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1 Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
2 Department of Statistics, University of Washington, Seattle, WA, USA.
3 Department of Statistics, University of British Columbia, Vancouver, BC, Canada.
4 Department of Molecular Oncology, British Columbia Cancer Research Center, Vancouver,
BC, Canada.
5 Department of Pathology, University of British Columbia, Vancouver, BC, Canada.

* sshah@bccrc.ca

Abstract

Accurate detection and classification of somatic single nucleotide variants (SNVs) is important in defining the
clonal composition of human cancers. Existing tools are prone to miss low prevalence mutations and methods for
classification of mutations into clonal groups across the whole genome are underdeveloped. Increasing interest in
deciphering clonal population dynamics over multiple samples in time or anatomic space from the same patient is
resulting in whole genome sequence (WGS) data from phylogenetically related samples. With the access to this
data, we posited that injecting clonal structure information into the inference of mutations from multiple samples
would improve mutation detection.

We developed MuClone: a novel statistical framework for simultaneous detection and classification of
mutations across multiple tumour samples of a patient from whole genome or exome sequencing data. The key
advance lies in incorporating prior knowledge about the cellular prevalences of clones to improve the performance
of detecting mutations, particularly low prevalence mutations. We evaluated MuClone through synthetic and real
data from spatially sampled ovarian cancers. Results support the hypothesis that clonal information improves
sensitivity in detecting somatic mutations without compromising specificity. In addition, MuClone classifies
mutations across whole genomes of multiple samples into biologically meaningful groups, providing additional
phylogenetic insights and enhancing the study of WGS-derived clonal dynamics.

Introduction 1

Genomic accumulation of somatic point mutations, or single nucleotide variants (SNVs) can disrupt the regular 2

activity of cells and may result in cancer initiation and progression. Collectively, the complete repertoire of SNVs 3

across a cancer genome (numbering in the thousands) form a statistically robust marker for inferring clonal 4

populations and studying tumour evolution. As such, accurate detection of all somatic SNVs, including those 5

with low prevalence, is vital as they can define clones with phenotypic properties of interest. Mechanistic 6

association of specific clones with properties such as treatment resistance, metastatic potential and fitness under 7

therapeutic selective pressures remains a key objective of biomedical investigators studying tumour progression. 8

Phylogenetic analysis can encode the evolutionary lineage of tumour cells across time and anatomic space 9

[7, 10, 14, 16, 17, 23, 25]. [6] sequenced multiple spatially separated samples from renal cell carcinomas and 10

related metastatic sites to reveal the evolutionary patterns. Samples were related through phylogenetic analysis 11

and distinguished at a coarse level mutations that were shared and ancestral from those that occurred in subsets 12

of cells. In a subsequent lung cancer study, 25 regions from seven non-small sections of malignant patients were 13
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sequenced [2] and more recently the TRACERx study involving 100 lung cancer patients with 3 samples per 14

patient has reported genomic instability as a determinant of treatment response [10]. Our recent work has 15

determined clonal population dynamics over time in breast cancer xenografts [5], follicular lymphoma timeseries 16

sampling across clinical trajectories [14] and anatomic space in intraperitoneal sites of primary high grade serous 17

ovarian cancer [16], showing that the relative composition of constituent clones in multi-sample studies provides 18

major insight into disease spread. 19

In the limit case, all cells likely harbour unique genomes, however due to the nature of branched evolutionary 20

processes, clones can be coarsely modeled as major clades in the cell lineage phylogeny of a cancer. These clades 21

share the majority of mutations, and therefore define first approximations to the genotypes of clones. Clonal 22

genotypes and their relative abundances in the cancer cell population can be approximated by clustering 23

mutations measured in bulk tissues and estimating the cellular prevalences (the variant fraction of tumour cells) 24

[20, 26]. 25

Phylogenetic algorithms mostly use mutations (represented as binary genetic markers), as inputs to infer the 26

branched evolutionary lineages of tumour cells [3, 18]. Thus, accuracy of mutation detection will impact the 27

performance of phylogenetic inference algorithms. 28

Detection of low prevalence mutations is a major challenge due to weak signal to noise ratio, owing to: (i) 29

impure samples which are contaminated by normal cells, (ii) copy number alteration of the genome, and (iii) the 30

presence of mutations in only a fraction of tumour cells (intra-tumour heterogeneity). We assert in this work that 31

prior knowledge of clonal population structure will improve detection of mutations defining low prevalence clonal 32

genotypes. 33

0.1 Previous work 34

SNV calling algorithms are ubiquitous in the literature, but the problem remains challenging particularly for 35

detecting low prevalence mutations. Algorithms have been developed for calling mutations from a single sample 36

[8, 13], paired (matched normal and tumour) samples [1, 4, 12, 19, 22], or multiple samples [11, 24]. [4] uses a 37

feature based classifier called Mutationseq for calling mutations. The features are constructed from matched 38

paired normal and tumour samples. [22] introduced Strelka a method for somatic SNV and small indel detection 39

from sequencing data of matched normal and tumour samples. It is based on a Bayesian approach which uses 40

allele frequencies for both normal and tumour samples with the expected genotype structure of the normal. [1] 41

proposed Mutect which uses a Bayesian classifier to detect mutations from matched normal and tumour samples. 42

It uses various filters to ensure high specificity. [11] proposed multiSNV which jointly considers all available 43

samples under a Bayesian framework to improve the performance of calling shared mutations. [21] and [24] refine 44

and correct the SNV calls from GATK [15] using the phylogeny information across multiple samples. 45

0.2 Our contribution 46

In MuClone, we exploit prior knowledge of tumour clone prevalence information and copy number inference 47

across multiple samples to improve the performance of detecting mutations, with the goal of better detecting low 48

prevalence clones. In this contribution, the clonal information is provided by running PyClone on the data 49

[16, 20], and copy number information is estimated by TITAN [9]. However we note that the model can be 50

applied to clonal and copy number data obtained from any method. In addition, Muclone classifies mutations 51

into clusters sharing similar cellular prevalence which provides the opportunity of profiling their dynamic across 52

time or space and adds a rich layer of interpretation into the detection process. 53

We tested MuClone through simulation studies and an application to real, multiple sample, patient data. 54

These experiments reveal that incorporating the cellular prevalences of different clones improves accuracy. 55

Moreover, in real data MuClone exhibits higher sensitivity in detecting mutations without compromising 56

specificity compared with other methods. 57
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1 Notation 58

We begin by introducing notation used in the MuClone model. For each locus n = 1, . . . , N , the samples are 59

indexed from m = 1 . . .M . 60

We assume that bulk tumour DNA arises from three populations: (i) normal cells; (ii) malignant cells without 61

a mutation of interest (reference); and (iii) malignant cells with the mutation of interest (variant). The genotype 62

for locus n is denoted gnN , g
n
R, g

n
V , for normal, reference, and variant populations, respectively. 63

The symbol A denotes the allele that matches the reference genome; conversely, the symbol B denotes the 64

allele that does not match. Since human genomes usually have two copies of DNA content, the genotype of a 65

diploid locus is one of AA, AB or BB. If there is a coincident copy number alteration, the possible genotypes 66

change accordingly. Each of the genotype variables gnN , g
n
R, g

n
V take values in 67

G = {−, A,B,AA,AB,BB,AAA,AAB, . . .}, for example, the genotype AAB refers to a genotype with two 68

reference alleles and one variant allele. At each locus n of sample m, the genotype state is represented as the 69

ordered list ψn
m = (gnN , g

n
R, g

n
V ) ∈ G3, which represents the genotype in each population. 70

For example, c(AAB) = 3 and b(AAB) = 1. The symbol − denotes the genotype with no alleles, in other 71

words, a homozygous deletion of the locus. 72

In sample m, dnm is the total number of reads aligned (read depth) at locus n and bnm is the number of aligned 73

reads with B alleles. The tumour content, defined as the fraction of cancer cells in sample m, is denoted by tm. 74

We subdivide cancerous cells into cells from the variant population and those that are from the reference 75

population. The proportion of cells that are from variant population is called the cellular prevalence. 76

Previously known clonal information from, for example, PyClone [16, 20] is encoded in an ordered list 77

Π′ = (Φ′, τ ′). The cellular prevalence is recorded in the M ×K matrix Φ′, where the (m, z) element, φzm, 78

represents the cellular prevalence of the mth sample and zth clone. The K-vector τ ′ represents prior the clonal 79

prevalence. In PyClone’s case, the clonal prevalence of the zth clone is the empirical proportion of the number of 80

mutations in the zth clone to the total number of mutations clustered. Since our interest lies in calling mutations, 81

and many statistical models for inference of clonal population structure, including PyClone, only consider 82

somatic mutations, we extend Π′ to include a wildtype clone z = 0 and denote the resulting list as Π = (Φ, τ ). In 83

particular, we add a column of wildtype cellular prevalences to Φ′ to create Φ, and add a wildtype clone 84

prevalence to the vector τ ′; τ is formed by normalizing (τ0, τ
′). 85

2 MuClone 86

MuClone uses previously known cellular prevalence information to improve mutation detection and classification. 87

For each sample, MuClone detects mutations from joint analysis of multiple samples. We encode this process in a 88

generative probabilistic framework to perform joint statistical inference of multiple observations (from multiple 89

samples) of the variant allele counts of a mutation of interest. 90

The probabilistic graphical model of MuClone is depicted in Figure 1. 91

2.1 Model definition 92

For simplicity, we first assume that the number of reads containing the variant alleles at a given locus follows a
Binomial distribution with genotype specific variant probability p(g) and read depth dnm

bnm|dnm, p(g) ∼ Binomial (dnm, p(g)) . (1)

The variant probability p(g) : G → [0, 1] is defined as 93

p(g) =


b(g)
c(g) b(g) 6= 0, b(g) 6= c(g)

ε b(g) = 0

1− ε b(g) 6= 0, b(g) = c(g)

, (2)

where g is the genotype and ε > 0 is a small positive constant that accounts for sequencing error. It allows for 94

non-zero variant reads, due to sequencing error, when there are no variant alleles in genotype g. 95
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However, since the sequenced reads are independently sampled from an infinite pool of DNA fragments, each 96

read may belong to the normal, reference, or variant population. Therefore, using a single genotype state, g, 97

introduces error into our analysis. To account for this fact, we consider using the full genotype state, ψn
m, at a 98

given locus n to model the number of variant reads. 99

The variant allele probability for the nth locus in the mth sample from the zth clone, denoted by 100

ξ(ψn
m, φ

z
m, tm), is proportional to the sum of the (properly scaled) variant probabilities from each population: 101

ξ(ψn
m, φ

z
m, tm) ∝ (1− tm)c(gN )p(gN ) +

tm(1− φzm)c(gR)p(gR) +

tmφ
z
mc(gV )p(gV ), (3)

where the first term (1− tm)c(gN )p(gN ) is proportional to the probability of sampling a read containing variant 102

allele from the normal population, and the second and third terms, tm(1− φzm)c(gR)p(gR) and tmφ
z
mc(gV )p(gV ), 103

are proportional to the probabilities of sampling a read containing variant alleles from the reference and variant 104

populations, respectively. 105

Considering the full genotype state, the number of reads containing the variant alleles at a given locus n that 106

belongs to clone Zn follows a Binomial distribution with probability 107

p(Zn) =

{
ε if Zn = 0

ξ(ψn
m, φ

z
m, tm) if Zn = z and z ∈ {1, . . . ,K},

(4)

where ε accounts for sequencing error in wildtype clone and ξ(ψn
m, φ

z
m, tm) is the variant alleles probability for 108

nth locus, mth sample from zth clone. According to Equation (3), tumour content and cellular prevalence 109

information which is encoded in Π, are incorporated to estimate ξ(ψn
m, φ

z
m, tm). 110

Since empirical evidence shows that variant read data is overdispersed, we replace the Binomial model (1)
with a BetaBinomial model

bnm|dnm, p(Zn), s ∼ BetaBinomial (bnm|dnm, p(Zn), s) , (5)

where p(Zn) is the expected variant alleles probability and the hyperparameter s is the precision parameter of 111

the BetaBinomial distribution. The BetaBinomial distribution in Equation (5) assigns a small chance for 112

mutation when the locus is wildtype, otherwise it is governed by the prior clonal information. 113

To fully express our model, for each locus, we assume the genotype state follows a categorical distribution
with probability vector πn

m ∈ [0, 1]|G| whose ith element is the probability of the ith genotype state

ψn
m|πn

m ∼ Categorical (πn
m) . (6)

The number of possible genotype states, denoted by |G|, is finite given the copy number information. For 114

simplicity, we assume every element of πn
m is equal to 1

|G| . 115

In addition, we also assume that the clonal assignment of a locus, denoted by Zn, follows categorical
distribution with probability vector τ :

Zn|τ ∼ Categorical (τ ) . (7)

Our probabilistic framework can be succinctly written as

bnm|dnm, p(Zn), s ∼ BetaBinomial (bnm|dnm, p(Zn), s) ,

ψn
m|πn

m ∼ Categorical (πn
m) ,

Zn|τ ∼ Categorical (τ ) .

(8)
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dnm bnm ψn
m πn

m

tm

sε

Zn

Π

m = 1 . . .M

n = 1 . . . N

Figure 1. Probabilistic graphical model of MuClone: white nodes are unobserved variables; grey shaded nodes
are observed variables; golden nodes are external information. The variables m ∈ {1 . . .M} and n ∈ {1 . . . N}
index the samples and the loci respectively. In sample m, dnm is the total number of reads aligned at locus n
and bnm is the number of aligned reads with B alleles. The genotype state is ψn

m and πn
m is the prior over the

genotype states. The tumour content of sample m is tm and the error rate is ε. The parameter s stands for the
precision parameter. The clonal information is Π and the variable Zn denotes the mutation clone.

2.2 Inference 116

Based on the generative model introduced in (8) mutations are inferred via the posterior probability distribution
of a locus n belonging to clone z, P (Zn = z|bnm, dnm, s) is:

∝ τz
M∏

m=1

∑
i∈I

πn
miL(Zn = z|bnm, dnm, s), (9)

where the variable i indexes πn
m over the genotype states, I = {1 . . . |G|}. The posterior probability of locus n 117

belongs to clone z is proportional to the likelihood of observing bnm number of nucleotides matching the variant 118

alleles times the prior over tumour clone z. The likelihood function, L(Zn = z|bnm, dnm, s), is the BetaBinomial 119

distribution defined in (5). 120

Based on basic decision theory, a decision can be extracted from a posterior distribution given a loss function.
Under the loss function `(z, z′) = 1[1[z = 0] 6= 1[z′ = 0]], the decision is simply the maximum a posteriori (MAP).
That is, if the probability η of belonging to any of the tumour clones is greater than 0.5, we conclude that the
locus is mutated in at least one of the M samples. The value of η is

η =
K∑

z=1

P (Zn = z|bnm, dnm, s).

If locus n is mutated in at least one of the M samples, then the probability of mutation in each sample is
calculated separately as

Pn
m(mutant) =

∑
j∈J∗

m

P (Zn = j|bnm, dnm, s), (10)

where J∗m is the set of clones of sample m whose cellular prevalences are greater than a fixed positive threshold 121

called ΦT , 122

J∗m = {j | φjm > ΦT }.
The threshold ΦT distinguishes the clones of sample m in which their non-zero cellular prevalence are due to 123

actual variant alleles. The default value of ΦT is zero. However, depending on the method used for estimating 124
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cellular prevalences, it can be set to another positive value, if some non-zero input cellular prevalences indicate 125

wildtype clones. 126

In addition, MuClone assigns the locus to clone z∗ that maximizes

z∗ = argmax
z∈{1,...,K}

(P (Zn = z|bnm, dnm, s)) . (11)

This classifies mutations to one of the previously known clones. The classification of mutations helps in biological 127

interpretation and phylogenetic analysis of the data. 128

3 Experimental Result 129

We evaluated MuClone on both synthetic and real data. 130

3.1 Synthetic data 131

3.1.1 Data generation 132

Synthetic data was generated for N number of loci, and M samples. We varied the number of tumour clones, K, 133

sequencing error rate, ε, and tumour content, tm, for each sample. 134

The cellular prevalences of tumour clones were sampled from a Uniform distribution over the closed interval 135

[0, 1] such that all clones are not present in all samples. Loci were randomly assigned to different clones. Then, 136

for each locus in each sample, the coverage was sampled from a Poisson distribution with the mean dm. Wildtype 137

copy number was deterministically set to 2 and a copy number profile (major and minor copy number) was 138

generated by the following steps: First, total copy number, Ct, was sampled from integers between 1 and Cmax. 139

Second, an integer number, Cb, was randomly picked from 1 to Ct and Ca was defined as Ca = Ct − Cb. Last, 140

major copy number was set to the maximum of Cb and Ca; minor copy number was set to the minimum of those 141

two values. Then, corresponding to each clone, the number of variant reads were sampled from the 142

Beta-Binomial distribution described in Equation (5). 143

3.1.2 Synthetic data evaluation 144

We simulated synthetic data for 200 loci from 4 samples of a patient, with 10 underlying clones, including an 145

ancestral clone. The maximum copy number was 5, and error rate was 0.01. The average depth of sequencing 146

was assumed to be 100. This process was repeated 10 times in order to compute distributions over accuracy 147

metrics. The distribution over clone prevalences in multiple samples across different runs, and the cellular 148

prevalence of samples in a random experiment are depicted in Figures S1 and S2 respectively. As shown, similar 149

to real data scenario, not all of the clones are present in all of the samples. 150

We began evaluation by investigating the effect of systematically ‘shielding’ MuClone from clonal information 151

(Figure 2). Clonal information was perturbed by (i) adding noise to the cellular prevalences of tumour clones, or 152

(ii) removing clonal information. The noise was generated from a normal distribution with different standard 153

deviations (sd): 0, 0.01, 0.1, and 0.25. The noise value was randomly either added to or subtracted from the 154

cellular prevalence of the clone, while bounding the resulting value between 0 and 1. 155

As expected, both sensitivity and specificity were highest when clonal information was most complete and 156

most accurate (Figure 2). This suggests that clonal information can indeed improve the accuracy of detecting 157

mutations and establishes the theory of MuClone’s approach. Furthermore, sensitivity and specificity were only 158

marginally impacted by the added noise in the clonal information, suggesting MuClone should be able to cope 159

with the modest levels of erroneous information in the prior. 160

Naturally, accuracy was most severely impacted when the least amount of clonal information was input 161

(Figure 2). For different sd values, the sensitivity and specificity of removing various number of clones were 162

compared through Kruskal-Wallis test (p values ≤ 4e−5 and ≥ 1e−9) which shows the change in performance is 163

significant when perturbing the quantity and quality of clonal information. 164

We next explored how sensitivity and specificity changes as a function of the wildtype prior and ΦT values 165

(Figure 3). We generated data by setting the wildtype prior at 0.5, 0.75, and 0.99; and ΦT at 0.001, 0.01, 0.02, 166
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Figure 2. MuClone’s sensitivity and specificity with inaccurate clonal information. The synthetic data is
generated for 200 loci from 4 samples of a patient, with 10 underlying clones. Maximum copy number is 5, and
error rate equals 0.01. The average depth of sequencing is about 100. Noise sd is the standard deviation of noise
added to (or subtracted from) the clones cellular prevalences. Removed clone is the number of clones that their
clonal information is not accessible to MuClone. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error
rate is 0.01, tumour content is 0.75, and precision parameter equals 1000.

0.03, 0.04, and 0.05. MuClone’s sensitivity and specificity were near 1 for ΦT about 0.02. Sensitivity dropped 167

with higher ΦT because mutations were miscalled as wildtypes and specificity dropped with lower ΦT because 168

wildtypes were miscalled as mutations. The optimal ΦT was about 0.02 when wildtype prior equals 0.5. These 169

parameters were used in the following experimental results. 170

The performance of MuClone was tested with various tumour content (from 0.1 to 0.99) and different error 171

rates (0.01 and 0.001) (Figure 4). For samples with tumour content greater than 0.5, sensitivity remained slightly 172

less than 1 and specificity near 1. Sensitivity and specificity dropped to only about 0.9 when the tumour content 173

in the sample was as low as 0.1, establishing promising performance over different ranges of tumour content with 174

different error rates (likely scenarios in real data). 175

Figure 5 demonstrates how well the mutations were classified by MuClone. The input clonal information had 176

been perturbed by adding noise with standard deviation of 0.01 to simulate a more realistic scenario. In 177

Figure 5(a), each bin (i, j) shows the number of mutations belonging to clone i that MuClone classified them into 178

clone j, divided by the total number of mutations. Figure 5(a) shows 89% of mutations were classified into the 179

right clone as the diagonal elements are larger than the other ones. 180

In order to show that the classification errors have occurred between clones with small phylogenetic distance,
we define misclassification index calculated as below:

Misclassification index =

∑
i 6=j q(i,j) ×

dist(i,j)−distmin
i

distmax
i −distmin

i∑
i 6=j q(i,j)

,

where q(i.j) is the number of mutations in clone i that have been classified into clone j. The Euclidean distance 181

between the cellular prevalences of clone i and j is dist(i,j). The distance of the closest and farthest clone to 182

clone i is denoted by distmin
i and distmax

i respectively. In Figure 5(b), small misclassification indexes 183

demonstrate that misclassified mutations occur between close clones which can be interpreted as recently 184

separated clones considering their phylogeny. 185
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Figure 3. MuClone’s sensitivity and specificity at three different wildtype prior and six different ΦT values.
The synthetic data is generated for 200 loci from 4 samples of a patient, with 10 underlying clones. Maximum
copy number is 5, and error rate equals 0.01. MuClone’s parameters: error rate is 0.01, tumour content is 0.75,
and precision parameter equals 1000.
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Figure 4. MuClone’s sensitivity and specificity with two different error rate values and tumour content values
from 0.1 to 0.99. The synthetic data is generated for 200 loci from 4 samples of a patient, with 10 underlying
clones. Maximum copy number is 5. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, and precision
parameter equals 1000.

8/24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191759doi: bioRxiv preprint 

https://doi.org/10.1101/191759


-1 1 2 3 4 5 6 7 8 9 10

True clone

Wildtype cluster

Cluster one

Cluster two

Cluster three

Cluster four

Cluster five

Cluster six

Cluster seven

Cluster eight

Cluster nine

Ancestral cluster

M
u

C
lo

n
e

's
 c

lo
n

e

(a)

1 2 3 4 5 6 7 8 9 10

Different runs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
is

c
la

s
s
if
ic

a
ti
o

n
 i
n

d
e

x

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Evaluate the classification of mutations in different clones by MuClone. The synthetic data is
generated for 200 loci from 4 samples of a patient, with 10 underlying clones. Maximum copy number is 5, error
rate is 0.01, and noise sd is 0.01. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and
precision parameter equals 1000. (a) Bin (i, j) shows the normalized number of mutations in clone i but classified
in clone j. Diagonal elements show 89% of the mutations are classified correctly. (b) Misclassification index for
10 independent experiment runs.

3.2 Real data 186

We next tested MuClone’s performance on whole genome sequencing data (30X) from multiple tumour samples 187

surgically resected from high grade serous ovarian cancer patients [16]. The samples were obtained from different 188

spatially distributed metastatic sites. Brief details about the number of samples for each patient, sample sites 189

and the number of validated loci for each patient are shown in Table S1. 190

The clonal information and experimentally re-validated mutations status were taken from [16], estimated from 191

running PyClone on the deep targeted sequencing data (>1000x coverage) from the same samples and in three 192

patients with accompanying single cell sequencing data (see Table S16 in [16]). In order to eliminate germlines, 193

loci with any number of variant nucleotides in the corresponding normal sample were removed from the data set. 194

Then, the performance of MuClone was benchmarked against Strelka, MutationSeq, Mutect, MultiSNV and naive 195

MuClone. Naive MuClone is a version of MuClone where no clonal information is provided (which assumes that 196

all mutations are from the ancestral clone). 197

The performance of MuClone is compared with other methods in Figure 6. The Youden’s index, sensitivity
and specificity was averaged across different samples of 7 patients. And each patient’s performance is shown
separately in Figures S3 to S9. Youden’s index is calculated as:

Youden’s index = Sensitivity + Specificity - 1

In aggregate, MuClone outperforms other methods by improving sensitivity without compromising specificity 198

(Figure 6). For each patient, the receiver operating characteristic (ROC) curves are shown in Figures S10 to S16. 199

The detailed number of miscalled loci are listed in Table S2. False negatives are mainly because the WGS data is 200

under-represented (the average depth of the WGS data is about 30X) and lacks any variant alleles that are 201

present in the targeted sequencing data. The false positives are mostly because of technical artefacts. 202

In Figure 6, Strelka, MutationSeq, Mutect and Naive MuClone have lower performance as they do not 203

incorporate the information across multiple samples for calling mutations. We calculated Welch’s t-test for 204

unequal population variances on MuClone and MultiSNV Youden’s index results. The performance of MuClone 205
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Figure 6. The comparison of the Youden’s index, sensitivity and specificity of different mutation detection
methods. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.

was statistically higher than MultiSNV (p-value = 0.0006). Importantly, MuClone improves sensitivity, enabling 206

the detection of more mutations across whole genome. Figure 7 depicts the classification of mutations into clones 207

relative to ground truth, as defined by running PyClone on the data (omitting singleton clusters [16]). Each bin 208

shows the normalized number of mutations. 93% of the elements in Figure 7 are diagonal which means MuClone 209

classifies them correctly. Misclassification index for patient 1 is 0.015 which implies that misclassified mutations 210

are classified into phylogenetically close clones. 211

4 Discussion and Conclusion 212

We studied the use of clonal information for the purpose of somatic mutation detection and classification in 213

multi-sample whole genome sequencing data. The proposed statistical framework uses the clones cellular 214

prevalences and copy number information for detection and classification of low prevalence mutations. MuClone 215

outperformed other popular mutation detection tools while providing the added benefit of classifying whole 216

genome sequencing mutations into biologically relevant groups. Both simulation and real data results showed the 217

cellular prevalences of tumour clones are beneficial information for improving the sensitivity. Importantly, our 218

results suggest improvement in sensitivity can be achieved without compromising specificity. As accuracy of 219

detecting mutations can affect the performance of phylogenetic analysis, we suggest this improvement will impact 220

the field of multi-region sequencing for cancer evolution studies. As the field matures, we expect the method 221

presented here will be incorporated into more analytically comprehensive modelling of whole genome sequencing 222

data when multiple samples are used to infer properties of clonal dynamics. We suggest the next steps are a 223

unified, iterative algorithm that alternates between identifying phylogenetic structure of the constituent clones 224

comprising each tumour sample, and detection of mutations leveraging the new phylogenetic structure. As 225

sequencing costs continue to decrease (e.g. with Illumina’s NovoSeq platform), multi-sample whole genome 226

sequencing of tumours will continue to proliferate as a viable experimental design. Thus, MuClone’s model will 227

be an asset in the arsenal of analytical methods deployed to interpret evolutionary properties of cancer and to 228

gain insights into clonal dynamics in time and space. 229
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Figure 7. Classification of 153 mutations of patient 1 across 6 samples. Bin (i, j) shows the number of mutations
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parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000. 93% of the
elements are diagonal.
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Figure S1. Distribution of the cellular prevalence of clusters across different samples in multiple runs.
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Figure S2. Distribution of the cellular prevalence of clusters across different samples in one random run.
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Figure S3. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 1. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.
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Figure S4. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 2. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.
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Figure S5. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 3. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.

16/24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191759doi: bioRxiv preprint 

https://doi.org/10.1101/191759


S6 Figure

P4a P4c P4e P4g P4i
0.0

0.2

0.4

0.6

0.8

1.0

V
a

lu
e

Youden

P4a P4c P4e P4g P4i

Sensitivity

P4a P4c P4e P4g P4i

Specificity

Method

MuClone

MultiSNV

Mutect

Naive MuClone

Strelka

MutationSeq

Figure S6. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 4. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.
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Figure S7. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 7. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.
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Figure S8. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 9. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.
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Figure S9. The comparison of Youden’s index, sensitivity and specificity of different mutation detection methods
for patient 10. MuClone’s parameters: Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter
equals 1000.
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Figure S10. MuClone’s Roc curves and the area under the curve (AUC) for patient 1. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.
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Figure S11. MuClone’s Roc curves and the area under the curve (AUC) for patient 2. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.
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Figure S12. MuClone’s Roc curves and the area under the curve (AUC) for patient 3. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.
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Figure S13. MuClone’s Roc curves and the area under the curve (AUC) for patient 4. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.
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Figure S14. MuClone’s Roc curves and the area under the curve (AUC) for patient 7. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.

22/24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191759doi: bioRxiv preprint 

https://doi.org/10.1101/191759


S15 Figure

0.0 0.5 1.0

False positive rate

0.0

0.5

1.0

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC curve

 Sample 

P9a, AUC=0.95568

P9c, AUC=0.96507

P9e, AUC=0.93281

P9g, AUC=0.90364

P9i, AUC=0.89590

Figure S15. MuClone’s Roc curves and the area under the curve (AUC) for patient 9. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.
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Figure S16. MuClone’s Roc curves and the area under the curve (AUC) for patient 10. MuClone’s parameters:
Wildtype prior is 0.5, ΦT is 0.02, error rate is 0.01, and precision parameter equals 1000.
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