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Abstract. Precision medicine can be empowered by a personalized approach to patient care based on 

the patient's or pathogen’s unique genomic sequence. For precision medicine, genomic findings must be 

robust and reproducible, and experimental data capture should adhere to FAIR guiding principles. 

Moreover, precision medicine requires standardized reporting that extends beyond wet lab procedures to 

computational methods. Rapidly developing standardization technologies can improve communication 

and reporting of genomic sequence data analysis steps by utilizing concepts defined in the BioCompute 

framework, such as error domain, usability domain, verification kit, and provenance domain. These 

advancements allow data provenance to be standardized and promote interoperability. Thus, a resulting 

bioinformatics computation instance that includes these advancements can be easily communicated, 

repeated and compared by scientists, regulators, test developers and clinicians. Easing the burden of 

doing the aforementioned tasks greatly extends the range of practical application. Advancing clinical 

trials, precision medicine, and regulatory submissions requires an umbrella of standards that not only 

fuses these elements, but also ensures efficient communication and documentation of genomic 

analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that umbrella. 

Through standardized bundling of high-throughput sequencing studies under BCOs, regulatory agencies 

(e.g., FDA), test developers, researchers, and clinicians can expand collaboration to drive innovation in 

precision medicine, with the potential for decreasing the time and cost associated with next generation 

sequencing workflow exchange, reporting, and regulatory reviews. 

Keywords: BioCompute, BioCompute Objects, high-throughput sequencing (HTS), next generation 
sequencing (NGS), regulatory review, CWL, FHIR, GAG4H, HL7, research objects, provenance, FAIR 
data guidelines. 

 

Introduction 

Precision medicine practice must capture the process of producing, sharing, and consuming genomics 

information. Capturing the process of genomic data generation will empower individuals, research 

institutes, clinical organizations, and regulatory agencies to evaluate and trust the reliability of biomarkers 
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generated from complex analyses (e.g., presence of a specific variant). Efforts to promote data-sharing 

structures for genome-wide association studies (GWAS) offer additional benefits, as seen in the National 

Center for Biotechnology Information’s (NCBI) Database of Genotypes and Phenotypes (dbGaP)[1] and 

ClinVar[2] as well as LD Hub, a centralized database of GWAS results for diseases/traits[3]. Although, 

the importance of data sharing is well accepted, discussions related to recording, reporting, and sharing 

of analysis protocols are often overlooked.  

 

The need for NGS provenance, analysis, and results is critical as we enter the clinical genomic era. The 

cost for High Throughput Sequencing (HTS) has fallen from $20 per base in 1990 to less than $.01 per 

base in 2011, creating massive data accumulation[4]. Lower costs of HTS data generation have 

increased the availability of data, expediting more types of analyses. In recent years, there has been a 

focus on novel drug development and precision medicine research to create innovative, reliable, and 

accurate -omics-based (i.e., genomics, transcriptomics, proteomics) tests[5]. These initiatives allow 

different data sources to be analyzed by a variety of methods advancing genomic analyses. Often, 

information about the bioinformatics pipelines used in these analyses is not reported in a format that is 

easily understood, comprehensive and interoperable. Without a universal standard for communicating 

how these data are analyzed to obtain a specific result, we quickly encounter the “tower-of-Babel 

problem” – a problem of diversified languages and miscommunication.  

 

Currently, there are some standards to capture genomic sequencing information and provenance. Fast 

Healthcare Interoperability Resources[6,7] (FHIR) and organizations such as Global Alliance for 

Genomics and Health[8] (GA4GH) communicate genomic information, although these cater to specific 

community domains. The Common Workflow Language[9] (CWL) and Research Objects[10] (RO) 

capture reproducible workflows in a domain agnostic manner. The BioCompute paradigm unites these 

standards to provide a provenance-reporting framework for genomic sequencing data analysis in the 
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context of FDA submissions and regulatory review in the form of a BioCompute Object (BCO)[11]. BCOs 

provide a new harmonizing approach designed to satisfy FAIR Data Principles allowing experimental 

data and protocols to be findable, accessible, interoperable and reusable[12] in the regulatory and 

research needs for evaluation, validation, and verification of bioinformatics pipelines[11,13,14]. The BCO 

also meets the NIH strategic plan for data science[15] which states that the quality of clinical data should 

be maintained at all stages of the research cycle where the BCO can be adjusted to fit the needs of a 

specific experiment from generation of the data through the entire analysis process.   

 

This paper focuses on how the FHIR, GA4GH, CWL, and RO standards can be leveraged and 

harmonized by examining the BioCompute paradigm (See Fig. 1). Once established, the BioCompute 

framework can be utilized for other types of FDA submissions, such as large clinical trials, where data 

provenance in analysis datasets can be difficult to communicate. 
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Figure 1. Schematic of BioCompute Object as a frameworks for advancing regulatory science by 
incorporating existing standards and introducing additional concepts that include digital signature, 
usability domain, validation kit, and error domain. 
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Background 

The Academy of Medical Sciences hosted a symposium on reproducibility in pre-clinical biomedical 

research, where a number of measures for improving reproducibility were identified, including greater 

openness and transparency, defined reporting guidelines, and better utilization of standards and quality 

control measures[16]. Issues of reproducibility have resulted in an enormous waste of research 

resources and have hindered progress in the life sciences, as highlighted by several high profile 

articles[17,18].  

 

Researchers propose two types of reproducibility: method reproducibility and result reproducibility[19]. 

The first is defined as providing detailed experimental methods so others can repeat the procedure 

exactly; the latter, also called replicability, is defined as achieving the same results as the original 

experiment by closely adhering to the methods. Method reproducibility depends significantly on the 

completeness of the procedures researchers provide. CWL creates a similar starting point for 

computational methods—if scientists gather data in the same computational language, then a large part 

of the provenance model is standardized. As such, CWL and provenance tracking make it easier for 

researchers to track errors and locate deviances. Research Objects for workflows go further, describing 

the packaging of the method, provenance logs, and associated data and codes with richly described 

metadata manifests that include the experiment’s context[20]. 

 

Universally reproducible data is an outcome to aim for, but challenges remain. Without repeatability and 

analytics standards for NGS/HTS studies, regulatory agencies, academic researchers, pharmaceutical 

companies, diagnostic test developers and the FDA cannot work together to validate results and drive 

the emergence of new fields[21]. The lack of universally accepted standards to record a computational 

workflow and the subsequent analysis results in many studies that are not repeatable and therefore not 

usable in a clinical or practical situation. In response, various workflow management systems and 
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bioinformatics platforms have been developed, and each has a method to track and record 

computational workflows, pipelines, versions, and parameters used in the studies. However, these efforts 

remain haphazard and require harmonization. BCOs enable reproducible data and improved information-

sharing by tracking the data’s provenance and accurately documenting the trail of processes in a 

standard and widely applicable way. 

 

Provenance of Data 

Reproducible data requires that the data’s origin and history be captured in a standardized format. 

Provenance here refers to a datum’s history starting from the original source, namely, its lineage. A 

lineage graph can show the source of a datum in a database, data movement between databases or 

computational processes, or data generated from a computational process. Complementary to data 

lineage is a process audit. This provides a historical trail documenting a scientific study, providing 

snapshots of intermediary states, values for configurations and parameters, and traceability of stepwise 

analytical processing[22]. Such audit trails should allow an independent reviewer to effectively evaluate a 

computational investigation. Both types of records gather provenance information that is crucial to ensure 

accuracy and validity of experimental results. Modern computational workflows can now produce reams 

of fine-grained but not particularly useful trace records, and modern web developments make data 

transformation and copying easier, so gathering such material is a daunting challenge. In the molecular 

biology field alone, there are hundreds of public databases, but only a handful possess the “source” data; 

the remainder contain secondary views of the source data or views of other publications’ views[23]. 

Accurately collecting lineage and process records, while obtaining the appropriate granularity of the 

record keeping and ‘black-box’ steps remains an ordeal[24,25]. 

 

Data-provenance tracing issues have far-reaching effects on scientific work. Reproducible experiments 

rely on confidence in the accuracy and validity of the data, process used, and knowledge generated (final 
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analysis product) especially after undergoing complex, multistep processes of aggregation, modeling, 

and analysis[26]. Computational investigations require interactions with adjacent disciplines and 

disparate fields to effectively analyze a large volume of relevant information. These hurdles require a 

solution beyond Open Data to establish Open Science in the community. Provenance needs to be 

preserved and shared to provide better transparency and reproducibility[27]. Complex analyses rely 

heavily on accurately shared data. Standards need to be established to communicate reliable genomic 

data between databases and other scientists, accurately reporting data provenance and process audit. In 

order to aid this, an active community has engaged in provenance standardization[28], e.g., culminating 

in the W3C PROV[29], used by FHIR and ROs, based on the idea of generating an entity target via an 

agent’s activity (See Fig. 2). 

 

Figure 2. W3C Provenance Specification used in FHIR and ROS. Adapted from 
http://www.w3.org/TR/prov-primer/ 

 

Workflow management systems have been developed to capture analytic processes, and bioinformatic 

platforms have been built to capture analysis details. Together they can gather provenance information 
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for users, and extending Provenance standards where necessary. However, these systems need greater 

standardization. This is where BCOs can play a key role, to ensure that provenance is recreated for 

regulatory approval and that standards such as PROV are appropriately adopted. By properly utilizing 

the fields in the Identification and Provenance domain, also known as the provenance domain, as 

defined by the BioCompute framework, a BCO can become a “history of what was computed.”  

 

Key Considerations for Communication of Provenance, Analysis, and Results 

Workflow Management Systems 

Scientific workflows have emerged as a model to represent and manage complex distributed scientific 

computations[26]. Scientific workflows capture and link analysis steps and individual data 

transformations; each step specifies a process or computation to be executed (e.g., a software program 

or a web service to be invoked), and the steps are linked by the data flow and dependencies. In addition, 

workflows also capture the mechanisms to carry out the steps in a distributed environment, and a 

significant amount of work has been done to share workflows and experiments[26,30]. Workflows 

represent a system to capture complex analysis processes at various levels, as well as the provenance 

information necessary for reproducibility, result publication, and result sharing/publication [31]. 

 

Workflow management systems act to execute and monitor scientific workflows, coordinating the 

sequential components in a pipeline[32]. Developments in workflow management systems have led to 

the proposition of using workflow-centric research objects with executable components[5,20]. The use of 

workflow creation and management software allows researchers to utilize different resources to create 

complex analysis pipelines that can be executed locally, on institutional servers and on the cloud[33,34]. 

Extensive reviews of current workflow systems for bioinformatics are linked [33,35-37]. Ongoing systems 

participate in the current trend of moving from graphical systems back to script-like workflows. These 

systems are now executed on cloud infrastructure, high performance computing (HPC) systems, and Big 
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Data cluster-computation frameworks, which allow for greater data reproducibility and portability (see 

Supplementary Info). Workflow management systems capture provenance information, but rarely in the 

PROV standard. Therefore, BCOs rely on existing regulatory standards like CWL to manage pipeline 

details, and on ROs and FHIR to unify and enhance interoperability.  

 

Bioinformatics platforms 

The dramatic increase in the use of NGS technology for patient management has rapidly increased the 

need to store, access, and compute sequencing reads and other NGS/biomedical data[38]. These 

increased requirements have led to a call for usage methods on integrated computing infrastructure, 

including storage and computational nodes. This kind of integration will minimize transfer costs and 

remove the bottlenecks found in both downstream analyses and community communication of 

computational analyses results[39]. For bioinformatics platforms, communication requirements include 

(a) recording all analysis details such as parameters and input datasets and (b) sharing analysis details 

so that others can understand and reproduce analyses.  

  

To reduce unprocessed data buildup, several high-throughput[26] cloud-based infrastructures have been 

developed, including HIVE (High-performance Integrated Virtual Environment)[39,40] and Galaxy[41], 

along with commercial platforms from companies like DNAnexus (dnanexus.com), and Seven Bridges 

Genomics (sevenbridges.com), among others. High throughput computing (HTC) environments deliver 

large amounts of processing capacity over long periods of time. These are ideal environments for long-

term computation projects, as with genomic research[42]. Most HTC platforms utilize distributed cloud-

computing environments to support extra-large dataset storage and computation, while hosting tools and 

workflows for many biological analyses. Cloud-based infrastructures also reduce the “data silo” 

phenomenon by converting data into reproducible formats that facilitate communication (see 

Supplementary Info). Additionally, the National Cancer Institute has initiated the Cloud Pilots project, in 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/191783doi: bioRxiv preprint 

https://doi.org/10.1101/191783
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 
 
 
 

10 
 

order to test a distributed computing approach for the multi-level, large-scale datasets available on The 

Cancer Genome Atlas (TCGA) [43].  

 

The genomic community has come to acknowledge the necessity of data sharing and communication to 

facilitate reproducibility and standardization [44]. Data sharing is crucial in everything from long-term 

clinical treatments to  public health emergency response[45]. As industry policies develop, the need for 

voluntary and industry-wide standardization becomes undeniable. Extending bioinformatics platforms to 

include data provenance, standard workflow computation, and encoding results with available standards 

through BCO implementation will greatly support the exchange of genomic data analysis methods for 

regulatory review. 

 

Regulatory Supporting Standards 

Assessment of data submitted in a regulatory application requires clear communication of data 

provenance, computational workflows, and traceability. A reviewer must be able to verify that sequencing 

was done appropriately, pipelines and parameters were applied correctly, and that the final result, like an 

allelic difference or variant call, is valid. Because of these requirements, review of any clinical trial or any 

submission supported with NGS results requires considerable time and expertise. Submission of a BCO 

would ensure that data provenance is unambiguous and that the bioinformatics workflow is fully 

documented[11,15,23,46,47]. 

 

To truly understand and compare computational tests, a standard method (like BCO) requires tools to 

capture progress and to communicate the workflow and input/output data. As the regulatory field 

progresses, methods have been developed and are being continually refined to capture workflows and 

exchange data electronically[26]. See Figure 3 for BCO extensions to NGS analysis to support data 

provenance and reproducibility. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/191783doi: bioRxiv preprint 

https://doi.org/10.1101/191783
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 
 
 
 

11 
 

 

Figure 3. Generic NGS platform schematic with proposed BioCompute Object integrations and 
extensions. 
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Biocompute Objects (BCOs) and Their Harmonizing Efforts 

Biocompute Objects (BCOs) were conceptualized to alleviate the disparate nature of NGS computational 

analyses. The primary objectives of BCOs are to (a) harmonize NGS computational results and data 

formats and (b) encourage interoperability and success in the verification of bioinformatics protocols. 

Harmonizing the above standards is especially applicable to clarify genomics/workflow instance 

provenance for FDA submissions. Each BCO comprises information on the arguments and versions of 

executable programs in a pipeline, references to input/output data, a usability domain, keywords, a list of 

authors, and other important sources of metadata. The BCO can serve as a wrapper. Enabling BCOs to 

incorporate existing standards provides a universal framework for including existing advances in 

workflow and data specifications. What is novel about the BioCompute paradigm is the combination of 

existing standards with the methodologies and tools to evaluate an experiment both programmatically 

and empirically. The BCO takes a snapshot of an experiment’s entire computational procedure adhering 

to FAIR data guidelines by making it findable through the BCO portal, accessible, interoperable and 

maintaining it’s richness to make it reusable.  Using this snapshot of the BCO, which includes the results 

from the experiment in the dataset (verification kit), allows any other user to run the exact experiment 

and produce the same results. The verification kit also allows a BCO to be assessed once someone has 

decided that they want to change parameters, for example, and use the same BCO. Additionally, through 

the use of provenance and usability domains, a knowledgeable reviewer can quickly decide if the 

underlying scientific principles merit approval or further review.  

Discussion and Conclusions 

Robust and reproducible data analysis is key to successful personalized medicine and genomic 

initiatives. Researchers, clinicians, administrators, and patients are all tied by the information in 

electronic health records (EHRs) and databases. Current systems rely on data stored with incomplete 
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provenance records and different computing languages. This has created a cumbersome and inefficient 

healthcare environment.  

 

The initiatives discussed in this review seek to make data and analyses robust and reproducible to 

facilitate collaboration and information sharing from data producers to data users. Increased NGS/HTS 

sequencing creates silos of unusable data, making standardized regulation of reproducibility more 

difficult. To clear the bottleneck of downstream analysis, the provenance (or origin) of data along with the 

analysis details (e.g., parameters, workflow versions), must be tracked to ensure accuracy and validity. 

The development of high-throughput cloud-based infrastructures like DNAnexus, Galaxy, HIVE, and 

Seven Bridges Genomics enables users to capture data provenance and store the analyses in 

infrastructures that allow easy user interaction. 

 

Platform-independent provenance has largely been ignored in HTS. Emerging standards enable both 

representation of genomic information and linking of provenance information. By harmonizing across 

these standards, provenance information can be captured across both clinical and research settings 

extending into the conceptual experimental methods and the underlying computational workflows. There 

are several use cases of such work, including submission for FDA diagnostic evaluations, as is being 

done with the BCO effort. Such standards also enable robust and reproducible science, and facilitate 

open science between collaborators. At this juncture, it is imperative to lead the development of these 

standards to satisfy the needs of downstream consumers of genomic information. 

 

The need to reproducibly communicate HTS/NGS computational analyses has led to collaboration 

among disparate industry players. Through various conferences/workshops, attention has increased 

exposure to standardization, tracking, and reproducibility methods[48,49]. Standards like FHIR and ROs 

capture the underlying data provenance to be shared in frameworks like GA4GH, enabling collaboration 
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around reproducible data and analyses. New computing standards like Common Workflow Language 

(CWL) increase the scalability and reproducibility of data analysis. The BioCompute paradigm acts as a 

harmonizing umbrella to facilitate data submitted to regulatory agencies, increasing interoperability in the 

genomic field. BioCompute specifications, available at https://osf.io/h59uh/, can be used to generate 

BCOs by any bioinformatics platform that automatically pulls underlying data and analysis provenance 

into its infrastructure. Ongoing BCO pilots are currently working to streamline the flow to provide users 

with effortlessly reproducible bioinformatics analyses. As BCOs aim to simplify FDA approval, these 

pilots mirror clinical trials involving NGS data for FDA submissions. Fusing bioinformatics platforms and 

HTS standards to capture data and analyze provenance for BCOs make robust and reproducible 

analyses and results an attainable standard for the scientific community. 
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