B: Among the homologous 

genes in this family are asrA and asrB from Salmonella enterica enterica serovar Typhimurium, which 

encode 1) a dissimilatory sulfite reductase, 2) a gamma subunit of the sulfhydrogenase I complex of 

Pyrococcus furiosus and, 3) a gamma subunit of the sulfhydrogenase II complex of the same 

organism [12]. 

PF13247 

149/161 

0.66 0.06 4Fe-4S dicluster domain: Homologues of this family include: 1) DsrO,  a ferredoxin-like protein, 

related to the electron transfer subunits of respiratory enzymes, 2) dimethylsulfide dehydrogenase 

β subunit (ddhB ), involved in dimethyl sulfide degradation in Rhodovulum sulfidophilum and 3) 

sulfur reductase FeS subunit (sreB) of Acidianus ambivalens, involved in the sulfur reduction  using 

H2 or organic substrates as electron donors [12]. 

PF04358 

73/161 

0.52 0 DsrC like protein: DsrC is present in all organisms encoding a dsrAB sulfite reductase (sulfate/sulfite 

reducers or sulfur oxidizers). The physiological studies suggest that sulfate reduction rates are 

determined by cellular levels of this protein. The dissimilatory sulfate reduction couples the four-

electron reduction of the DsrC trisulfide to energy conservation [57]. DsrC was initially described as 

a subunit of DsrAB, forming a tight complex; however, it is not a subunit, but rather a protein with 

which DsrAB interacts. DsrC is involved in sulfur-transfer reactions; there is a disulfide bond 

between the two DsrC cysteines as a redox-active center in the sulfite reduction pathway. 

Moreover, DsrC is among the most highly expressed sulfur energy metabolism genes in isolated 

organisms and meta- transcriptomes (Santos et al., 2015). 

PF01058 

158/161 

0.45 0.01 NADH ubiquinone oxidoreductase, 20 Kd subunit: Homologous genes are found in the delta 

subunits of both sulfhydrogenase complexes of Pyrococcus furiosus [12]. 

PF01568 

156/161 

0.4 0.05 Molydopterin dinucleotide binding domain: This domain corresponds to the C-terminal domain IV 

in dimethyl sulfoxide (DMSO) reductase [48].  

PF09242 

39/161 

0.38 0.04 Flavocytochrome c sulphide dehydrogenase, flavin-binding: Enzymes found in S-oxidizing bacteria 

such as the purple phototrophic bacteria Chromatium vinosum [48]. 

PF04879 

151/161 

0.37 0.05 Molybdopterin oxidoreductase Fe4S4 domain: Is found in a number of reductase/dehydrogenase 

families, which include the periplasmic nitrate reductase precursor and the formate dehydrogenase 

alpha chain, i.e., Wolinella succinogenes polysulfide reductase chain. Salmonella typhimurium 

thiosulfate reductase (gene phsA). 

PF08770 

45/161 

0.35 0.03 Sulphur oxidation protein SoxZ: SoxZ sulfur compound chelating protein, part of the   complex 

known as the Sox enzyme system (for sulfur oxidation) that is able to oxidize thiosulfate to sulfate 

with no intermediates in Paracoccus parantropus [12] . 

 381 

 382 
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Is the entropy affected by the input list of microorganisms? Negative control test  383 

In order to evaluate to what extent the H’ values depend on the curated list of microorganisms, we 384 

performed a negative control by replacing Suli in 1,000 lists of randomly-sampled genomes and 385 

used them to compute the observed frequencies (see Equation 1). As expected, there was a clear 386 

difference between both H’ estimates (see Figure S5). In particular, entropy values derived from 387 

the random test were found to be approximately symmetric and consistently low among the GenF 388 

size categories (compared with the real values), yielding values of -0.09, and 0.1 as 5% and 95% 389 

percentiles, respectively (Table S5).   390 

 391 

Sulfur Score and its predictive capacity to detect S-microbial players in a large genomic 392 

dataset.   393 

To test whether Pfam entropies can be combined to capture the S-metabolic machinery in ‘omic’-394 

samples, we calculated the final MEBS score, called in this case Sulfur Score (SS). We computed the 395 

SS on each of the 2,107 non-redundant genomes in Gen with script score_genomes.sh. The 396 

individual genomes along with their corresponding SS values and taxonomy according to NCBI are 397 

found in Table S6.  398 

For evaluation purposes, we classified and manually annotated all the genomes in Gen according 399 

to their metabolic capabilities. First, we identified the 161-curated genomes belonging to Suli. 400 

Then, we focused on the remaining genomes. A set of 192 genomes with SS>4 were labeled as 401 

Sulfur unconsidered or related microorganisms (Sur). Finally, the rest of genomes in Gen were 402 

classified as NS (Non-Sulfur = Gen – (Suli + Sur)), including 1,754 genomes. The boxplots in Figure 403 

5A summarize the scores obtained in these three subsets. 404 

To double-check whether the Sur genomes -- selected due to their SS -- might be involved in the S-405 

cycle, we manually annotated all of them focusing on relevant genomic, biochemical, physiological 406 

and environmental information that we might have missed since Suli was first curated (Table S7). 407 

Out of 192 genomes, 68 are reported to metabolize S-compounds under culture conditions in the 408 

literature. For instance, Sideroxydans lithotrophicus ES-1, a microaerophilic Fe-oxidizing bacterium, 409 

has been observed to also grow in thiosulfate as an energy source [58]. Another 59 Sur organisms 410 

have been isolated from Sulfur-rich environments, such as hot springs or solfataric muds. 411 
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Remarkably, some of this species include hard-to culture genomes reconstructed from 412 

metagenomic sequences such as Candidatus Desulforudis audaxviator MP104C isolated from 413 

basalt-hosted fluids of the deep subseafloor [6]; an unnamed endosymbiont of a scaly snail from a 414 

black smoker chimney [59] and archaeon Geoglobus ahangari, sampled from a 2,000m depth 415 

hydrothermal vent [60]. Furthermore, we also confirmed within Sur the implication of S-cycle of 20 416 

species of the genus Campylobacter. These results are consistent with the ecological role of the 417 

involved taxa, that along with SRB and methanogens inhabiting host-gastrointestinal and low 418 

oxygen environments, where several inorganic (e.g., sulfates, sulfites) or organic (e.g., dietary 419 

amino acids and host mucins) are highly metabolized by these metabolic guilds [61]. The 420 

implication of Campylobacter species in the S-cycle is also supported by the fact that some of them 421 

have been isolated from deep sea hydrothermal vents [62]. The remaining species in Sur were 422 

classified in different categories, including bioremediation (7), Fe-environment (2), marine (2), peat 423 

lands (2) and other environments (32, see Figure 5B).  424 

When the SS values of genomes in Sur are compared to the S-metabolic guilds represented in Suli 425 

(e.g PSB, SRB, GSB), it can be seen that they are indeed similar and clearly separated from the rest 426 

of NS genomes (Figure 5C). This strongly suggests that high scoring genomes are indeed 427 

ecologically and metabolically implicated in the S-cycle.  428 

Finally, in order to quantify the capacity of the SS to accurately classify S-related microorganisms, 429 

we computed a Receiver Operator Characteristic (ROC) curve (for a detailed description of ROC 430 

curves see [63]). We thus defined genomes annotated in Suli as positive instances, and the rest as 431 

negative ones. The results are shown in Figure 5D, with an estimated Area Under the Curve (AUC) 432 

of 0.985, and the corresponding cut-off values of SS for several False Positive Rates (FPR). 433 

According to this test, a SS value of 8.705 is required to rule out all false positives in Gen, while 434 

SS=5.231 is sufficient to achieve a FPR < 0.05.    435 

Overall, these results indicate that MEBS is a powerful and broadly applicable approach to predict, 436 

and classify microorganisms closely involved in the sulfur cycle even in hard-to culture microbial 437 

lineages. 438 

 439 
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Sulfur Score and its predictive capacity to detect S-related environments in a large 440 

metagenomic collection.  441 

The SS was also computed for each metagenome in Met, using their corresponding MSL to choose 442 

the appropriate entropies previously calculated in dataset GenF (Table S8). In order to test 443 

whether SS values can be used to identify S-related environments, we performed the following 444 

analyses. First, we use the geographical metadata associated with each metagenome to map the 445 

global distribution of SS. In Figure 6A, SS values are colored from yellow to red. The most 446 

informative S-environments (displaying SS values equal or greater than the 95
th

 percentile of each 447 

MSL category) are shown in blue.  448 

Then, we sorted the metagenomes according to their environmental features as proposed by the 449 

Genomic Standards Consortium [GSC] and implemented in MG-RAST. Each feature corresponds to 450 

one of 13 environmental packages (EP) that standardize metadata describing particular habitats 451 

that are applicable across all GSC checklists and beyond [64]. Therefore, each EP represents a 452 

broad and general classification containing particular features. For example, the “water” EP 453 

includes 330 metagenomes from our dataset, belonging to several features such as freshwater, 454 

lakes, estuarine, marine, hydrothermal vents, etc.  Since each of these features has different 455 

ecological capabilities in terms of biogeochemical cycles, we can expect different behaviors among 456 

SS values, as shown in Figure 6B. In general, all the metagenomes derived from hydrothermal vents 457 

(2), marine benthic (6), intertidal (8) and our unpublished CCC microbial mats had SS values above 458 

the 95
th

 percentile, highlighting the importance of the S-cycle in these environments. In contrast, 459 

the metagenomes belonging to features such as sub-terrestrial habitat (7), saline evaporation pond 460 

(24) or organisms associated habitat (7) displayed consistently low or even negative SS values, 461 

indicating a negligible presence of S-metabolic pathways in those environments. The remaining 462 

features have intermediate median SS values and contain occasionally individual metagenomes 463 

with SS values above the 95
th

 percentile, such as freshwater, marine, ocean or biofilm 464 

environments.   465 

To validate the list of 50 high-scoring metagenomes (above the 95
th

 percentiles), we double-466 

checked their annotations. According to the literature and associated metadata, all these 467 

environments are closely involved in mineralization, uptake, and recycling processes of S-468 
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compounds. For example, environmental sequences derived from costal Oligochaete worm Olavius 469 

algarvensis, hydrothermal vents and marine deep-sea surface sediments around the Deep-Water 470 

Horizon spill in the Gulf of Mexico. The complete list of annotated metagenomes, along with their 471 

ecological capabilities, is found in Table S9.  472 

 473 

Evaluating the robustness of the Sulfur Score  474 

To test the reproducibility and robustness of MEBS final score (SS), we conducted two further 475 

analyses. In the first one we compared SS estimates derived from Met dataset, computed with 476 

Pfam entropies obtained in the first MEBS benchmark performed three years ago (2014) with the 477 

current data described in this article (2017). Despite the changes of both databases (Pfam database 478 

version and the Suli list), we found a strong correlation (r
2
=0.912) between the SS outcomes (Figure 479 

S6 A). A kernel density analysis of the latter comparison suggests a different behavior of low and 480 

high SS scores, with the latter being more reproducible (see Figure S6B).  481 

In the second analysis, we quantitatively tested to what extent the entropy estimates of the 112 482 

Pfam domains directly affect the outcome of the SS in Gen and Met. We randomly subsampled 483 

≈50% of those domains to compute the SS a thousand times for each genome and metagenome in 484 

Gen and Met, respectively. The results, summarized in Table S10, confirm that SS values computed 485 

with random subsets of Pfam domains are generally lower than SS derived from the full list (n=112) 486 

of Sucy-Pfam domains. To further inspect the distribution of SS values produced with random 487 

subsets of domains (random SS), we focused on the particular case of the metagenomes belonging 488 

to the category MSL=60. As expected, the distribution of random SS oscillates between negative 489 

and positive values. Interestingly, metagenomes exhibiting only positive random SS are ranked 490 

above the 95
th

 percentile according to their real SS values (See Figure S7A). The latter indicates that 491 

even a random subset of Pfam domains are used to compute the score, is more likely to high-rank   492 

metagenomes containing the sulfur metabolic machinery (large number of high-entropy Pfam 493 

domains), than those lacking the sulfur metabolism or displaying a large number of non-informative 494 

Pfam domains. Furthermore, by comparing the median of random SS with the real scores, we 495 

observe a clear separation between those distributions (see Figure S7B and Table S10).  496 

 497 
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Completeness of S-metabolic pathways  498 

As we described above, the MEBS pipeline models a metabolic network as an array of S-related 499 

protein domains (Sucy-Pfam), to ultimately use their entropies to produce the final score (SS). For a 500 

closer look, we also dissected the total contribution of independent domains at the network level, 501 

in order to assess whether SS depends on the partial or complete detection of S-pathways. 502 

Consequently, we evaluated the pathway completeness in both genomic (Gen) and metagenomic 503 

(Met) datasets (see Tables S11 and S12, respectively). Since the number of Pfam domains per 504 

pathway goes from one to 29 (see Table 1 and Table S2), we suspect that pathways represented by 505 

a single domain might not reflect their complete metabolic function. For example, the pathways  506 

involved in the methanogenesis of compounds such as dimethylsulfide (DMS, P24),  methyl-507 

thiolpropanoate (MTPA, P25), and methanethiol (MeSH, P26) are represented by the same protein  508 

(MtsA, PF01208) in our Sucy database, as well as in Metacyc  [12]. Therefore, we expect that 509 

pathways P24-26 will have identical presence-absence patterns in Gen and Met.  510 

The boxplots in Figure 7A and 7B summarize the distribution of completeness for each S-metabolic 511 

pathway including the synthetic pathway (P29) composed by 12 candidate markers as described in 512 

Table 2. As expected, the observed completeness per pathway was higher in Met than in Gen, 513 

since microbial communities harbor a wider repertory of metabolic functions than single genomes. 514 

In the case of genomes, we noted that a few pathways were complete in most genomes, being the 515 

majority involved in the usage of organic sulfur compounds such as alkanesulfonates (P9), 516 

sulfoacetate (P14) and biosynthesis of sulfolipids (SQDG) and the single domain pathways P24-26. 517 

Remarkably, we also detected a few organisms displaying the highest levels of metabolic 518 

completeness in some S-energy based pathways. For example, we found that Desulfosporosinus 519 

acidiphilus SJ4 (SS=8,91) was the only genome harboring the complete repertory of Pfam domains 520 

described in Sucy for the sulfite oxidation (P1), strongly suggesting that it may oxidize sulfite. 521 

However, this activity remains to be tested in culture [65]. In the case of thiosulfate oxidation (P3), 522 

we detected three genomes displaying the highest levels of completeness, in agreement with their 523 

ecological features: Hydrogenobaculum sp. Y04AAS1 (SS=9,319) [66] and the CLSB: Acidithiobacillus 524 

caldus ATCC 51756 (SS=6,525) [67] and  Acidithiobacillus ferrivorans (SS=7,436) [68]. For the sulfate 525 

reduction dissimilative pathway (P5), out of 55 genomes displaying the higher completeness levels, 526 
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67% are actually SRB, 12% are Sur genomes, and the rest are sulfur oxidation microorganisms. 527 

Furthermore, the PSB  Thioflavicoccus mobilis 8321 (SS= 9,756), isolated from a microbial mat  [69], 528 

was the genome displaying the most complete sulfide oxidation pathway (P11). Elemental sulfur 529 

disproportionation (P21) is represented by a single non-informative domain (PF07682, H’=0.172) 530 

that remarkably is found in 14 sulfur respiring or related genomes such as Sulfolobus tokodaii str. 7 531 

(SS= 5,341) and Acidianus hospitalis W1 (SS= 3,88). Finally, we identified six genomes encoding all 532 

12 proposed markers. Among them, three were GSB (Pelodictyon phaeoclathratiforme BU-1, 533 

SS=11,836, Chlorobium chlorochromatii CaD3, SS=11,625 and Chlorobium tepidum TLS,  SS= 534 

11,354), one CLSB (Thiobacillus denitrificans ATCC 25259 SS=11,61) ,another one PSB ( Thiocystis 535 

violascens DSM 198, SS=10,633) and  finally  one Sur (Sedimenticola thiotaurini SS=10,109). For a 536 

complete description, see Table S13. 537 

A global view of metabolic completeness was obtained by bulking the data from all pathways. 538 

Linear regression models between mean completeness and SS were computed confirm the , 539 

yielding r
2
 values of 0.003 and 0.627 for Gen and Met, respectively (See Figures 7C and 7D).  540 

Moreover, we also assessed the relationship between the mean completeness of the synthetic 541 

pathway of candidate markers (P29) and the SS. As expected, significant correlations were 542 

obtained in both datasets (r
2
= 0.645 and r

2
=0.881 for Gen and Met, respectively; see Figure S8).  543 

To get a more detailed insight of the completeness, we selected a few genomes and metagenomes 544 

displaying high and low SS values. Specifically, from the Gen dataset we selected one 545 

representative from the main S-guilds, one Sur genome and two genomes with low SS values (NS). 546 

As observed in Figure 7, the low-scoring genomes Enterococcus durans (SS=-0,194), Micrococcus 547 

luteus NCTC_2665 (SS=-3,588), and Ruegeria pomeroyi DSS-3 (SS=2,707) display unrelated patterns 548 

of sulfur metabolic completeness, compared with the rest of genomes and therefore are 549 

separated. In contrast, high-scoring S-respiring microorganisms Desulfovibrio vulgaris DP4 (SS= 550 

11,442), Sulfolobus acidocaldarius DSM 639 (SS=5,457) and Ammonifex degensii KC4 (SS=12.508) 551 

are clustered together. We also observed that mat-isolated cyanobacteria Synechococcus sp. JA-2-552 

3Ba 2-13, classified as NS with SS=3,704, was clustered together with other high-scoring genomes, 553 

in agreement with the lack of correlation reported above.  554 
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In the case of metagenomes (see Figure 7E), we observed a clear correlation between SS and 555 

completeness. For example, metagenomes 4440320.3 and 4489656.3, with the lowest scores 556 

(SS=0.1 and SS=-2.649, respectively), also exhibit the largest number of incomplete pathways.  557 

Similarly, high-scoring metagenomes derived from black smoker or marine sediment are grouped 558 

together in terms of completeness.   559 

 560 

Conclusions  561 

Our study represents the first exploration of the Sulfur biogeochemical cycle in a large collection of 562 

genomes and metagenomes. The manually curated effort resulted in an inventory of the 563 

compounds, genes, proteins, molecular pathways, and microorganisms involved. This complex 564 

universe of articulated data was reduced into a list of microorganisms and Pfam domains encoded 565 

in the proteins that take part in that network. These domains were first ranked in terms of relative 566 

entropy, and then summed to produce a single S-score representing the relevance of a given 567 

genomic or metagenomic sample in terms of sulfur metabolic machinery. We took advantage of 568 

the mathematical framework of information theory, which has been widely used in computational 569 

biology. 570 

 The performance of the Multigenomic Entropy Based Score pipeline (MEBS) (designed for the 571 

above mentioned tasks) was benchmarked on large genomic and metagenomic sets. Our results 572 

support the broad applicability of this algorithm in order to classify annotated genomes as well as 573 

newly sequenced environmental samples without prior culture. We also assessed to what extent 574 

the final score depended on the partial or complete detection of pathways and observed a higher 575 

completeness per pathway in metagenomic sequences than in individual genomes.  576 

We demonstrated that a measurable score can be applied to evaluate any given metabolic 577 

machinery or biogeochemical cycle in large (meta)genomic scale, holding the potential to 578 

dramatically change the current view of inferring metabolic capabilities in the present ‘omic’-era. 579 

 580 

Availability and requirements  581 

Project name: MEBS 582 

Project home page: https://github.com/eead-csic-compbio/metagenome_Pfam_score 583 
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Operating system(s): Linux 584 

Programming language: Python 3, Perl5, Bash, 585 

Other requirements: HMMER  586 

License: GNU General Public License (GPL)  587 

Availability of supporting data  588 

The datasets supporting the results of this article are available in the GigaDB repository  [REF#] 589 

 590 

Abbreviations 591 

MEBS: Multigenomic Entropy Based Score ; S: Sulfur ; S-cycle: Sulfur cycle; SS: Sulfur Score; Suli: 592 

Sulfur list ; Sucy: Sulfur cycle database; Rlist: Random list of taxonomic representatives ;  MSL: 593 

Mean Size Length,  H’: Relative Entropy ; Sur: Sulfur unconsidered ; NS: Non sulfur related 594 

genomes; Gen: Genomic dataset; Met: Metagenomic dataset; GenF : Genomic Fragmented 595 

dataset; CLSB: Color-less Sulfur Bacteria; SOM: Sulfur Oxidizing Microorganims; GSB: Green Sulfur 596 

Bacteria; PSB: Purple Sulfur Bacteria; SRB: Sulfate Reducing Bacteria; ESR: Elemental-Sulfur 597 

Reducing microorganisms; CCC: Cuatro Cienegas, Coahuila; HMM: Hidden Markov Models (HMMs); 598 

ROC: Receiver-operating characteristic; AUC: Area Under the Curve; TPR True Positive Rates; FPR 599 

False Positive Rates; GSC: Genomic Standards Consortium; EP: environmental packages.  600 

 601 
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Endnotes 632 

We are currently finishing the analyses to demonstrate the applicability of this approach to other 633 

biogeochemical cycles (C, N, O, Fe, P).  Thereby, we hope that the pipeline MEBS will facilitate analysis of 634 

biogeochemical cycles or complex metabolic networks carried out by specific prokaryotic guilds, such as 635 

bioremediation processes (i.e., degradation of hydrocarbons, toxic aromatic compounds, heavy metals etc.). 636 

We look forward to collaborate and help other researchers by integrating comprehensive databases that 637 

might be helpful to the scientific community. Furthermore, we are currently working to improve the 638 

algorithm by using only a list of sequenced genomes involved in the metabolism of interest, in order to 639 

reduce the manual curation effort. We are also considering taking k-mers instead of peptide Hidden Markov 640 

Models to increase the speed of the pipeline.  We anticipate that our platform will stimulate interest and 641 

involvement among the scientific community to explore uncultured genomes derived from large 642 

metagenomic sequences.  643 
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Figure Legends 864 

Figure 1.  Schematic representation of the four stages of the MEBS algorithm focusing on the S-cycle.   The 865 

first step consists on the systematic curation of a database containing the metabolic information of S-cycle, 866 

which is reduced to a FASTA-file of proteins involved (Sucy) and a list of 161 related microorganisms (Suli). A 867 

thousand lists of 161 random-sampled genomes were used as negative control (Rlist). The training dataset 868 

comprises 2,107 genomes (Gen), which were fragmented in different sizes by considering the Mean Size 869 

Length (MSL) of 935 metagenomes (Met). In the second stage the domain composition of Sucy proteins is 870 

obtained by scanning Pfam-A, resulting in the Pfam-Sucy database. Then, the relative entropy (H’) of each 871 

Sucy-Pfam domain is obtained in the third stage. Finally, the precomputed entropies in Gen and GenF are 872 

used to evaluate full-length genomic sequences (real) and metagenomic sequences of variable MSL (in this 873 

example A, B and C).  874 

Figure 2. Sulfur cycle at global scale. The most important organic and inorganic S-compounds derived from 875 

biogeochemical processes are arranged according to the Standard Gibbs free energy of formation described 876 

in Caspi et al., (2012). The left column indicates whether specific microorganisms are able to use those S-877 

compounds, as a source of Carbon (C), Nitrogen (N), Energy (E) or Electron donors (°). Double asterisks 878 

indicate whether the S-compound is used as sole source, of C, N, or E. The corresponding electron acceptors 879 

in redox-coupled reactions using the S-compound as electron donor are not shown. The right column 880 
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indicates whether the S-compound is used as fermentative substrate (F) or terminal electron acceptor in 881 

respiratory processes (R). Colored boxes summarize the metabolic guilds involved in the metabolism of S-882 

compounds, in oxidation (i.e., CLSB, SOM, PSB, and GSB) or reduction (SR, SRB) processes. The complete list 883 

of S-based microorganisms (Suli) is found in Table S1. Figure based on annotations from MetaCyc [12]. 884 

Figure 3. Comprehensive network representation of the machinery of the biogeochemical S-cycle in a single 885 

cell. The 28 molecular pathways involved in the metabolism of sulfur compounds described in Table 1 are 886 

included. The enzymatic steps are depicted as rectangles followed by arrows indicating the direction of the 887 

reaction. Green hexagons represent metabolic links to other metabolisms. Bold dashed arrows indicate 888 

bidirectional reactions. Inorganic S-compounds have been arranged according to their reduction potential, 889 

from the most oxidized (yellow) to the most reduced (red) compounds. Grey rectangles indicate enzymes 890 

acting in disproportionation processes in which a reactant is both oxidized and reduced in the same 891 

chemical reaction, forming two separate compounds. Input biogeochemical S-compounds are shown 892 

outside and connected with bold arrows. Dashed arrows indicate S-compounds excreted out of the cell. The 893 

upper half of the modeled cell depicts the processes involved in the use of organic S-compounds (orange 894 

circles) found in natural environments and used as source of carbon, sulfur and/or energy in several 895 

aerobic/anaerobic strains described in Figure 2.   896 

Figure 4. Entropy values of Sulfur-derived protein domains. A) Heatmap showing the entropy values (H’) of 897 

the 112 Pfam domains identified in proteins curated in SuCy. B) Difference between entropies estimated 898 

from sizes categories of growing peptide size (GenF) and the real values measured within complete 899 

genomes (Gen). Error bars show standard deviations. Both graphs were obtained with script 900 

plot_entropy.py. Clustering of the Pfam relative entropies obtained in Gen and GenF produced with the 901 

Ward method. Log frequency of the entropy values computed in the random test is colored in purple (see 902 

scale bar). Cluster 0 (blue) groups protein domains with low relative entropy that overlap with the random 903 

distribution. Cluster 1 (green) includes the Pfam domains that fulfill the requirements to be used as 904 

molecular markers (high H’ and low standard deviation, std). Red dots (cluster 2) correspond to Pfam 905 

domains with high H’ and std. The cluster was produced with script F_meanVSstd.py   906 

Figure 5.  Distribution of Sulfur Score (SS) in 2,107 non-redundant genomes (Gen). A) Subsets of genomes 907 

annotated in Suli (n=161); ii) Sur, genomes not listed in Suli with SS > 4 and candidates to be S-related 908 

microorganisms (n=192); iii) rest of the genomes in Gen (NS, n=1,754). According to the curated species, 909 

True Positives can be defined as genomes with SS > max (SSNS) distribution, whereas True Negatives are 910 

those with SS < min(SSSuli). B) Assignment of the 192 genomes in Sur to ecological categories based on 911 

literature reports. C) Distribution of SS for different S-metabolic guilds, and the genomes in Sur. D) ROC 912 

curve with Area Under the Curve (AUC) indicated together with thresholds for some False Positive Rates 913 

(FPR).  914 

Figure 6. Distribution of Sulfur Score (SS) in the metagenomic dataset Met. A) Geo-localized metagenomes 915 

sampled around the globe are colored according to their SS values. The following cut-off values correspond 916 

to the 95th percentiles of seven Mean Size Length classes (30, 60, 100, 150, 200, 250 and 300 aa): 7.66, 917 

9.70, 8.81, 8.51, 8.18, 8.98 and 7.61, respectively. Circles with thick blue border indicate metagenomes with 918 

SS ≥ the 95th percentile. B) Distribution of SS values observed in 935 metagenomes classified in terms of 919 

features (X-axis) and colored according to their particular habitats Features are sorted according to their 920 

median SS values. ccc: metagenomes from Cuatro Cienegas, Coahuila, Mexico. Green lines indicate the 921 

lowest and largest 95th percentiles observed across MSL classes. 922 
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 923 

Figure 7. Metabolic completeness of the metabolic pathways described in Table 1. A) Boxplot distribution of 924 

the pathway completeness in genomic and B) metagenomic datasets. C) Linear regression models of the 925 

Sulfur Score (SS) and the mean completeness in Gen and D) Met dataset. E) Heatmap showing the metabolic 926 

completeness of the following genomes: Desulfovibrio vulgaris DP4 (SS=11,442), Ammonifex degensii KC4 927 

(SS=12.508); Pelodictyon phaeoclathratiforme BU-1 (SS=11,836); Thiobacillus denitrificans ATCC 25259  928 

(SS=11,61); PSB: Allochromatium vinosum DSM  180 (SS=10. 737);   Sur  Methanosarcina barkeri MS(SS= 929 

5,93); Sulfolobus acidocaldarius  DSM 639 (SS=5,457); Synechococcus sp. JA-2-3Ba 2-13 (SS=3,704); 930 

Hyphomicrobium denitrificans 1NES1 (SS= 3,236);  Ruegeria pomeroyi DSS-3 (SS=2,707); Enterococcus 931 

durans (SS=-0,194); Micrococcus luteus NCTC_2665 (SS=-3,588). F) Heatmap showing the metabolic 932 

completeness of the metagenomes with the following  MG-RAST ids and  corresponding scores: 4489656.3 933 

(SS=-2,649); 4440320.3(SS=0,1); 4441663.3(SS=9,986); 4510168.3 (SS=7,781) ; 4493725.3 (SS=9,547) ; 934 

4461840.3 (SS=8,813); 4441599.3(SS=9,274); 4451035.3(SS=9,918); 4525341.3(SS=9,287); 935 

4489328.3(SS=4,958); 4478222.3(SS=4,88).The color codes at the top of the heatmap correspond to 936 

different environments. For a more detailed description of each metagenome see Table S8.  937 

 938 

Additional files -Supplementary Information   939 

The supplementary pdf file contains the following information:     940 

Supplementary figure S1.  Histogram distribution of the Mean Size Length of metagenomes in Met and the 941 

input sulfur proteins. 942 

Supplementary figure S2.  Visualization of the Pfam domains mapped onto KEGG metabolic pathways 943 

Supplementary figure S3.  Comparison of clustering methods of the 112 Pfam entropies using script 944 

plot_cluster_comparison.py 945 

Supplementary figure S4. Clustering comparison between Birch and Ward clustering methods to stand out 946 

the Pfam entropies with high H’ and low std using the script  947 

Supplementary figure S5. . Distribution of entropy values of 112 Pfam domains inferred from random-948 

sampled and Suli genomes.  949 

Supplementary figure S6.  Comparison of Sulfur Scores (SS) with data obtained three years ago (2014), with 950 

the current data described in the article.  951 

Supplementary table S4.  Informative Pfam’s with high H’ and high std (not used as molecular marker 952 

genes) in metagenomic fragmented data.    953 

Supplementary table S5. Percentile distribution of the 112 Pfam entropies in the random test 954 

Supplementary table S10. Statistics of SS computed on genomic (Gen, real sequences) and metagenomic 955 

(Met, with increasing Mean Size Length, from 30 to 300aa) datasets 956 

In separated excel files the following Supplementary tables are also provided:  957 

Supplementary table S1: Table S1. Comprehensive list of the taxonomic representatives of sulfur cycle 958 

including Sulfur list or ‘Suli’ containing 161-curated genomes used as input for the pipeline   959 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191288doi: bioRxiv preprint 

https://doi.org/10.1101/191288
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary table S2. Sucy database containing the identifiers of the Sulfur proteins and their 960 

corresponding annotations derived from Interproscan and manual curation.   961 

Supplementary table S3. Sulfur Pfam domains (Pfam-Sucy), and their corresponding mapping into KEGG (KO 962 

number), and the manual assignation into sulfur metabolic pathways 963 

Supplementary table S6. Gen dataset containing their corresponding SS and taxonomy assignment.  964 

Supplementary table S7. Manual annotation of Sulfur unconsidered or related microorganisms (Sur) with 965 

SS>4 Supplementary table S8 966 

Supplementary table S8.  Met dataset with their corresponding SS values and metatada. 967 

Supplementary table S9. Manually annotated high scoring metagenomes along with their ecological 968 

capabilities in terms of sulfur cycle 969 

 970 

Supplementary table S11. Metabolic completeness in Gen dataset for each of the 28 metabolic pathways of the S-971 
cycle described in Table 1. (Pathway 29 contains the proposed marker genes) 972 
 973 

Supplementary table S12.  Metabolic completeness in Men dataset for each of the 28 metabolic pathways of the S-974 

cycle described in Table 1. (Pathway 29 contains the proposed marker genes) 975 

 976 

Supplementary table S13. Frequency and description of the most complete genomes in terms of S-cycle 977 

metabolic pathways   978 

 979 

 980 

 981 
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