
  
Enabling Precision Medicine via standard communication of NGS 

provenance, analysis, and results 
 
Gil Alterovits2,3,4, Dennis Dean9, Carole Goble11, Michael R. Crusoe16, Stian Soiland-Reyes11, Amanda Bell5,6,Anais 
Hayes5,6, Charles Hadley King5,6, Dan Taylor20, Elaine Johanson1, Elaine E. Thompson1, Eric Donaldson1, Hiroki 
Morizono7, 22, Hsinyi S. Tsang13, 14, Jeremy Goecks10, Jianchao Yao19, Jonas S. Almeida8, Konstantinos Krampis23, 24, 
Lydia Guo17, Mark Walderhaug1, Paul Walsh15, Robel Kahsay5,6, Srikanth Gottipati21, Toby Bloom12, Yuching Lai18, 

Vahan Simonyan1*, Raja Mazumder5,6* 
 
1 US Food and Drug Administration, Silver Spring MD 20993, United States of America  
2 Harvard/MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA 
3 Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA 
4 Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Boston, MA 02139, USA, 
5 Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 

20037, USA 
6 McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, USA 
7  Department of Genomics and Precision Medicine, The George Washington University, Washington DC 20037, USA 
8 Stony Brook University, School of Medicine and College of Engineering and Applied Sciences, Stony Brook, NY 11794, 

USA 
9 Seven Bridges, Cambridge MA, 02142, USA 
10 Computational Biology Program, Oregon Health & Science University, Portland OR, 97239, USA  
11 School of Computer Science, The University of Manchester, Manchester, M13 9PL, UK  
12 New York Genome Center, New York, NY 10013, USA  
13 Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 

Gaithersburg, MD, USA 
14 Attain, LLC, McClean, VA, USA 
15 Nsilico Life Science, Nova Center, Belfield Innovation Park, University College Dublin, Dublin 4, Ireland 
16 Common Workflow Language Project, Vlinius, Lithuania  
17  Wellesley College, Wellesley, MA 02481, USA 
18   DDL Diagnostic Laboratory, 2288 ER, Rijswijk, Netherlands 
19  MRL IT , Merck & Co., Inc., Boston, MA, USA 
20     Internet 2, 1150 18th St. NW, Washington, DC 20036, USA 
21   Think Team, Otsuka Data Sciences, Ostuka Pharmaceutical Development and Commercialization, Inc. (OPDC), USA 
22     Center for Genetic Medicine Research, Children's National Medical Center, Washington DC 20010, USA 
23    Department of Biological Sciences, Hunter College of The City University of New York, USA 
24     Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA 
 
*Corresponding authors 
  
Abstract. Precision medicine can be empowered by a personalized approach to patient care based on the patient 's unique 
genomic sequence. To be used in precision medicine, genomic findings must be robust, reproducible, and experimental data 
capture should adhere to FAIR Data Guiding Principles. Moreover, precision medicine requires standardization that extends 
beyond wet lab procedures to computational methods. 

Rapidly developing standardization technologies improves communication of genomic sequencing by introducing concepts such 
as error domain, usability domain, validation kit, and provenance information. These advancements allow data provenance to be 
standardized and ensure interoperability. Thus, a resulting bioinformatics computation instance that includes these advancements 
can be easily communicated, repeated and compared by scientists, regulators, clinicians and others, allowing a greater range of 
practical applications. 

Advancing clinical trials, precision medicine, and regulatory submissions requires an umbrella of standards that not only fuses 
these elements, but also ensures efficient communication and documentation of genomic analyses. Through standardized 
bundling of HTS studies under an umbrella, regulatory agencies (FDA), academic researchers, and clinicians can expand 
collaboration to drive innovation in precision medicine with the potential for decreasing the time and cost associated with NGS 
workflow exchange, including FDA regulatory review submissions. 

Keywords: BioCompute Objects, high-throughput sequencing, HTS. NGS, regulatory review, CWL, FHIR, GAG4H, HL7, and 
research objects 
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Introduction 
Genomics is a key tool for enabling precision medicine [1]. Thus, evidence based and precision medicine practice 
must capture the process of producing, sharing and consuming genomics information. Capturing, the process of 
genomic data generation will empower individuals, research institutes, clinical organizations, and regulatory 
agencies to evaluate and trust the reliability of biomarkers generated from complex analyses (e.g. presence of a 
specific variant). The ability to share sequence data and derived features for research provides insight into disease 
genetics, as demonstrated by large-scale projects like the Human Genome Project[2], The Cancer Genome Atlas 
(TCGA)[3], the 1000Genomes project[4, 5] and the International HapMap Project[6]. Efforts to promote data 
sharing structures for genome-wide association studies (GWAS) offer additional benefits, as seen in the National 
Center for Biotechnology Information’s (NCBI) Database of Genotypes and Phenotypes (dbGaP)[7] and ClinVar[8] 
as well as LD Hub, a centralized database of GWAS results for diseases/traits[9]. 
 
Modern methods to sequence and analyze large genomes have plummeted from high-throughput sequencing (HTS) 
costs. The cost for HTS has fallen from $20 per base in 1990 to less than $.01 per base in 2011, creating a mass 
accumulation of data[10]. Lower costs of HTS data generation increase the availability of data, expediting more and 
more types of analyses. Without a universal standard for communication, we quickly encounter the “Tower of 
Babel” problem of diversified languages and mass miscommunication. As such, a common HTS computational 
workflow standard for genomic sequencing bridges gaps and can be used in basic and clinical research diagnosis and 
prognosis, and in the development of companion diagnostics for novel therapeutics[11]. Furthermore, 
benchtop genome sequencers such as the small factor Illumina MiSeq or MiniSeq, are revolutionizing genomics by 
enabling access to HTS technology for smaller, independent laboratories in basic genetics and molecular biology 
research. This has resulted in generation of additional sequencing data by a large community of researchers, which 
are the fringe of the large-scale sequencing hubs, but still face similar bioinformatics bottlenecks in regards to 
analysis of their data. 
 
Research in HTS-based methodologies has developed from sequence-based projects to more complex studies that 
examine genomes for genetic markers of diseases, vaccines, bacterial/viral strain identification, food contamination, 
etc.[12]. There is also a drive towards a multi-omics approach, where the integration of HTS data with other omics 
data sets can provide deeper insights into functional and /or systems biology of diseases and more accurate analyses. 
In recent years, there has been a focus on novel drug development and precision medicine research to create 
innovative, reliable, and accurate -omics-based (i.e. genomics, transcriptomics, proteomics) tests[13]. These 
initiatives allow different data sources to interact, advancing genomic analyses. However, standards for 
bioinformatic workflows should be established so information derived from data analyses, downstream of the 
original data producer, can be reproduced and validated for specific precision medicine use cases[14].  
 
The U.S. Food and Drug Administration (FDA) have been working to standardize their computational and review 
processes for HTS and next generation sequencing (NGS) data. Regulation spurs innovation, improves regulatory 
decision-making, and provides safe and effective treatments[15]. Before gaining approval for clinical use, the FDA 
must clearly understand the bioinformatics analysis steps and computations, in case the analysis needs to be 
reproduced for a regulatory decision [16]. Therefore, the experimental results and the computational steps need to be 
understandable and reproducible to facilitate robust scrutiny and validation.  
 
The National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH) has 
supported the creation of 64 CTSA Program Hubs. These hubs are designed to speed the transition of discoveries 
from bench to bedside and are encouraged to share tools and best practices amongst each other using mechanisms 
such as the Trial Innovation Network[17] and the SMART IRB platform[18]. The increased utilization of NGS in 
clinical trials both to stratify study populations and to identify the genomic bases of diseases means clearly verifiable 
and reproducible workflows are essential. The need for standardization becomes especially critical for integrating 
genomic and clinical information in patients with rare diseases. Another pressing need for establishing 
reproducibility is in performing meta-analyses. We now can create large scale data lakes of genomic information, 
and reprocessing raw data obtained from multiple contributors using identical workflows with the same toolsets 
ensures higher quality information.    
 
 Robustness and reproducibility depend not only on the wet lab protocols, but also on the computational workflows, 
pipelines, versions, environments, and parameters used in the process[19]. Rapid increases in availability of -omic 
data[20] and analysis of other biomedical data has created a bottleneck in downstream analysis, technological 
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advances, and critical community data communication[21]. To facilitate comprehension and comparison, standard 
reporting of detailed, traceable computational results needs to be implemented. These provenance pieces would be 
ideal for use across disciplines in publications, clinical trials, potential FDA submissions, and post-marketing 
surveillance. Capturing data provenance is crucial to improve methods of combining various sources and volumes of 
data efficiently and accurately[22]. Consistent reporting methods allow computational results to be shared more 
widely, save time and money previously used to reproduce results, and ensure validated methods include sufficient 
information for precision medicine applications[20].  
 
Current standards already exist to capture genomic sequencing information and provenance: Fast Healthcare 
Interoperability Resources (FHIR)[23] and organizations such as Global Alliance for Genomics and Health[24] 
(GA4GH) communicate genomic information; these cater towards specific community domains. The Common 
Workflow Language (CWL)[25] and Research Objects (RO)[26] capture reproducible workflows in domain 
agnostic manner. Both Research Objects and FHIR use the W3C standard PROV to represent and interchange 
provenance information generated in different systems and under different contexts (https://www.w3.org/TR/prov-
o/). While each of these models contribute to data sharing and generate robust and reproducible data, each holds a 
piece of the necessary description, requiring a universal framework.  
 
BioCompute Object (BCO) unites these standards to provide framework of provenance reporting for genomic 
sequencing data analysis in the context of FDA submissions and regulatory review[3]. BCOs provide a new 
harmonizing approach designed to satisfy FAIR Data Principles[23] in the regulatory and research needs for 
evaluation, validation, and verification of bioinformatics pipelines[6, 11, 14]. 
 
In this paper, we will focus on how the FHIR, GA4GH, CWL, and RO standards can be leveraged and harmonized 
by examining the BCO framework. Once established, the BCO framework can be utilized for other types of FDA 
submissions, like large clinical trials, where data provenance in analysis datasets can be difficult to communicate. 
Utilizing the BCO framework will also ensure that when genomic pipelines are verified for accuracy, their 
provenance and appropriate uses will be easily known. As regulation for standards develops, reproducible data and 
interoperability become feasible for clinicians and researchers alike.  Figure 1 provides a schematic of the BCO 
framework. 
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Fig 1. BioCompute Object as a Framework for advancing regulatory science by incorporating 
existing standards 
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Background 
The need for Reproducibility, Repeatability, and Record Keeping in Biomedical Experiments is necessary to 
facilitate interoperability among clinicians and researchers. To ensure validity and accuracy in experimental results, 
replication of data is necessary. With reproducible data processing, we can avoid unnecessary repetition of work and 
expedite regulatory approval like with FDA submissions[12] . The issue of reproducibility is highly relevant to 
current research. The Academy of Medical Sciences hosted a symposium to discuss reproducibility in pre-clinical 
biomedical research that identified multiple causes of reproducibility in research and identified a number of 
measures for improving reproducibility including creating greater openness and transparency, defining reporting 
guidelines, and better uses of standards and quality control measures [27]. Issues of reproducibility  have resulted in 
enormous waste of research effort and have seriously frustrated progress in the life sciences, as highlighted several 
high profile articles[28] [29].  
 
A distinction must be made between repeatability and reproducibility. The terms are similar in that both describe 
how closely repeated measurements of an entity can be expected to agree; both are crucial in designing a clinical 
trial, assessing the quality of laboratory procedures, and analyzing quantitative outcomes[30]. Repeatability and 
reproducibility differ in their testing conditions. While reproducibility uses different instruments to test a hypothesis, 
repeatability uses the same instruments for the technical replicates[30].  
          
Reproducibility is the typical standard by which scientific claims are challenged[31]. With reproducibility, scientists 
can take repeated measurements of a physical quantity under realistic, variable conditions. For this reason, 
reproducibility is just as applicable to experiments or clinical trials as evaluations in analytical technologies and 
methods[32]. In measurement system analysis, repeatability is the number of standard deviations between 
measurements taken under the same conditions. 
 
Some researchers distinguish categories of reproducibility, proposing two types of reproducibility: method 
reproducibility and result reproducibility[33]. The first is defined as providing detailed experimental methods so 
others can repeat the procedure exactly; the latter, also called replicability, is defined as achieving the same results 
as the original experiment by adhering to the methods closely. Method reproducibility depends significantly on the 
completeness of the procedures provided by the researchers. CWL creates a similar starting point for computational 
methods - if scientists gather data in the same computational language, then a large part of provenance model is 
standardized. As such, CWL and provenance tracking allow researchers to more easily track errors and locate 
deviances. Research Objects for workflows go further, describing the packaging of the method, provenance logs and 
associated data and codes with richly described metadata manifests that include the context of the experiment[34]. 
 
Researchers replicate results to eliminate spurious claims and enforce a disciplined approach, but replicating wet-
bench work is often expensive and time-consuming. Complete repeatability is more feasible and superior in 
computational analyses [35]. For relatively lightweight workflows, such as the segmentation of moderately sized 
images in Pathology [36], a solution that is both repeatable and reproducible may be possible and open to 
collaborative identification of a computational object. While analytical repeatability is more straightforward, it still 
faces its own complications[37].  
 
Record-keeping expectations for wet-lab and analytical research differ. Within physical, chemical, and biological 
experiments, environmental and procedural variability have been well accounted for[38]. But within computational 
work, parallel documentation accounting for the variability of parameters, versions, arguments, conditions, and 
protocols of computational biology algorithms and application usage has been documented much less rigorously. 
This lack of documentation is the largest hurdle to effective testing of a computational method[14]. 
Repeatability has proven to be an elusive standard for bioinformatics because of the lengthy and unstandardized 
nature of the studies conducted. For example, a study’s processes could include sequencing biological samples, 
transferring extra-large data files to and from an archival server, and then repeating the computational workflows. 
Though a seemingly straightforward process, immense challenges to the repeatability of the experiment exist, 
including non-standardized file types and sizes, missing data provenance, incomplete computational workflows, 
outdated software versions, and missing/different parameters used. These factors culminate in an analysis that is 
nearly impossible to repeat[39]. 
 
These repeatability difficulties are manifested in practical applications like FDA submission approval. When FDA 
reviewers assess the validity of an experiment’s results, the overall acceptance depends on the repeatability of the 
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data generation and subsequent bioinformatics analyses. For example, some FDA review divisions request that drug 
sponsors submit all NGS data and a detailed description of the experimental protocol. This includes the 
bioinformatics analysis pipelines used, so that the sequence information can be evaluated independently. The 
independent evaluation is to ensure it supports the claims made in the label of newly approved drugs. Currently, the 
repeatability of a NGS data analyses has been difficult due to the challenges described above. Internal analysis 
pipelines have therefore been employed in an attempt to reproduce the data and make comparisons to the results 
provided by the sponsor. By documenting pipeline analysis steps, tool information and parameters, BCOs enable 
reproducible and repeatable pipeline execution. 
 
Universally reproducible data is an outcome to aim for, but current issues remain challenges. Without repeatability 
and analytics standards for NGS/HTS studies, regulatory agencies, academic researchers, pharmaceutical 
companies, and the FDA cannot work together to validate results and drive the emergence of new fields[39]. 
Without industry-wide standards to record computational workflow and the subsequent analysis, many studies are 
not repeatable and not usable in clinical or practical situations. To face these issues, workflow management systems 
and bioinformatics platforms have been developed to track and record computational workflows, pipelines, versions, 
and parameters used. However, these efforts remain haphazard and require BCOs to harmonize them. By tracking 
provenance of data and accurately documenting the trail of processes, BCOs enable reproducible data and increased 
information sharing. 
 
Provenance of Data 
To enable reproducible data, the origin information of the data and its trail must be captured in a standardized 
format. Data provenance refers to data’s derivation history starting from the original sources, namely its lineage. 
Lineage graphs include the source of a piece of data into a database, data movement between databases or 
computational processes, or its generation from a computational process. The complement of data lineage is a 
process audit which provides a historical trail documenting the study, providing snapshots of intermediary states, 
values of configurations and parameters and of traceability of stepwise analytical processing[40]. Such audit trails 
should allow an independent reviewer to audit a computational investigation. Both gather provenance information 
that is crucial to ensure accuracy and validity of experimental results[41]. However, gathering such material is a 
challenge as modern web developments makes data transformation and copying easier, and computational 
workflows become capable of producing reams of fine-grained but not particularly useful trace records. For 
example, the molecular biology field supports hundreds of public databases, but only a handful possess the “source” 
data – the remainder contain secondary views of the source data or views of other publications’ views[42]. 
Computational workflows can accurately collect lineage and process records, but obtaining appropriate granularity 
of the record keeping and ‘black-box’ steps in which inputs and outputs are not transparently connected or key 
processes are hidden remains a challenge[43, 44].  
 
Issues with tracking data origins and the transparent and accurate record of executed process have far reaching 
effects in scientific work. Experiments rely on the confidence of the data’s and the process’s accuracy and validity, 
especially after undergoing complex, multistep processes of aggregation, modeling, and analysis[45]. Computational 
investigations require interactions with adjacent disciplines and disparate fields to effectively discover, access, 
integrate, curate, and analyze a large range and volume of relevant information. These hurdles require a solution 
beyond Open Data to establish Open Science in the community where provenance is preserved and shared to 
provide better transparency and reproducibility[46]. Because these complex analyses heavily rely on accurately 
shared data, standards need to be established to communicate reliable genomic data between databases and other 
scientists, accurately reporting data provenance and process audit. In order to aid this, an active community has 
engaged in provenance standardization [47, 48] e.g. culminating in the W3C PROV[47], used by FHIR and ROs, 
based on the idea of generating an entity target via an agent’s activity. 
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Fig 2. W3C Provenance Specification used in FHIR and ROs. Adapted from http://www.w3.org/TR/prov-primer/ 

 
Workflow management systems have developed to capture analysis processes and bioinformatics platforms to 
capture analysis details, gathering provenance information easily for users, extending PROV where necessary.  
However, greater standardization of these systems is needed and comes in the form of BCOs, which ensure 
provenance is recreated for regulatory approval and that standards such as PROV are appropriately adopted.  
 
Workflow Management Systems 
Scientific workflows have emerged as a model to represent and manage complex distributed scientific computations 
[22]. Scientific workflows capture and link analysis steps and individual data transformations; each step specifies a 
process or computation to be executed (e.g. a software program or a web service to be invoked), and the steps are 
linked by the data flow and dependencies. In addition to the analysis’ steps and data transformations, workflows also 
capture the mechanisms to carry out the steps in a distributed environment, as in the use of specific execution and 
storage resources in this computing environment. A significant amount of work has been done to share workflows 
and experiments [49, 50]. Workflows represent a system to capture complex analysis processes at various levels, as 
well as the provenance information necessary for reproducibility, result publication, and result sharing among 
collaborators[51]. 
 
Workflow management systems act to execute and monitor scientific workflows, coordinating the sequential 
components [52]. Developments in workflow management systems have led to the proposition of using workflow-
centric research objects with executable components[13, 34]. The use of workflow creation and management 
software allows researchers to utilize different resources to create complex analysis pipelines that can be executed 
locally, on institutional servers, and on the cloud [15, 53]. Extensive reviews of current workflow systems for 
bioinformatics are linked [16, 53-55]. Ongoing systems participate in the current trend of moving from graphical 
system back to script-like workflows. These systems are now executed on cloud infrastructure, HPC systems, and 
Big Data cluster-computation frameworks, which allow for greater data reproducibility and portability (see 
Supplementary Info). Workflow management systems capture provenance information, but mostly not in the PROV 
standard. Therefore, BCOs rely on existing regulatory standards like CWL to manage pipeline details; and  ROs and 
FHIR to unify and draw data from workflows to enhance interoperability.  
 
Bioinformatics platforms 
The dramatic increase in NGS technology use has resulted in the rapid increase in scalability needs to store, access, 
and compute reads and other NGS/biomedical data[56]. These technical and physical requirements have led to a 
field-wide call for integrated storage and computational node usage methods. Such integration will minimize data 
transfer costs and remove the bottlenecks found in both downstream analyses and community communication of 
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computational analyses results[57] to build upon existing knowledge. For bioinformatics platforms, communication 
requirements include (a) recording all analysis details such as parameters and input datasets; and (b) sharing analysis 
details so others can understand and reproduce analyses.  
  
To reduce the unprocessed data buildup, several high-throughput [20, 22] cloud-based infrastructures have 
developed including HIVE (the High-performance Integrated Virtual Environment)[57], and Galaxy[58], along with 
commercial platforms from companies like DNAnexus, and Seven Bridges Genomics, among others. High 
throughput computing (HTC) environments deliver large amounts of processing capacity over long periods of time, 
an ideal environment for long-term computation projects, as with genomic research[59]. Current platforms utilize 
distributed cloud computing environments to support extra-large dataset storage and computation, and host tools and 
workflows for germline and somatic variant calling, RNA-seq, microbiome characterization, and many more 
common analyses. These cloud-based infrastructures and tools reduce data silos, converting the data to reproducible 
formats to facilitate communication (see Supplementary Info). Additionally, the National Cancer Institute has 
initiated the Cloud Pilots project, in order to test a distributed computing approach for the multi-level, large-scale 
data sets available on TCGA[3].  
 
Overall, the genomic community has come to acknowledge the necessity of data sharing and communication to 
facilitate reproducibility and standardization[12]. Data sharing is crucial in situations ranging from long term clinical 
treatments to the ability to respond to public health emergencies[60]. As the infrastructure, community accessible 
resources, and data sharing industry policies develop, the need for voluntary, industry-wide standardization across a 
wide range of stakeholders becomes undeniable to ensure that published results are reproducible and robust. 
Extending bioinformatics platforms to include data provenance, standard workflow computation and encoding 
results with available standards through implementation of the BCO would greatly support the exchange of genomic 
data analysis methods for regulatory review. 
 
Discussion 
 
Regulatory Supporting Standards 
Assessment of data submitted in a regulatory application requires clear communication of data provenance, 
computational workflows, and traceability. A reviewer must be able to verify that sequencing was done 
appropriately, pipelines and parameters were applied correctly, and that the final result, like an allelic difference or 
variant call, is valid. Because of these requirements, a clinical trial or any submission supported with NGS results 
can require considerable time and expertise to review. Submission of a BioCompute Object (BCO) would ensure 
that data provenance is unambiguous and that the bioinformatics workflow is fully documented [41, 42, 46]. 
 
To truly understand and compare computational tests, a standard method (like BCO) requires tools to capture 
progress and communicate the workflow and input/output data. As the regulatory field progresses, the following 
methods have been developed and are continually refined to capture workflows and exchange data 
electronically[22].  
 
Biocompute Objects (BCOs) and Their Harmonizing Efforts 
Biocompute Objects (BCOs) were conceptualized to alleviate the disparate nature of HTS computational analysis. 
The primary objective of BCOs is to (a) harmonize HTS computational results and data formats and (b) encourage 
interoperability and success in the verification of bioinformatics protocols; harmonizing the above standards is 
especially applicable to clarify genomics/workflow instance provenance for FDA submissions[35]. Each BCO is 
comprised of information on the arguments and versions of executable programs in a pipeline, references to 
input/output data, a usability domain, keywords, a list of authors, and other important sources of metadata. The 
conceptual schema for BCO creation is built on top of two layers: the data definition framework and the BCO 
framework [38, 39, 61].  
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Fig 3. Generic HTS Platform schematic with proposed BioCompute Object extensions. 
  
  
 The data definition framework contains primitive data type definitions and categorizes them as an atomic type. In 
this case an atomic type is that which cannot be deconstructed any further without losing meaning or some other 
important information, like an integer or character. Complex types are composed of multiple atomic types or even 
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multiple complex types, like a character string. Using these principles, one can construct a datum that has the ability 
to represent any level of complexity needed, with the only constraint being the amount of available storage memory 
or computing power. 
  
When defining a field in a data type, one can place any number of constraints on the data that the field will accept as 
valid. If one were constructing a data type field to hold DNA sequencing information, one could restrain the type of 
characters that field would accept. This further refinement ensures that only the characters used to represent nucleic 
acids would be accepted as input in this field (A, T, C, and G). 
  
The second framework layer defines a derived data type called the “primitive biocompute type.” Extending the same 
principles that allowed one to construct a string representing a DNA sequence from the primitive character type, it is 
possible to construct a data type definition with the absolute minimum fields necessary to create a BCO. By taking 
the primitive BioCompute object type and adding parametric and metadata fields unique to a particular instance, one 
can get the final, unique BCO for the specified workflow and analysis.  
 
The declarative nature of BCOs suggests an implementation with minimal procedural barriers. Though not a 
requirement, the use of schemaless representation in JSON format that does not impede the identification of a 
validating schema accords with the purpose of Compute Objects such as BCOs and FHIR I/O. For an example of 
editable BCO objects[51], see https://mathbiol.github.io/bco. Accessing experimental data and its origin is 
challenging; thus, aligning frameworks that encourage interoperability such as Data Tag Suite (DATS) help attain 
data standards that are easily verifiable, discoverable, reusable and interoperable[62]. DATS is a mechanism that 
enables the data to be easily searchable, findable, and reusable. The BCO takes a snapshot of the whole experiment 
computational procedure where the input data is provided and described in detail along with all the default and 
experimental procedures used in the dataset. The output domain of the BCO includes the results from the experiment 
in the dataset so that any other user can run the exact experiment and produce the same results. The BCO captures 
curated ontologies which are in reviewed and highly maintained databases to ensure that they are easily accessible 
and searchable.  
 
The BCO can serve as an umbrella of standards allowing for standards such as Common Workflow Language 
(CWL), Fast Healthcare Interoperability Resources (FHIR), Global Alliance for Genomics and Health (GA4GH), 
and Research Objects (RO) to be embedded within BioCompute Object fields. Enabling BCOs to incorporate 
existing standards provides a universal framework for including existing advances in workflow and data 
specifications that greatly increase the specificity for which to describe a workflow and the related provenance. 
Moreover, the umbrella approach also supports a minimal effort form based BCO that can be quickly implemented 
allowing for a rapid initial implementation that can evolve overtime to capture the greater specificity made available 
by incorporating existing standards.  
 
The Common Workflow Language (CWL) 
Common Workflow Language (CWL)[63] is an open community-led standard to describe workflow and tools for 
data-intensive sciences (including Bioinformatic and Medical Imaging analyses) with a strong focus on 
reproducibility, reusability, scalability and portability. CWL files can be executed by multiple workflow engine 
implementations, including Toil, Arvados, and Rabix Bunny[64]. These implementations again support execution 
locally, on clusters, and on multiple cloud and HPC environments. 
  
In an effort to standardize, CWL has focused on the current ability of most workflow systems: Execute command 
line tools and coordination of their inputs and outputs in a top-to-bottom pipeline. At the heart of CWL workflows 
are WL tool descriptions. A command line, often with an accompanying Docker container, is described with 
parameters; and linking to and from registries like ELIXIR’s (European Life-sciences Infrastructure for Biological 
Information) bio.tools [65]. These are then wired together in another YAML file to form a workflow template, 
which can be executed repeatedly on any supported platform by specifying input files and workflow parameters.  
 
CWL allows scientists to express their data and workflows in a universal computational language, generating greater 
method reproducibility for the genomic community. A community-specific computing language builds 
standardization from the data producer, avoiding the “Tower of Babel” issue of varied languages causing 
miscommunication. CWL lays the foundation for expression of BCOs, inherently embedding reproducibility in the 
BCO specification.  
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Fast Healthcare Interoperability Resources (FHIR) 
FHIR is an all-encompassing standard for communicating clinical and health information. As such, it includes 
genomic components known as FHIR Genomics API/specification integrated in its core. These genomics 
components evolved from the SMART on FHIR Genomics standard[66] and integrated work of the HL7 Clinical 
Genomics Workgroup, and the standard is based on the requirements of Meaningful Use 3.0. FHIR is an emerging 
standard for Electronic Medical Records (EMRs) and clinical apps being adopted by numerous vendors in the 
healthcare space. Projects based on FHIR Genomics enable lab vendors to share clinical genomic information for 
precision medicine and EMR-based patient information for research studies, such as the NIH’s All of Us program. 
Projects based on FHIR enable both the data and ecosystem to exist for communication of clinical and genomic 
information on individual patients. 
 
Capturing genomic provenance information via FHIR enables clinical trials, research, and clinical interpretations to 
be traceable back to the original methods, workflows, and parameters used. This, in turn, facilitates robust and 
reproducible clinical interpretations of genomics and comparisons to be made across patients in which similar 
methods were used. FHIR utilizes the PROV standard introduced earlier to capture provenance information. 
Practically applied, a clinical genomic sequence entity target can be generated via a particular workflow instance 
activity through a specific laboratory agent. As part of the FHIR Release 3 API/specification, provenance examples 
are constructed that enable the capture of workflows via CWL and workflow instance for potential FDA 
submissions via BCO. FHIR equips clinicians, researchers, and regulators to be able to trace, reproduce, and 
reinterpret/compare genomic data[67]. By communicating clinical information, FHIR lays the groundwork for 
collaboration in BCO implementation, permitting easy sharing of data.  
 
Global Alliance for Genomic Health (GA4GH) 
The Global Alliance for Genomic Health (GA4GH) is a cooperative framework established as a resource for 
genomic research and phenotype sharing [68]. GA4GH was created as a common framework to enable responsible, 
voluntary, and secure sharing of data to advance precision care[69]. It has faced challenges in data aggregation 
procedures, but has demonstrated the potential of a synergistic data sharing culture. To execute data sharing goals, 
GA4GH schemas, which define how to access genomic data, and APIs, which implement these schemas, have been 
created. These schemas facilitate DNA sequence data exchange and use common, user-friendly web protocols to 
overcome incompatible infrastructures [68]. An application of GA4GH is the BRCA Exchange 
(http://brcaexchange.org/), which provides a searchable resource that combines breast cancer-contributing germline 
variants from eight different institutions. Overall, GA4GH is not intended to enforce data standards, but rather 
provides recommendations to influence and persuade the advantages of a collaborative data culture[70]. GA4GH 
enables researchers to communicate their data to clinicians and the FDA. Together with FHIR, GA4GH allows 
BCOs to be utilized in clinical and basic research, and as BCOs are integrated with these specifications, data 
communication and provenance information become interlinked.  
  
Research Objects (ROs) 
Research Objects [http://ResearchObject.org/] is a new publication model that improves reproducibility of scientific 
data by capturing provenance, quality, credit, attribution, and methods[26, 30]. A Research Object (RO) is an 
aggregation mechanism that bundles the method of a computational analysis (e.g. expressed as scripts and 
workflows) and all associated materials, metadata, and annotations using existing Linked Data standards[71]. ROs 
consist of a container of files with a manifest to provide meaningful information about what those files are, what 
they mean, how they relate and provide provenance and versioning information [11]. The containers vary, such as 
Docker, BagIt[72] or the Zip Archive Research Object Bundle [https://w3id.org/bundle/]. Resource content can be 
embedded or referenced externally using URIs, which may require further authentication and allows for greater 
regulation. ROs collect the general data and workflow provenance necessary for reproducibility, acting as a lab 
notebook for computational processes.  
  
ROs have been applied to improve reproducibility of workflows [73] and to describe large datasets [31, 72]. By its 
aggregating nature, ROs go beyond the experimental description to bring together the wider digital context of 
scientific processes and their conduct, including input/output data, methods, software, actors, analysis, 
dissemination, sharing, reuse, and the links/relationships between these gathered resources[74].  
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The wf4ever project[75], which primarily developed the RO model[34],  specified a workflow description 
vocabulary (wfdesc) [https://w3id.org/ro/2016-01-28/wfdesc]  that defines resources associated with a workflow 
specification within a Research Object Framework. The workflow description vocabulary defines three main terms: 
workflow as a process node and data link, process as a software tool that executes specific actions, and data link as a 
tool used to encode dependencies between computational nodes. This vocabulary is the basis for the CWL 
specification[63]: CWL provides the description of the workflow and its means of execution whereas the RO 
provides the description relating the workflow to its provenance, purpose and so forth. The PROV resource (Figure 
2) ontology is also the basis of the RO workflow provenance model wfprov [https://w3id.org/ro/2016-01-
28/wfprov], linking the various specifications (CWL, FHIR, ROs) under a similar basis that provides interoperability 
leveraged by BCOs.  
 
Journal/Peer Review Perspective 
The genomic community has come to acknowledge the necessity of data sharing and communication to facilitate 
reproducibility, standardization and provenance,  reshaping the way  research is conducted, ensuring openness and 
maximum benefit by the scientific community who ultimately is the consumer of the products of a research 
publication[12]. 
  
This issue is clearly exemplified by the lack of interoperability between the web service interfaces of major 
bioinformatics centers, including the National Center for Biotechnology Information (NCBI), the European 
Bioinformatics Institute (EBI) in the UK, DNA Data Bank of Japan (DDBJ)/Kyoto Encyclopedia of Genes, and 
Genomes (KEGG)/Protein Data Bank Japan (PDBj) in Japan. As the centers’ web service models are all based on 
open standards, their databases and computational resources are expected to be interoperable[76]. Despite the large 
amount of data in these services, these centers use their own data type definitions, making it harder for end users and 
developers to utilize these services to create biological analysis workflows[77].  
 
While lack of interoperability is not uncommon in computational biology, significant efforts have been made to 
increase interoperability between web services, standardize exchangeable data types, and adopt compatible 
interfaces for each service[78]. Several projects and workshops have already begun progress to bridge the gap: the 
BioMoby project defined ontologies for data types and methods used in its services, and it provides a centralized 
repository for its service discovery[79]; Open Bio* libraries have been developed for the major computing 
languages i.e. Perl, Python, Ruby, and Java) to maximize bioinformatics web services and to create collaborative 
compatible data models for common biological objects[80]; the EDAM ontology of bioinformatics operations, types 
of data and identifiers, topics and formats used by CWL and workflow ROs[81] the DBCLS BioHackathon 
improves web service interoperability and collaboration between major database centers[78]; and the HTS-CSRS 
Workshop hosted by GWU and the FDA is a cross-disciplinary endeavor that emphasizes standardization of data 
storage and collection, communication of this genetic data, and the necessity of reproducibility of these analyses to 
ensure their potential clinical applications[32]. These are just a few examples of the efforts that combine 
technologies, ontologies, and standards to enhance computational analysis information. The FAIRsharing.org portal 
(formally biosharing.org) for metadata standards in the biosciences has a comprehensive curated catalogue [82]. The 
positive response to improving interoperability indicates the community’s need for such standardization[22] ). 
 
Conclusion 
Robust and reproducible data analysis is key to successful precision medicine and genome initiatives. Researchers, 
clinicians, administrators, and patients are all tied by the electronic information in EHRs and databases. Current 
systems rely on data stored with incomplete provenance records and varying computing languages, creating a 
cumbersome and inefficient healthcare environment.  
 
The initiatives discussed seek to make data and analyses robust and reproducible to facilitate collaboration and 
information sharing from data producers to data users. Increased NGS/HTS sequencing creates data silos of 
unusable data, making standardized regulation of reproducibility more dire. To open the bottleneck of downstream 
analysis, the provenance (or origin) of data plus analysis details (e.g., parameters, workflow versions), must be 
tracked to ensure accuracy and validity. Developing high-throughput cloud-based infrastructures like DNAnexus, 
Galaxy, HIVE, and Seven Bridges Genomics can capture data provenance and store the analyses in infrastructures 
that allow easy user interaction. 
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Platform-independent provenance has largely been ignored in HTS. Emerging standards enable both representation 
of genomic information and linking of provenance information. By harmonizing across these standards, provenance 
information can be captured across clinical and research settings in both the conceptual experimental methods and 
the underlying computational workflows. There are several use cases of such work including submission for FDA 
diagnostics evaluations, as is being done with the BCO effort. Such standards will also enable robust and 
reproducible science to facilitate open science between collaborators. At this juncture, it is imperative to lead the 
development and improvement of these standards to satisfy needs of downstream consumers of genomic information 
to validate and reproduce key workflows and analyses.  
 
The need to communicate HTS/NGS computations and analyses reproducibly has led to increased collaboration 
among disparate players in industry through conferences/workshops that increase exposure to standardization, 
tracking, and reproducibility methods [63, 71]. Standards like FHIR and ROs capture the underlying data 
provenance to be shared in frameworks like GA4GH, enabling collaboration around reproducible data and analyses. 
New computing standards like Common Workflow Language (CWL) can also increase the scalability and 
reproducibility of data analysis. BCOs act a harmonizing umbrella to facilitate data submitted to regulatory agencies, 
increasing interoperability in the genomic field. BCOs are easily generated by bioinformatics platforms that 
automatically pull underlying data and analysis provenance into their infrastructures. Ongoing BCO pilots are 
currently working to streamline the flow to provide users with effortlessly reproducible bioinformatics analyses. As 
BCOs aim to simplify FDA approval, these pilots mirror clinical trials involving NGS data for FDA submissions. 
Fusing bioinformatics platforms and HTS standards to capture data and analyze provenance for BCOs makes, robust 
and reproducible analyses and results an attainable standard for the scientific community.  
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Appendix 
Workflow Management Systems 
bcbio-nextgen [https://github.com/chapmanb/bcbio-nextgen] has a domain-specific language for executing pipelines 
in HTS analysis, in particular variant calling like RNA-seq and small RNA analysis. Unlike other systems, bcbio-
nextgen focuses on the parameters of the pipeline and a choice of algorithms, rather than the declaration of the steps 
and their underlying command lines. Bcbio handles installation of all third party tools and reference datasets 
required for its pipelines. Pipelines can be executed using multiple cores or parallel messaging on a cluster 
environment, which can facilitate high performance schedulers like LSF and SGE. 
 
Snakemake [doi:10.1093/bioinformatics/bts480] is a declarative Python-like workflow language similar to a 
traditional Makefile. Snakemake files contain rules on how to create a particular file by executing a command or 
script and declaring which other files or file patterns the rule depend on, thus implicitly containing the rule execution 
order. The integration with Python simplifies “shim” operations between steps (e.g., handling different genomics file 
formats). The resulting workflow can be effectively executed on a local single-core machine, a multi-core server, or 
scaled to compute-clusters of different architectures. 
 
Nextflow [doi:10.1038/nbt.3820] is a Python-like language for data-driven computational bioinformatics pipelines, 
with a strong focus on reproducibility and scalability. Nextflow uses Docker [https://www.docker.com/] to 
containerize and deploy the third-party tools the workflow relies on. A Nextflow workflow is declared by defining 
processes, which consume and produce messages on asynchronous channels. Channels are then wired together to 
form a workflow, which can be executed efficiently on a multitude of HPC and cloud platforms, including SGE, 
LSF, SLURM, Apache Ignite and Kubernetes. 
 
Toil [doi:10.1038/nbt.3772] can run large-scale scientific workflows on cloud and HPC environments defined in 
either Common Workflow Language (CWL), Workflow Description Language (WDL), or Python Toil scripts. Toil 
jobs can be containerized using Docker and executed on multiple cloud environments (like AWS, Microsoft Azure, 
Google Cloud), in HPC environments using Grid Engine, or on distributed systems using Apache Mesos, with a 
strong emphasis on scalability and portability. 
 
Bioinformatics Platforms 
 
DNAnexus 
Founded in 2009, DNAnexus (www.dnanexus.com) is a global, cloud-based platform for genomic data analysis and 
management. To meet increasing demands for efficient DNA data organization, DNAnexus arose as a tool for quick 
analysis of innumerable raw sequencing data, secure integration of genomic data with clinical infrastructures, and 
increased collaboration among scientists. The platform allows users to custom, port, and reproduce pipelines to the 
cloud-based infrastructure, making the data easily accessible. DNAnexus ensures clinically compliant data is secure 
and auditable. Additionally, DNAnexus facilitates collaboration among colleagues and upstream/downstream 
partners, easing data sharing.  
 
Galaxy 
Started in 2005, Galaxy (https://galaxyproject.org/) is an open-source, web-based platform that enables scientists 
without informatics expertise to perform computational analysis through the Web (Afgan et al. 2016). Existing 
analysis tools are integrated into Galaxy and are available through the consistent Web interface that can be deployed 
on any Unix system. Because the Galaxy software is highly customizable, the platform integrates with a wide 
variety of compute environments, making data processing accessible among users. Automated, multi-step analyses 
can be performed by combining tools into workflows (pipelines), and all analyses are reproducible (Goecks et al. 
2010)(Blankenberg et al. 2010). By bridging the gap between tool developers and scientists, Galaxy helps both 
constituencies accelerate their research. The Public Galaxy Server (https://usegalaxy.org/) is an installation of the 
Galaxy software combined with many common analysis tools, workflows, and data sources. A free resource, the site 
provides substantial compute resources to analyze large datasets, transforming data to reproducible formats. The 
Galaxy Tool Shed (https://usegalaxy.org/toolshed) facilitates sharing of Galaxy tools as a central location where 
developers can upload their tool configurations, allowing greater collaboration for computational analyses. Galaxy 
formats data to be stored, imported, and exported for analyses and open workflows. Galaxy predates the 
implementation of community standards like GA4GH schemas, CWL, and BioCompute Objects, so the platform 
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provides limited support for data standardization. Future developments should standardize Galaxy’s data and 
methods to comply with current community standards. 
 
 
Hive 
The HIVE (Scholz et al. 2012; Simonyan et al. 2017; Metzker 2010; Simonyan & Mazumder 2014) platform is a 
cloud infrastructure that hosts a web-accessible interface that allows users to interact (deposit, share, retrieve, 
annotate, compute, visualize) with large volumes of NGS data.  User interaction is conducted in a scalable fashion 
through the platform’s connected distributed storage library and distributed computational resources. A novel aspect 
of HIVE compared to existing technologies is the seamless integration, hierarchical sharing, secure object 
traceability and auditing, presence of HIVE and existing external algorithms, biocuration, and FDA regulatory 
compliance (Logares et al. 2012; Whitty 2017). This platform allows users to regulate, reproduce, share and access 
data, and store computational workflows, complete with input/output data, parameters, versions, and tool usage 
(Simonyan & Mazumder 2014).  
  
Seven Bridges Genomics (SBG) 
Seven Bridges is a cloud-based platform that enables rapid and collaborative analysis of datasets in concert with 
other forms of biomedical data by utilizing High Throughput Sequencing (HTS) technologies. To interpret 
specifications, workflow engines like Reproducible Analyses for Bioinformatics (Rabix) Executor enable 
reproducibility by making data processing easier. Rabix, an open-source CWL executor, is embedded within the 
platform and orchestrates multi-instance and parallelizable execution on AWS and Google (http://rabix.org). The 
Rabix Composer, an integrated development environment for CWL, allows workflows to be constructed and 
executed locally and readily deployed on the platform, furthering interoperability. Seven Bridges Core Infrastructure 
enables standardized data analysis and collaboration support, as exemplified by Cavatica. Cavatica allows 
physicians to share and analyze genomic profiles of pediatric brain tumors when deciding on clinical treatment 
plans. Cavatica exemplifies the applications of reproducible data, allowing greater collaboration and treatment 
efficiency.  
 
National Cancer Institute (NCI) Cloud Resources 
The NCI Cloud Resources were formerly known as NCI Cancer Genomics Cloud (CGC) Pilots, which were 
conceptualized in 2013 to democratize access to NCI-generated genomic data and facilitate analysis.  Three Cloud 
Pilot awardees – the Broad Institute (https://software.broadinstitute.org/firecloud/), the Institute for Systems Biology 
(http://cgc.systemsbiology.net/), and Seven Bridges (http://www.cancergenomicscloud.org/) have independently 
developed cloud-based analysis platforms.  As a Software-as-a-Service built on commercial cloud architectures, 
these cloud resources offer the flexibility for researchers to utilize their own tools in the form of Docker 
containers.  Tools can also be joined to form complex workflows described by Common Workflow Language 
(CWL) or Workflow Description Language (WDL).  In a user-friendly graphical user interface, computation and 
data are encapsulated in a secured, access-controlled environment that also allows for sharing with collaborators. 
 
Internet2 Community 
Internet2, the U.S. research and education network, connects academic, government (including NIH, FDA and 
CDC), and life sciences companies. Internet2 also extends connectivity to the local level, including many healthcare 
institutions, through its high bandwidth U.S. Unified Community Anchor Network (U.S. UCAN) Program.  
Together these members constitute a diverse problem solving community that can share data frictionlessly at high 
speeds.  Finally, over six million users at member institutions collaborate using Internet2’s InCommon trust and 
federated identity management system. This enables virtualization of compute and storage resources, both private 
and cloud, to reduce costs and speed both information sharing and discovery.  As this virtual infrastructure becomes 
more intelligently responsive to data driven operations, the BCO initiative promises to improve data findability and 
execution of distributed workflows through enhanced structuring of data.   
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