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One of the greatest transitions in the human story was the change from hunter-19 

gatherer to farmer. How farming traditions expanded from their birthplace in the 20 

Fertile Crescent has always been a matter of contention. Two models were 21 

proposed, one involving the movement of people and the other based on the 22 

transmission of ideas. Over the last decade, paleogenomics has been instrumental in 23 

settling long-disputed archaeological questions1, including those surrounding the 24 

Neolithic revolution2. Compared to the extensive genetic work done on Europe and 25 

the Near East, the Neolithic transition in North Africa, including the Maghreb, 26 

remains largely uncharacterized. Archaeological evidence suggests this process may 27 

have happened through an in situ development from Epipaleolithic communities3,4, 28 

or by demic diffusion from the Eastern Mediterranean shores5 or Iberia6. In fact, 29 
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Neolithic pottery in North Africa strongly resembles that of European cultures like 30 

Cardial and Andalusian Early Neolithic, the southern-most early farmer culture 31 

from Iberia. Here, we present the first analysis of individuals’ genome sequences 32 

from early and late Neolithic sites in Morocco, as well as Andalusian Early Neolithic 33 

individuals. We show that Early Neolithic Moroccans are distinct from any other 34 

reported ancient individuals and possess an endemic element retained in present-35 

day Maghrebi populations, indicating long-term genetic continuity in the region. 36 

Among ancient populations, early Neolithic Moroccans share affinities with 37 

Levantine Natufian hunter-gatherers (~9,000 BCE) and Pre-Pottery Neolithic 38 

farmers (~6,500 BCE). Late Neolithic (~3,000 BCE) Moroccan remains, in 39 

comparison, share an Iberian component of a prominent European-wide demic 40 

expansion, supporting theories of trans-Gibraltar gene flow. Finally, the Andalusian 41 

Early Neolithic samples share the same genetic composition as the Cardial 42 

Mediterranean Neolithic culture that reached Iberia ~5,500 BCE. The cultural and 43 

genetic similarities of the Iberian Neolithic cultures with that of North African 44 

Neolithic sites further reinforce the model of an Iberian intrusion into the Maghreb. 45 

Present genetic data from modern samples7-9 suggests that North Africans’ ancestry has 46 

contributions from four main sources: 1) an autochthonous Maghrebi component related 47 

to a back migration to Africa ~12,000 years ago from the Levant; 2) a Middle Eastern 48 

component probably associated with the Arab conquest; 3) a sub-Saharan component 49 

derived from trans-Saharan migrations; and 4) a European component that has been 50 

linked to recent historic movements. Paleogenomic studies have begun to provide 51 

insights into North African Prehistory10,11; however, no research to date has tested 52 

whether the Neolithic transition in the Maghreb was driven by an in situ development or 53 

the migration of people. Here, we perform genome-wide analysis of remains from the 54 

Early Neolithic site of Ifri n'Amr or Moussa (IAM; ~5,000 BCE, n=7) and the Late 55 

Neolithic site of Kelif el Boroud (KEB; ~3,000 BCE; n=8) (Supplementary Note 1). To 56 

test possible migrations through the Strait of Gibraltar, we also analyse samples from 57 

Early Neolithic sites in southern Iberia: El Toro (TOR; ~5,000 BCE; n=12) and Los 58 

Botijos (BOT; n=1) (Figure 1). This Andalusian Early Neolithic culture is thought to 59 

have arrived prior to Cardial technology, and bears similarities with early Maghrebi 60 
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farming traditions12 (Supplementary Note 1). Including these southern samples in our 61 

analysis enables a direct test of this hypothesis.  62 

 [Figure 1] 63 

We sequenced 39 Illumina pair-end libraries from 28 individuals, and selected best 64 

conserved libraries for subsequent analyses. Endogenous DNA content was generally low 65 

(2.06% on average) (Supplementary Note 2). Depth of coverage was consistently 66 

improved when enriching using baits targeting specific sites (~100X), compared to 67 

whole-genome capture (~15X) (Supplementary Note 2). Following enrichment, we 68 

generated fifteen low-coverage genomes (5 from IAM, 4 from KEB and 5 from 69 

TOR/BOT), with coverage ranging from 0.04X to 0.73X depth. All samples considered 70 

in this study met the standard aDNA authentication criteria, including observation of 71 

DNA fragmentation (∼46 bp average read length) and damage patterns due to cytosine 72 

deamination toward the 5′ ends of molecules (Supplementary Note 3).  73 

Mitochondrial DNA and Y-chromosome haplogroups obtained for IAM (Moroccan 74 

Early Neolithic) and KEB (Moroccan Late Neolithic) indicate either a population 75 

replacement or an important genetic influx into Morocco between 5,000–3,000 BCE. 76 

IAM samples belong to the mtDNA haplogroups U6a and M1—both of which are 77 

associated with back migration to Africa13,14—while KEB samples belong to haplogroups 78 

K1, T2 and X2, prominently found in Anatolian and European Neolithic samples2,15 79 

(Supplementary Note 4). Regarding the paternal lineages, IAM individuals carry Y 80 

chromosomes distantly related to the typically North African E-M81 haplogroup, while 81 

the Y chromosome from KEB belongs to the T-M184 haplogroup; though scarce and 82 

broadly distributed today, this haplogroup has also been observed in European Neolithic 83 

individuals16 (Supplementary Note 5). Both mtDNA and Y-chromosome lineages (K1, J2 84 

and T2 haplogroups, and G-M201 haplogroup, respectively) for samples from TOR/BOT 85 

(Iberian Early Neolithic) are similar to those observed in Europe during Neolithic times15. 86 

West Eurasian populations can be modelled as admixture of four different ancestral 87 

components2: Eastern and Western European hunter-gatherers, Iranian and Levant 88 

Neolithic. We explored the placement of Moroccan and Southern Iberian Neolithic 89 
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samples in this context, and compared their genetic affinities to ancient and present-day 90 

West Eurasian and Levant populations. Interestingly, Principal Components Analysis 91 

(PCA) reveals that IAM individuals are different from any aDNA sample studied to date 92 

(Figure 2; Supplementary Note 6). When projected, IAM samples are close to modern 93 

North Africans, in the Levantine corner of the PCA space (Figure 2). Southern Iberian 94 

Neolithic individuals from TOR and BOT cluster with Sardinians and with other 95 

Anatolian and European Neolithic samples. Moreover, KEB samples are placed halfway 96 

between the IAM and Anatolian/European farmer clusters, in close proximity to Levant 97 

aDNA samples. We further explored the genetic structure of these samples using the 98 

program ADMIXTURE16 (See Supplementary Note 7 for details), with values of K 99 

ranging between 2 and 8. At lower K values, IAM samples possess ~100% of a 100 

component partially shared by aDNA samples from the Middle East and Levant. At K=6, 101 

this IAM-like component is observed mainly in modern North Africa, following a west-102 

to-east cline. TOR and other Early Neolithic samples from Iberia cluster together with 103 

farmers from Anatolia, the Aegean area and Europe. At K=8 the Early Neolithic 104 

individuals from Iberia differentiate from the Anatolian, Aegean and European Early 105 

Neolithic samples, and share their main component (purple) with Middle 106 

Neolithic/Chalcolitic samples (Figure 2). Finally, at low K values, KEB can be explained 107 

as having both IAM-like and European Neolithic components, suggesting an admixture 108 

process between IAM-like people and early farmers. Nevertheless, at K=8, the European 109 

component in KEB is predominantly “purple,” with some “green” component. This 110 

“green” component is also present, at a low frequency, in Natufians and other ancient 111 

Levantine populations. The substantially larger contribution of the “purple” component, 112 

when compared with the “green”, suggests a significant genetic contribution of ancient 113 

Iberians in Morocco (Figure 2). 114 

[Figure 2 here] 115 

To compare our samples directly to the genomes of ancient and modern populations, we 116 

calculated pair-wise FST distances, which, unlike PCA and global ancestry analyses, are 117 

insensitive to the inclusion of large numbers of individuals from modern populations. FST 118 

values indicate that the IAM samples are as differentiated from all other populations as 119 

Yoruba are from non-Africans (Supplementary Note 9), with the sole exception of KEB 120 
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and, to a lesser extent, modern North African populations. Given the relatively low 121 

heterozygosity (~6.6 x 10-4) and high identity-by-descent (~37%) proportions observed in 122 

IAM (Supplementary Note 8), this differentiation could be related to isolation and genetic 123 

drift. Although IAM is clearly more similar to KEB than any other population, the 124 

converse is not true. KEB has lower FST distances with any Anatolian, European 125 

(excluding European hunter gatherers), Levantine and Iranian population, rather than 126 

with IAM. In the modern DNA reference panel, KEB is similar to North African, 127 

European and Middle Eastern populations. Among the ancient populations, TOR is more 128 

similar to Middle Neolithic/Chalcolithic Europeans, and, among modern populations, to 129 

populations from Spain, North Italy and Sardinia. 130 

To further investigate the genetic affinities of IAM, KEB and TOR samples, we 131 

conducted outgroup f3-statistic analysis17. Results indicate that, when KEB is excluded, 132 

IAM shares more drift with ancient Levantine populations, such as Natufians and Levant 133 

Neolithic (Figure 3; Supplementary Note 10), than with any other ancient population. 134 

This result is analogous to preliminary archaeological data pointing to links between 135 

funerary practices in IAM and Pre-Pottery Neolithic B sites in Cyprus (Supplementary 136 

Note 1).  137 

Both FST and outgroup-f3 statistic analyses indicate that KEB shares ancestry with 138 

IAM, but also more genetic drift with Neolithic and Chalcolithic populations from 139 

Anatolia and Europe, with the highest shared genetic drift appearing in Iberian Early 140 

Neolithic samples (Figure 3; Supplementary Note 10). This pattern and the result from 141 

ADMIXTURE could be explained if the KEB population was a mixture between IAM-142 

related and European Neolithic groups. To formally test this hypothesis, we used an 143 

admixture-f3 test17, using KEB as the test population, IAM as a reference population and 144 

one of the Anatolian and European Neolithic and Chalcolithic populations as the second 145 

reference population. All comparisons produced negative values of the f3-statistic, which 146 

suggests the KEB population can be modelled as a mixture of IAM and 147 

Anatolian/European Neolithic. These results also parallel archaeological findings in the 148 

region: Late Neolithic sites in North Africa contain pottery resembling that of the 149 

Andalusian Early Neolithic and Cardial cultures, and ivory tools distinctly associated 150 

with those of Iberian Neolithic sites (Supplementary Note 1). 151 
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TOR has more shared ancestry with Iberian Early Neolithic samples and other 152 

Neolithic and Chalcolithic populations from Europe. Archaeological work in southern 153 

Iberia, especially in the Nerja site, has pointed out that the Andalusian Early Neolithic 154 

culture, previous to the Cardial expansion, may have had connections to farmer traditions 155 

in the Maghreb18. However, we observe that TOR samples have a similar genetic 156 

composition to that of Cardial individuals from Iberia, evidencing a common origin.  157 

[Figure 3 here] 158 

Finally, phenotypic predictions based on genetic variants of known effects agree with our 159 

estimates of global ancestry. IAM people do not possess any of the European SNPs 160 

associated with light pigmentation, and most likely had dark skin and eyes. IAM samples 161 

present ancestral alleles for pigmentation-associated variants present in SLC24A5 162 

(rs1426654), SLC45A2 (rs16891982) and OCA2 (rs16891982 and 12913832) genes. On 163 

the other hand, KEB individuals exhibit some European- derived alleles that predispose 164 

individuals to lighter skin and eye colour, including those on genes SLC24A5 165 

(rs1426654) and OCA2 (rs16891982) (Supplementary Note 11). 166 

Genetic analyses have revealed that the population history of modern North 167 

Africans is quite complex7. Based on our aDNA analysis, we identify an Early Neolithic 168 

Moroccan component that is restricted to North Africa in present-day populations7, which 169 

is the sole ancestry in IAM samples. We hypothesize that this component represents the 170 

autochthonous Maghrebi ancestry associated with Berber populations. This Maghrebi 171 

component was related to that of Epipaleolithic and Pre-Pottery Neolithic people from 172 

the Levant. By 3,000 BCE, a European Neolithic expansion brought Mediterranean-like 173 

ancestry to the Maghreb, most likely from Iberia. Our analyses demonstrate that at least 174 

some of the European ancestry observed today in North Africa is related to prehistoric 175 

migrations, and local Berber populations were already admixed with Europeans before 176 

the Roman conquest. Furthermore, additional European/Iberian ancestry could have 177 

reached the Maghreb after KEB people; this scenario is supported by the presence of 178 

Iberian-like Bell-Beaker pottery in more recent stratigraphic layers of IAM and KEB 179 

caves. Future palaeogenomic efforts in North Africa will help further disentangle the 180 
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complex history of migrations that forged the ancestry of many admixed populations we 181 

observe today. 182 

Methods 183 

Measures to avoid and monitor contamination from modern DNA were applied, at all 184 

times, during sample manipulation. Ancient DNA was extracted from teeth or bone, built 185 

into double-stranded indexed libraries and sequenced on an Illumina NextSeq 500 186 

(Supplementary Note 2). Due to the environmental conditions of the burial sites, we 187 

expected to recover low proportions of endogenous DNA from these ancient remains. To 188 

overcome limitations due to DNA degradation, we applied two different capture methods 189 

to enrich for human reads (Supplementary Note 2): one targeting the whole genome19 and 190 

one targeting the variants of the Multiethnic Genotyping Array (MEGA) array (Illumina 191 

Inc.). 192 

Reads were trimmed and adapters removed using AdapterRemoval20, and then 193 

mapped to the human reference genome (hg19) using BWA21. Low quality (MAPQ<30) 194 

and duplicate reads were removed using SAMtools22. MapDamage23 was used to 195 

visualize misincorporation and fragmentation patterns, and to rescale the quality of bases 196 

likely affected by post-mortem damage. Confidence intervals of sex determination were 197 

calculated following Skoglund et al.24. MtDNA haplogroups were determined using 198 

HaploGrep25. Y-chromosome haplogroup inference was carried out as in Schroeder et 199 

al.26. As the reference panel, we used both the Human Origins panel2 and the HGDP 200 

dataset genotyped with MEGA-ex (Illumina Inc.). For principal component analysis, we 201 

projected the aDNA samples on the PCA space built with the modern dataset, using 202 

smartpca27 and LASER28. Admixture estimations were done using ADMIXTURE 203 

software16. FST distances were calculated using smartpca27. Identity-by-descent 204 

proportions were estimated using PLINK29, and heterozygosity estimations using a newly 205 

developed method for low-coverage genomes (Supplementary Note 8). f-statistics 206 

estimates were calculated using admixtools software17. All plots were prepared using R 207 

software30. Detailed information about methods is included in the Supplementary Notes.  208 

 209 
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Figure 1. Geographical location (A) and calibrated radiocarbon date (B) of the samples included in 311 

this study, as well as other ancient DNA samples from the literature. *BOT sample was not 312 

radiocarbon dated, but was assigned to the Early Andalusian period on the basis of the associated 313 

material culture.  314 
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Figure 2. Ancestry inference in ancient samples from North Africa and the Iberian Peninsula. (a) PCA 317 

analysis, (b) ADMIXTURE analysis (K=2 - K=8), and (c) detailed ADMIXTURE analysis for European 318 

Neolithic samples (K=8). 319 
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Figure 3. Outgroup f3-statistic for IAM (A), KEB (B) and TOR (C), and admixture f3-statistic for KEB 321 

(D). 322 
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