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ABSTRACT (249; 250 WORDS MAX.) 44 

The extent to which prehistoric migrations of farmers influenced the genetic pool of western 45 

North Africans remains unclear. Archaeological evidence suggests the Neolithization process 46 

may have happened through the adoption of innovations by local Epipaleolithic 47 

communities, or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, 48 

we present the first analysis of individuals’ genome sequences from early and late Neolithic 49 

sites in Morocco, as well as Early Neolithic individuals from southern Iberia. We show that 50 

Early Neolithic Moroccans are distinct from any other reported ancient individuals and 51 

possess an endemic element retained in present-day Maghrebi populations, confirming a 52 

long-term genetic continuity in the region. Among ancient populations, Early Neolithic 53 

Moroccans are distantly related to Levantine Natufian hunter-gatherers (~9,000 BCE) and 54 

Pre-Pottery Neolithic farmers (~6,500 BCE). Although an expansion in Early Neolithic times 55 

is also plausible, the high divergence observed in Early Neolithic Moroccans suggests a 56 

long-term isolation and an early arrival in North Africa for this population. This scenario is 57 

consistent with early Neolithic traditions in North Africa deriving from Epipaleolithic 58 

communities who adopted certain innovations from neighbouring populations. Late Neolithic 59 

(~3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of 60 

trans-Gibraltar gene flow. Finally, the southern Iberian Early Neolithic samples share the 61 

same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia 62 

~5,500 BCE. The cultural and genetic similarities of the Iberian Neolithic cultures with that 63 

of North African Neolithic sites further reinforce the model of an Iberian migration into the 64 

Maghreb. 65 

 66 

SIGNIFICANCE STATEMENT (119; 120 WORDS MAX.) 67 

The acquisition of agricultural techniques during the so-called Neolithic revolution has been 68 

one of the major steps forward in human history. Using next-generation sequencing and 69 

ancient DNA techniques, we directly test if Neolithization in North Africa occurred through 70 

the transmission of ideas or by demic diffusion. We show that Early Neolithic Moroccans are 71 
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composed of an endemic Maghrebi element still retained in present-day North African 72 

populations and distantly related to Epipaleolithic communities from the Levant. However, 73 

late Neolithic individuals from North Africa are admixed, with a North African and a 74 

European component. Our results support the idea that the Neolithization of North Africa 75 

might have involved both the development of Epipaleolithic communities and the migration 76 

of people from Europe. 77 

  78 
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INTRODUCTION 79 

One of the greatest transitions in human history was the transition from hunter-gatherer to 80 

farming lifestyle. How farming traditions expanded from their birthplace in the Fertile 81 

Crescent has been a matter of contention. Two models were proposed: one involving the 82 

movement of people and the other based on the transmission of ideas. Over the last decade, 83 

paleogenomics has been instrumental in settling long-disputed archaeological questions1, 84 

including those surrounding the Neolithic revolution2. Compared to the extensive genetic 85 

work done on Europe and the Near East, the Neolithic transition in North Africa, including 86 

the Maghreb, remains largely uncharacterized. Archaeological evidence suggests that some 87 

of the major innovations associated with the Neolithic, such as farming and pottery 88 

production, could have been introduced into northern Morocco through sea voyaging by 89 

people from Iberia or the central Mediterranean as early as ca. 5400 BCE3,4. In fact, some of 90 

the Neolithic pottery recorded in North Africa strongly resembles that of European cultures 91 

like the Cardial Early Neolithic, the Mediterranean early farmer culture located in Iberia5. 92 

However, other innovations such as some pottery traditions and bone and lithic technical 93 

customs could be the result of in situ development from Epipaleolithic communities, 94 

indicating a strong continuity in the local population since the Late Pleistocene6-10.  95 

Genetic data from present-day populations11-13 suggests that North African ancestry has 96 

contributions from four main sources: 1) an autochthonous Maghrebi component related to a 97 

back migration to Africa ~12,000 years ago from Eurasia; 2) a Middle Eastern component 98 

probably associated with the Arab conquest; 3) a sub-Saharan component derived from trans-99 

Saharan migrations; and 4) a European component that has been linked to recent historic 100 

movements. Paleogenomic studies have begun to provide insights into North African 101 

Prehistory14-16; however, no research to date has tested whether the Neolithic transition in the 102 

Maghreb was driven by local populations who adopted cultural and technological 103 

innovations or the migration of people. Here, we perform genome-wide analysis of remains 104 

from the Early Neolithic site of Ifri n'Amr or Moussa (IAM; ~5,200 BCE, n=7) and the Late 105 

Neolithic site of Kelif el Boroud (KEB; ~3,000 BCE; n=8) (Supplementary Note 1). To test 106 

possible migrations through the Strait of Gibraltar, we also analyse human remains from the 107 
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southern Iberian Early Neolithic site of El Toro (TOR; ~5,000 BCE; n=12) (Figure 1). This 108 

Iberian Early Neolithic culture bears similarities with early Maghrebi pottery decoration, as 109 

well as bone and lithic tool production traditions which suggest an African influence17 110 

(Supplementary Note 1). Including these southern Iberian samples in our analysis enables a 111 

direct test of this hypothesis.  112 

 [Figure 1 here] 113 

RESULTS AND DISCUSSION 114 

We sequenced 38 Illumina pair-end libraries from 27 individuals, and selected the best-115 

conserved libraries for subsequent analyses. Endogenous DNA content was generally low 116 

(2.88% on average) (Supplementary Note 2). Depth of coverage was consistently improved 117 

when enriching using baits targeting specific sites for the Multiethnic Genotyping Array 118 

(MEGA) (~100X), compared to whole-genome capture (~15X) (Supplementary Note 2). 119 

Following enrichment, we generated thirteen low-coverage genomes (five from IAM, four 120 

from KEB and four from TOR), with MEGA coverage ranging from 0.04X to 1.72X depth, 121 

and genome-wide coverage ranging from 0.01X to 0.74X depth (Table 1). All samples 122 

considered in this study met the standard aDNA authentication criteria, including observation 123 

of DNA fragmentation (∼46 bp average read length) and damage patterns due to cytosine 124 

deamination toward the 5′ ends of molecules (Supplementary Note 3).  125 

Mitochondrial DNA and Y-chromosome haplogroups obtained for IAM (Moroccan Early 126 

Neolithic) and KEB (Moroccan Late Neolithic) suggest either a population replacement or an 127 

important genetic influx into Morocco between 5,000–3,000 BCE. IAM samples belong to 128 

the mtDNA haplogroups U6a and M1—both of which are associated with the back migration 129 

to Africa from Eurasia in Upper Palaeolithic times18,19—while KEB samples belong to 130 

haplogroups K1, T2 and X2, prominently found in Anatolian and European Neolithic 131 

samples2,20 (Supplementary Note 4). Regarding the paternal lineages, IAM individuals carry 132 

Y chromosomes distantly related to the typically North African E-M81 haplogroup, while 133 
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the Y chromosome from KEB belongs to the T-M184 haplogroup; though scarce and broadly 134 

distributed today, this haplogroup has also been observed in European Neolithic individuals16 135 

(Supplementary Note 5). Both mtDNA and Y-chromosome lineages (K1, J2 and T2 136 

haplogroups, and G-M201 haplogroup, respectively) for samples from TOR (Iberian Early 137 

Neolithic) are similar to those observed in Europe during Neolithic times20. 138 

[Table 1 here]  139 

When projected on a Principal Components Analysis (PCA) space built using sub-Saharan 140 

African, North African, European and Middle Eastern population of the Human Genome 141 

Diversity Project (HGDP) dataset genotyped with MEGA, IAM samples are placed close to 142 

Mozabites, while Iberian Neolithic samples fall close to southern European populations 143 

(Supplementary Note 6). As suspected from the mtDNA and Y-chromosome data, KEB 144 

samples do not cluster with IAM and are placed in an intermediate position between IAM 145 

and TOR. We further explored the genetic structure of these samples using the program 146 

ADMIXTURE21 (Figure 2). At K=5, we observe sub-Saharan African (red), early European 147 

Neolithic (green), North African (yellow), Middle Eastern (violet) and eastern European 148 

components (orange). Congruently with PCA results, TOR is composed of the early 149 

European component, clustering with Sardinian samples, and IAM is composed of the North 150 

African component, clustering with Mozabites. Finally, KEB is placed in an intermediate 151 

position, with ~50% of both early European Neolithic and North African ancestries. It is 152 

worth mentioning that, compared to current North African samples, IAM and KEB do not 153 

show any sub-Saharan African ancestry, suggesting that trans-Saharan migrations occurred 154 

after Neolithic times. This is in agreement with the analysis of present-day genome-wide 155 

data from Morocco, which estimated a migration of western African origin into Morocco 156 

only ~1,200 years ago11. 157 

West Eurasian populations can be modelled as admixture of four different ancestral 158 

components2: Eastern and Western European hunter-gatherers, and Iranian and Levantine 159 

Neolithic. We explored the placement of Moroccan and Southern Iberian Neolithic samples 160 
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in this context, and compared their genetic affinities to ancient and present-day West 161 

Eurasian and Levant populations in the Human Origins panel. Interestingly, PCA reveals that 162 

IAM individuals are different from any aDNA sample studied to date (Figure 2; 163 

Supplementary Note 6). When projected, IAM samples are close to modern North Africans, 164 

in the Levantine corner of the PCA space (Figure 2). Southern Iberian Neolithic individuals 165 

from TOR cluster with Sardinians and with other Anatolian and European Neolithic samples. 166 

Moreover, KEB samples are placed halfway between the IAM and Anatolian/European 167 

farmer clusters, in close proximity to Levant aDNA samples and also to Guanche samples16, 168 

the indigenous population of the Canary Islands known to have a Berber origin22. When 169 

compared using ADMIXTURE (See Supplementary Note 7 for details), IAM samples 170 

possess ~100% of a component partially shared by aDNA samples from the Middle East and 171 

Levant at low K values. At K=6, this IAM-like component is observed mainly in modern 172 

North Africa, following a west-to-east cline, and in the Guanches. TOR and other Early 173 

Neolithic samples from Iberia cluster together with farmers from Anatolia, the Aegean area 174 

and Europe. At K=8, the Early Neolithic individuals from Iberia differentiate from the 175 

Anatolian, Aegean and European Early Neolithic samples, and share their main component 176 

(purple) with Middle Neolithic/Chalcolitic samples (Figure 2). Finally, at low K values, KEB 177 

can be explained as having both IAM-like and European Neolithic components, suggesting 178 

an admixture process between IAM-like people and early farmers. Nevertheless, at K=8, the 179 

European component in KEB is predominantly “purple,” with some “green” component. 180 

This “green” component is also present, at a low frequency, in Natufians and other ancient 181 

Levantine populations. The substantially larger contribution of the “purple” component, 182 

when compared with the “green”, suggests a significant genetic contribution of ancient 183 

Iberians in Morocco (Figure 2). The same admixture profile is observed in Guanches, but the 184 

amount of IAM ancestry is consistently higher in all the samples. Given that the Guanches 185 

could have had originated in a different area of the Maghreb, this result might suggest that 186 

the European Neolithic impact in North Africa was heterogeneous.  187 

[Figure 2 here] 188 
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To compare our samples directly to the genomes of ancient and modern populations, we 189 

calculated pair-wise FST distances, which, unlike PCA and global ancestry analyses, are 190 

insensitive to the inclusion of large numbers of individuals from modern populations. FST 191 

values indicate that the IAM samples are as differentiated from all other populations as 192 

Yoruba are from non-Africans (Supplementary Note 9), with the sole exception of KEB and, 193 

to a lesser extent, the Guanches and modern North African populations. Given the relatively 194 

low heterozygosity and high identity-by-descent proportions observed in IAM 195 

(Supplementary Note 8), this differentiation could be driven by isolation and genetic drift. 196 

IAM is divergent from the other populations, with the exception of populations that likely 197 

received genetic influx from them. This raises the possibility that IAM was isolated in North 198 

Africa since Palaeolithic times, when a back migration from Eurasia brought mtDNA 199 

haplogroups M1 and U6 to the Maghreb18. Although IAM is clearly more similar to KEB 200 

than to any other population, the converse is not true. KEB has lower FST distances with any 201 

Anatolian, European (excluding European hunter gatherers), Levantine and Iranian 202 

population, rather than with IAM. In the modern DNA reference panel, KEB is similar to 203 

North African, European and Middle Eastern populations. Among the ancient populations, 204 

TOR is more similar to Middle Neolithic/Chalcolithic Europeans, and, among modern 205 

populations, to populations from Spain, North Italy and Sardinia. 206 

To further investigate the genetic affinities of IAM, KEB and TOR samples, we conducted 207 

outgroup f3-statistic analysis23. Results indicate that, when KEB and Guanches are excluded, 208 

IAM shares more drift with ancient Levantine populations, such as Natufians (Epipaleolithic) 209 

and Pre-Pottery Neolithic individuals (Figure 3; Supplementary Note 10), than with any 210 

other ancient population. To explore further the connection between IAM and Levantine 211 

populations, we performed an f4-statistic analysis to test whether IAM shares more alleles 212 

with any other population in the Human Origins panel2,24 than with ancient populations from 213 

the Levant (Supplementary Note 10). Consistently, and also with the exception of KEB and 214 

Guanches, all comparisons indicated higher similarity with Natufians and Levantine farmers. 215 

This suggests that most of IAM ancestry originates from an out-of-Africa source, as IAM 216 

shares more alleles with Levantines than with any sub-Saharan Africans, including the 217 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/191569doi: bioRxiv preprint 

https://doi.org/10.1101/191569
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

4,500-year-old genome from Ethiopia14. To further test the hypothesis that IAM is more 218 

closely related to out-of-Africa populations, we determined if we could detect Neanderthal 219 

ancestry in IAM, which is typical of non-African populations. A signal of Neanderthal 220 

ancestry has been detected in modern North African populations25. A lack of Neanderthal 221 

ancestry in IAM would imply that the signal observed today is a product of more recent 222 

migration into North Africa from the Middle East and Europe in historical times. When 223 

compared to the Neanderthal high coverage genome sequence from Altai26 and the low-224 

coverage sequence from Vindija Cave27, and using the S-statistic23, we detected a 225 

Neanderthal introgression signal into IAM, suggesting derivation from the same event shared 226 

by non-African populations. All these results together indicate that the origin of IAM was 227 

outside Africa, most probably from the Levant. However, it is important to take into account 228 

that the number of ancient genomes for comparison is low and future sampling can provide 229 

further refinement in the origin of IAM.   230 

Both FST and outgroup-f3 statistic analyses indicate that KEB shares ancestry with IAM, but 231 

also more genetic drift with Neolithic and Chalcolithic populations from Anatolia and 232 

Europe, with the highest shared genetic drift appearing in Iberian Early Neolithic samples 233 

(Figure 3; Supplementary Note 10). This pattern and the result from ADMIXTURE could be 234 

explained if the KEB population was a mixture between IAM-related and European 235 

Neolithic groups. To formally test this hypothesis, we used an admixture-f3 test23, using 236 

KEB as the test population, IAM as a reference population and one of the Anatolian and 237 

European Neolithic and Chalcolithic populations as the second reference population. All 238 

comparisons produced negative values of the f3-statistic, which suggests the KEB population 239 

can be modelled as a mixture of IAM and Anatolian/European Neolithic.   240 

TOR has more shared ancestry with Iberian Early Neolithic samples and other Neolithic and 241 

Chalcolithic populations from Europe. Archaeological studies have suggested that there was 242 

an Andalusian Early Neolithic culture with North African influences before the Cardial 243 

expansion into the Western Mediterranean basin28. However, we observe that TOR samples 244 
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have a similar genetic composition to that of Cardial individuals from Iberia, evidencing a 245 

common origin, and ruling out an Andalusian Early Neolithic distinct from Cardial Culture. 246 

[Figure 3 here] 247 

Finally, although limited by low coverage, phenotypic predictions based on genetic variants 248 

of known effects agree with our estimates of global ancestry. IAM people do not possess any 249 

of the European SNPs associated with light pigmentation, and most likely had dark skin and 250 

eyes. IAM samples present ancestral alleles for pigmentation-associated variants present in 251 

SLC24A5 (rs1426654), SLC45A2 (rs16891982) and OCA2 (rs1800401 and 12913832) 252 

genes. On the other hand, KEB individuals exhibit some European- derived alleles that 253 

predispose individuals to lighter skin and eye colour, including those on genes SLC24A5 254 

(rs1426654) and OCA2 (rs1800401) (Supplementary Note 11). 255 

CONCLUSION 256 

Genetic analyses have revealed that the population history of modern North Africans is quite 257 

complex11. Based on our aDNA analysis, we identify an Early Neolithic Moroccan 258 

component that is restricted to North Africa in present-day populations11, and that is the sole 259 

ancestry in IAM samples. We hypothesize that this component represents the autochthonous 260 

Maghrebi ancestry associated with Berber populations. This Maghrebi component is 261 

different from those of any ancient samples studied so far and is distantly related to that of 262 

Epipaleolithic people from the Levant.  Our data suggests that the IAM population was 263 

isolated in the Maghreb since the Upper Palaeolithic back migration, although it is 264 

impossible to be certain without paleogenomic data from North African Palaeolithic samples. 265 

An expansion in Early Neolithic times followed by strong genetic drift might also be 266 

plausible.  267 

Our hypothesis is in agreement with archaeological research pointing to the first stage of the 268 

Neolithic expansion in Morocco as the result of a local population who adopted some 269 

technological innovations, such as pottery production or farming, from neighbouring areas. 270 
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By 3,000 BCE, a continuity in the Neolithic spread brought Mediterranean-like ancestry to 271 

the Maghreb, most likely from Iberia. Other archaeological remains, such as African 272 

elephant ivory and ostrich eggs found in Iberian sites, confirm the existence of contacts and 273 

exchange networks through both sides of the Gibraltar strait at this time. Our analyses 274 

strongly support that at least some of the European ancestry observed today in North Africa 275 

is related to prehistoric migrations, and local Berber populations were already admixed with 276 

Europeans before the Roman conquest. Furthermore, additional European/Iberian ancestry 277 

could have reached the Maghreb after KEB people; this scenario is supported by the 278 

presence of Iberian-like Bell-Beaker pottery in more recent stratigraphic layers of IAM and 279 

KEB caves. Future palaeogenomic efforts in North Africa will further disentangle the 280 

complex history of migrations that forged the ancestry of the admixed populations we 281 

observe today. 282 

MATERIAL AND METHODS 283 

Measures to avoid and monitor contamination from modern DNA were applied, at all times, 284 

during sample manipulation. Ancient DNA was extracted from teeth or bone, built into 285 

double-stranded indexed libraries and sequenced on an Illumina NextSeq 500 286 

(Supplementary Note 2). Due to the environmental conditions of the burial sites, we 287 

expected to recover low proportions of endogenous DNA from these ancient remains. To 288 

overcome limitations due to DNA degradation, we applied two different capture methods to 289 

enrich for human reads (Supplementary Note 2): one targeting the whole genome29 and one 290 

targeting the variants of the MEGA array (Illumina Inc.). 291 

Reads were trimmed and adapters removed using AdapterRemoval30, and then mapped to the 292 

human reference genome (hg19) using BWA31. Low quality (MAPQ<30) and duplicate reads 293 

were removed using SAMtools32. MapDamage33 was used to visualize misincorporation and 294 

fragmentation patterns, and to rescale the quality of bases likely affected by post-mortem 295 

damage. Confidence intervals of sex determination were calculated following Skoglund et 296 

al.34. MtDNA haplogroups were determined using HaploGrep35. Y-chromosome haplogroup 297 

inference was carried out as in Schroeder et al.36. As the reference panel, we used both the 298 
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Human Origins panel2 and the HGDP dataset genotyped with MEGA-ex (Illumina Inc.). For 299 

principal component analysis, we projected the aDNA samples on the PCA space built with 300 

the modern dataset, using smartpca37 and LASER38. Admixture estimations were done using 301 

ADMIXTURE software21. FST distances were calculated using smartpca37. Identity-by-302 

descent proportions were estimated using PLINK39, and heterozygosity estimations using a 303 

newly developed method for low-coverage genomes (Supplementary Note 8). f-statistics 304 

estimates were calculated using admixtools software23. All plots were prepared using R 305 

software40. Detailed information about methods is included in the Supplementary Notes.  306 
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FIGURES  432 

Figure 1. Geographical location (A) and calibrated radiocarbon date (B) of the 433 

samples included in this study, as well as other ancient DNA samples from the 434 

literature.  435 
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Figure 2. Ancestry inference in ancient samples from North Africa and the Iberian 438 

Peninsula. (A) PCA analysis using the Human Origins panel, (B) ADMIXTURE 439 

analysis using the HGDP-MEGA dataset (K=5), (C) ADMIXTURE analysis using 440 

the Human Origins dataset for modern and ancient populations (K=8), and (D) 441 

detailed ADMIXTURE analysis for European Neolithic samples (K=8). 442 
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Figure 3. Outgroup f3-statistic for IAM (A), KEB (B) and TOR (C), and admixture 445 

f3-statistic for KEB (D). 446 
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Table 1 - Sum
m

ary statistics for N
orth A

frican and Iberian sam
ples. 
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