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Abstract 

Time-lapse fluorescence live cell imaging has been widely used to study various 

dynamical processes in cell biology. However, fluorescence live cell images often 

have low contrast, noises, and uneven illumination, preventing accurate cell 

segmentation. The convolutional neural network has been successfully applied in 

natural image classification and segmentation by extracting hierarchical features, 

which could be transferred into other fields for image segmentation. Moreover, the 

temporal coherence in time-lapse images can allow us to extract sufficient features 

from a limited number of image frames to segment the entire time-lapse movies. In 

this paper, we propose a novel framework called vU-net, which integrates the VGG-

161 pretrained model as an encoder and a U-net2 derived simplified convolutional 

structure to reconstruct cell edge with a higher accuracy using limited training 

images. We evaluated our framework on the high-resolution images of paxillin, a 

canonical adhesion marker in migrating PtK1 cells acquired by a Total Internal 

Reflection Fluorescence (TIRF) microscope, and achieved higher accuracy of cell 

segmentation than conventional U-net. We also validated our framework on noisy 

confocal fluorescence live images of GFP-mDia1 in PtK1 cells. We demonstrated 

that vU-net could be practically applied to challenging live cell movies since it 

required limited training sets and achieved highly accurate segmentation. 
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Introduction: 

Over the past decades, time-lapse fluorescence microscopy has been successfully 

applied to obtain a massive amount of live cell movies with high spatiotemporal 

resolution, which opens up a new avenue for quantitative analyses on cellular 

dyanmics3-5. However, live cell images have numerous challenges regarding image 

analysis. Their characteristics include uneven illumination, optical noises, 

fluorescence background, photobleaching, complex cellular shapes, and continually 

changing intensity contrast due to migration at different rates6,7. These challenges 

fail the typical segmentation methods like intensity thresholding, watershed 

transform and energy-based segmentation methods to detect cell boundaries 

accurately. Therefore, as an initial image analysis step, there is still an unmet need 

for robust cell boundary segmentation with high accuracy, which is required for 

reliable quantitative analysis on high-resolution microscopy video.  

Image segmentation can be divided into two groups: unsupervised8 and supervised 

methods. In unsupervised methods, each image is segmented individually and 

independently based on extracted local or global features. Popular unsupervised 

segmentation methods which are also widely used in biological fields contains Otsu 

method9, Canny Detector10, active contour or snake-based method11 and even 

recently PMI method based on mutual Information12. Even though the unsupervised 

methods are easy to handle and have the less computational burden, it is challenging 

to define specific local features, and the extracted edges are often disconnected, 

which requires human manual assistance. On the other side, many supervised 

methods achieve a higher accuracy in natural image segmentation since many 

images could be collected, and the features related to edges could be learned. 

Typically, the image segmentation problem is transformed into a binary 

classification issue to identify whether each pixel is on edge or not based on the 

features extracted from the training set. Popular methods like gPb13, Sketch 

tokens14,15 belong to this category. However, the biological dataset is always limited 

and small, which makes training impractical. Therefore, it is necessary to transfer 

features extracted from nature images dataset and reuse them in biological images 

In last decade, deep learning has achieved great success in image processing fields 
16-19. DeepEdge20, DeepContour21 based on Alexnet22 or VGG-161 and FCN16 are 

proposed for natural image segmentation. The advantage of deep learning based 

segmentation is that the useful features can be learned hierarchically and easy to 

transfer to other fields. In cell biological image fields, several works such as U-Net2 

and deepcell17 are proposed successfully for cell boundary segmentation. 
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Particularly, U-net can directly learn a nonlinear mapping from raw image patch to 

the labeled boundary by integrating low-level edge information and high-level 

reconstructed information. However, these methods were only evaluated in the low-

resolution microscopy images, and it is unknown whether it can produce highly 

accurate edge information in high-resolution images. 

To segment high-resolution time-lapse movies for subcellular analysis, we propose 

a novel framework called vU-net (integration of VGG-16 and U-net), which uses 

limited images for the training set. The framework could be divided into two parts: 

an encoder which extracts image features and decoder which identify the edge 

location using the extracted features. In order to use a limited number of training 

images, the pretrained VGG-16 model is reused in the encoder and extracts features 

in a different level, which is widely used in various frameworks23. The second 

difference from U-net is that in the decoder, a simpler and asymmetric framework is 

incorporated to detect the edge, which substantially reduces the model complexity. 

In comparison to U-net, our vU-net includes less number of trainable parameters, 

which will use much less training set. In our experiments, Total Internal Reflection 

Fluorescence (TIRF) microscopy image and noisy confocal microscopy images were 

used to evaluate our framework. 

 

Materials and Methods: 

To detect the cell boundary accurately, we proposed a novel framework called vU-

net (Fig. 2i) and the related workflow including preparing the training set, 

training/testing process, is demonstrated in Fig 2. At first, several frames (Fig. 2b) 

are evenly selected from the entire image frames (Fig. 2a) for manual segmentation. 

Then, three cropping strategies: evenly cropping (white), randomly cropping along 

the edge(red) and randomly cropping region from the background and cell 

foreground(yellow), are applied to crop images into image patches as demonstrated 

in Fig. 2c, where the ratio in these three strategies is shown in Fig. 2d. Then, the 

cropped patches can be grouped into three clusters with the labels: edge-persevered 

patches, patches containing only background and patches containing only cell 

foreground shown in Fig. 2e. Finally, the cropped patches are augmented by the 

following strategies: x-flip, y-flip, x\y-flip, rotation with different angles and shown 

(Fig. 2f).  In the following step, these augmented patches are divided into training 

and validation dataset with the ratio 8 to 2. The training dataset is used to train vU-

net to map the raw image patch into the corresponding foreground/background 
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patches directly (Fig. 2g). During the testing step, each frame is evenly cropped with 

the same size (similar to the evenly cropped shown as white in Fig. 2c) and then the 

binary foreground/background information of each patch is predicted by the trained 

vU-net and then all the continuous patches are integrated together to generate the 

predicted segmentation (Fig. 2h). 

The details of our novel framework vU-net are shown here (Fig. 2i). The framework 

can be divided into two parts: encoder path and decoder path. In the encoder, the 

same structure of VGG-16 is applied, which contains five convolutional cells, each 

of which contains a different number of convolution and max-pooling operation with 

the depth of 32-64-128-256-512. Also, to reduce the number of parameters to fit the 

smaller dataset, the weights of VGG-16 are transferred and fixed. In the decoder 

path, different from VGG-16, only two convolution cells comprising convolution 

and up-pooling operations with the depth of 128-64 are set up to integrate the edge 

information directly extracted from the image as lower level and reconstruction from 

region information as a higher level. Globally, our framework is asymmetric to take 

the benefits of VGG-16 to extract the useful features and reduce the number of 

trainable parameters to make it suitable for the small dataset. Since during the 

convolution operation, the zero-padding strategy is applied to make the size the same 

for convenience but make the boundary region of each patch less accurate. For 

higher accuracy, only central region of the predicted patch is used to generate the 

entire foreground/background prediction by cropped operation at the end of the 

structure. The size of input patch is 128x128 while the size of prediction patch is 

68x68. The size of the convolutional filter is 3x3, and the size of max-pooling is 2x2 

while that of up-pooling is 4x4 to fit the size of convolution. Besides, for comparison, 

we also implemented U-net with the similar strategies with two differences. The 

structure of the encoder part is the same with the original U-net and parameters of 

the encoder part is trainable while the structure of encoder and decoder are 

symmetric shown in SFig. 1. 

During the training process, the binary cross-entropy between prediction and 

manually labeled mask for each patch is used as a loss function, and the dice 

coefficient is used to compare the performance of U-net and the proposed vU-net. 

Adam is used as an optimizer, and the initial learning rate is 1e-5, and other 

parameters are default values in the Keras with Theano backend. To save the training 

time and avoid overfitting, early stopping which the validation loss does not decrease 

0.0001 in continuous three epochs is set, and the model can be trained until 30 epochs 

as a maximum iteration. 
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Results: 

Challenges in segmenting cell edges in TIRF (Total Internal Reflectance 

Fluorescence) images. 

TIRF microscopy is a popular imaging method to visualize cell-matrix adhesions 

since it can excite fluorescence molecule near cell-substrate interfaces. However, 

TIRF images usually suffer from non-uniform illumination, and there are strong 

fluorescence signals from focal adhesions. These make it difficult to choose a single 

intensity threshold value for edge segmentation (Fig. 1a, 1b). To better visualize the 

cell image,  we first fit two Gaussian mixture model (GMM)26 with the intensity 

histogram and the intensities outside two standard deviations were trimmed (Fig. 1b) 

and then the remaining intensity values are mapped into the range between 0 and 

255 (Fig. 1d-e). To assess the intensity variability, we overlaid the manually labeled 

edge dilated with the shape disk of size 5 (Fig. 1c) on the transformed image (Fig. 

1e) and the intensity histogram along the edge is quantified (Fig. 1f). This shows 

that the edge intensity is highly variable even though the contrast between cell and 

background is visually acceptable, indicating that a single thresholding value will 

not be sufficient to extract the entire edge boundary. Therefore, various 

segmentation methods applied to the transformed images blurred by the Gaussian 

filter (Fig. 1g) produced less accurate and broken edges or regions (Fig. 1h-l). 

vU-net improves cell boundary segmentation using limited training images.  

We trained our proposed vU-net and U-net using the augmented datasets from 16 

training frames. The dice coefficient and loss curves in training and validation sets 

are shown in Fig. 3a. From the dice coefficient and loss curves, we can see that vU-

net can achieve the better performance in both training and validation with much 

less training epochs than U-net. Also, to save the training time, early stopping was 

used in the vU-net training. The training cost time is much less in vU-net than U-net 

in Fig. 3b where the training times were recorded to achieve the dice coefficient 0.95 

shown in Fig. 3a. To assess the robustness of training, we randomized the training 

and testing images and repeated training three times. As demonstrated in Fig. 3c, 

vU-net showed more robust performance regarding accuracy, recall and dice 

coefficient in the testing set (Fig. 3c). Finally, we demonstrated the testing results 

using the frame #20 (Fig. 3d-h). First, we generated the original prediction results of 

vU-net (Fig. 3e) and U-net (Fig. 3f), where we predicted the boundaries binarized 

by the threshold value 0.8 together for vU-net (Fig. 3g) and U-net (Fig. 3h). We 

overlaid the manually segmented boundary (Fig. 3d) with these predicted boundaries. 
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As shown in the zoomed regions of Fig. 3g-h, the predicted boundary from vU-net 

is better overlapped with the manual segmentation than that of U-net. Taken together, 

we showed that vU-net could improve the accuracy of cell segmentation of 

challenging live cell images with limited training images. 

vU-net requires much less training sets than U-net. 

Since our framework requires manually segmented training images within the same 

time-lapse movies, we tested how many training images should be prepared to 

achieve accurate segmentation results in both vU-net and U-net. We increased the 

number of the training frames from 2 to 24. In each condition, we randomly selected 

the training frames and repeated the training three times. As shown in Fig. 4a-b, 

there is a large margin of dice coefficient and loss between vU-net and U-net. With 

the same number of training frames, vU-net was more accurate than U-net. The 

variability of vU-net performance is smaller than that of U-net, which means that 

vU-net is more robust that U-net. When the number of training frames reaches to 16, 

the performance of vU-net reached a plateau, while the performance of U-net kept 

increasing with the increasing number of frames, which means more labeling works 

are required to achieve the good performance of U-net.  

To demonstrate the performance with the increasing number of labeled frames, we 

visualized the segmentation results of frame #50 (Fig. 4c-h). We also confirmed that 

vU-net produced the visually better results than U-net in each number of training 

frame. Particularly, in the gray rectangular region in Fig. 4e, 16 frames were required 

for training to achieve good performance in vU-net (Fig. 4e) whereas U-net still did 

not produce accurate boundary (Fig. 4h). Finally, we also plotted time evolution of 

cell edges in vU-net and U-net. In comparison with the result of U-net (Fig. 4j), vU-

net produced more smooth spatiotemporal edge changes (Fig. 4i) in comparison with 

the result of U-net (Fig. 4i). 

vU-net showed good performance of cell segmentation in noisy confocal 

microscopic images 

We also evaluated the vU-net in other types of microscopy images. We used the 

confocal fluorescence images visualizing GFP-mDia1 in a PtK1 cell (Fig. 5 a-c). 

The Signal to Noise Ratio (SNR) of this image is so low that it is difficult to identify 

the cell membrane visually (Fig. 5a-b). We applied global Ostu, local Ostu and canny 

method to this noisy image, and they failed to produce correct segmentation (Fig. 5 

e-g). We manually segmented the cell boundary (Fig. 5c) to build up a training 

dataset using 16 frames. As in Fig. 5h, vU-net was training well to achieve a high 
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dice coefficient and low loss value in both training and validation sets. We confirmed 

visually that the edge prediction was successful (Fig. 5i) We also randomly chose 

the training/testing sets and repeated the training three times to quantify the accuracy, 

recall, and dice coefficient (Fig. 5j). We quantitatively confirmed that vU-net model 

accomplished very high accuracy and recall.  Finally, the edge evolution plot 

demonstrated the smooth changes of edge motions (Fig. 5k). 

 

Discussion 

Live cell imaging becomes a fundamental tool to study dynamic biological processes 

such as cell migration. Since segmentation is the initial step of image analysis, 

accurate and effective segmentation of live cell images is crucial. In this paper, based 

on the temporal coherence of time-lapse image sequences, a novel framework, vU-

net was designed to accurately segment the cell boundary from high-resolution 

fluorescence microscopy images25. In this framework, we evaluated the applicability 

of VGG-16 feature extractor to high-resolution microscopy images. VGG-16 was 

trained on natural images in ImageNet database to extract generic image descriptors. 

We confirmed that the image descriptors from VGG-16 were highly effective in 

predicting accurate cell boundary. We also incorporated a simple decoder of VGG-

16 extracted features to produce cell segmentation using limited training set. As in 

U-net, this decoder still integrates low-level and high-level information to identify 

the cell edges. To our best knowledge, it is the first study to evaluate how small 

dataset is sufficient to train deep learning framework in cell segmentation.  

Although 16 frame training set produced the best result, the model trained with only 

four frames still performed well on segmenting the whole 200 frames. To reduce 

manual labor, we can utilize prior knowledge from experience or other image 

segmentation algorithms to identify challenging regions and prepare more specific 

training set. Moreover, the following iterative segmentation framework can be 

proposed. First, we can train the model with very limited frames such as four frames, 

and then evaluate the performance on the entire dataset to identify the challenging 

regions. Then, we can manually label these regions and include them into the training 

set. The model can be retrained iteratively until a satisfied performance is achieved. 

In this paper, the model has to be trained for individually time-lapse movies. This 

still requires significant human labor, preventing the high-throughput application. 

Building up the training set across various movies with different cell types, 

molecules, and experimental/imaging conditions will require tremendous human 
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efforts. Nonetheless, since only limited image frames were sufficient for entire 

image frames in our study, it is plausible that small frames extracted from each image 

sequence can be collected to set up a training set for a more generic vU-net model. 
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Figures Legends 

Figure 1: The segmentation challenging in Total Internal Reflection 

Fluorescence (TIRF) microscopy image. (a) The heatmap of a PtK1 cell 

expressing fluorescent paxillin. (b) The intensity histogram of the image in (a) and 

fitting with two Gaussian Mixed Model (GMM). The intensity interval with two 

variances is shown as dark dots. (c) The manually labeled cell boundary in (a). (d) 

The intensity histogram after enhancing the boundary contrast. (e) The contrast-

enhanced image of (a). (f) The intensity histogram on the manually labeled cell 

boundary. (g) Gaussian blurred image of (c). (h) The result of Canny edge detector. 

(i) The result of global Ostu threshold. (j) The result of Graph cut 30. (k) The result 

of the Normalized cut (N-cut) method 31. (l) The result of Advanced Graph-based 

segmentation32. 

Figure 2: The schematic of vU-net. (a) The time-lapse microscopy movies. (b) 

Manual segmentation. (c) Three cropped strategies: even cropping(white), random 

cropping along the labeled edge (red) and randomly cropping beyond the labeled 

edge (yellow). (d) The ratio of three cropping strategies. (e) Categorized patches: 

edge patches, foreground patches, and background patches. (f) Image augmentation. 

(g) Neural network training. (h) The predicted segmentation. (i) The asymmetric 

vU-net framework.  

Figure 3: The performance of vU-net on TIRF microscopy images. (a) The 

training and validation performance of vU-net and U-net. (b) Training time 

comparison between vU-net and U-net. (c) The quantification of 

foreground/background accuracy, recall and dice coefficient of vU-net and U-net. 

(d) the manual segmentation (e) the segmentation result of vU-net (f) the 

segmentation of U-net. (g-h) The predicted edges from vU-net (g) and U-net (h) are 

overlaid with the manual segmentation. 
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Figure 4: Evaluation of the number of training images. (a-b) The dice coefficient 

(a) and loss (b) on the testing set with a different number of training images. (c-h) 

The predicted edges from vU-net and U-net are overlaid with the manual 

segmentation with a different number of training images. (i-j) The edge evolution 

predicted by vU-net (i) and U-net (j).  

Figure 5: The performance of vU-net in a noisy confocal fluorescence image. (a) 

A confocal microscopy image of a PtK1 cell expression GFP-mDia1. (b) The 

heatmap of (a). (c) The manual cell segmentation of (a). (d) Global Ostu thresholding 

fails to identify the cell membrane boundary. (e) Local Ostu thresholding. (f) Canny 

edge detection. (g) The training performance of vU-net using 16 training images. (h) 

The predicted segmentation. (i) The quantification of foreground/background 

accuracy, recall and dice coefficient of vU-net. (j) The edge evolution predicted by 

vU-net.  
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Figure 1: The segmentation challenging in Total Internal Reflection 
Fluorescence (TIRF) microscopy image.
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Figure 2: The schematic of vU-net.
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Figure 3: The performance of vU-net on TIRF microscopy images. . 
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Figure 4: Evaluation of the number of training images. 
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Figure 5: The performance of vU-net in a noisy confocal fluorescence 
image. 
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Supplementary Figure 1. The schematic framework of U-net. 
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