
A space and time-efficient index for the compacted colored de
Bruijn graph

Fatemeh Almodaresi1⋆, Hirak Sarkar1∗, and Rob Patro1

Department of Computer Science, Stony Brook University

Abstract. We present a novel data structure for representing and indexing the compacted col-
ored de Bruijn graph, which allows for efficient pattern matching and retrieval of the reference
information associated with each k-mer. As the popularity of the de Bruijn graph as an index has
increased over the past few years, so have the number of proposed representations of this structure.
Existing structures typically fall into two categories; those that are hashing-based and provide
very fast access to the underlying k-mer information, and those that are space-frugal and provide
asymptotically efficient but practically slower pattern search.

Our representation achieves a compromise between these two extremes. By building upon mini-
mum perfect hashing, carefully organizing our data structure, and making use of succinct represen-
tations where applicable, our data structure provides practically fast k-mer lookup while greatly
reducing the space compared to traditional hashing-based implementations. Further, we describe a
sampling scheme built on the same underlying representation, which provides the ability to trade
off k-mer query speed for a reduction in the de Bruijn graph index size. We believe this represen-
tation strikes a desirable balance between speed and space usage, and it will allow for fast search
on large reference sequences.

Pufferfish is developed in C++11, is open source (GPL v3), and is available at https://github.
com/COMBINE-lab/pufferfish. The scripts used to generate the results in this manuscript are
available at https://github.com/COMBINE-lab/pufferfish_experiments.

Keywords: de Bruijn Graph, compacted de Bruijn Graph, colored de Bruijn graph, k-mer, succinct
data structures, minimum perfect hash function

1 Introduction

Motivated by the tremendous growth in the availability and affordability of high-throughput genomic,
metagenomic and transcriptomic sequencing data, the past decade has seen a large body of work focused
on developing data structures and algorithms for efficiently querying large texts (e.g. genomes or collec-
tions of genomes) 1,2,3,4,5,6,7,8,9. While numerous approaches have been proposed, many fall into one of
two categories — those based on indexing fixed-length pattern occurrences (i.e., k-mers) in the reference
sequences 1,4,7 (most commonly using hashing), and those based on building full-text indices such as the
suffix array or FM-index over the references2,3,5,6,8,9.

Recently, there have been efforts to extend both categories of approaches from the indexing of linear
reference genomes to the indexing of different types of sequence graphs 10, with various tradeoffs in the
resulting space and time efficiency. On the full-text index side, examples include approaches such as those
of Maciuca et al. 11 and Beller and Ohlebusch 12 which encode the underlying graph using variants of the
BWT, and the approach of Sirén 13 , which indexes paths in the variation graph (again making use of a
modified BWT). There have also been recent approaches based on k-mer-indices that adopt graphs as the
underlying representation of the text being searched. Examples of such tools include genomeMapper 14,
BGREAT 15, kallisto 16 and deBGA 17.

Rather than general variation graphs, we focus in this manuscript on the de Bruijn graph. The de
Bruijn graph is a widely-adopted structure for genome and transcriptome assembly 18,19,20. However, the
compacted variant of the de Bruijn graph has recently been gaining increasing attention both as an in-
dexing data structure—for use in read alignment 17 and pseudoalignment 16—as well as a structure for the
analysis of variation (among multiple genomes)21. The compacted de Bruijn graph22,23,24 is particularly
attractive for representing and indexing repetitive sequences, since exactly repeated sequences of length
at least k are represented only once in the set of unique, non-branching paths. As has been demonstrated
by Liu et al. 17 , this considerably speeds up alignment to repeat-heavy genomes (e.g., the human genome)
as well as to collections of related genomes.
⋆ The authors contributed equally to this work
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However, the query speed of existing compacted de Bruijn graph indices comes at a considerable cost
in index size and memory usage. Specifically, the need to build a hash table over the k-mers appearing
in the de Bruijn graph unipaths requires a large amount of memory, even for genomes of moderate size.
Typically, these hash functions map each k-mer (requiring at least 8 bytes) to the unipath in which it
occurs (typically 4 or 8 bytes) and the offset where the k-mer appears in this unipath (again, typically
4 or 8 bytes). A number of other data structures are also required, but, most of the time, this hash
table dominates the overall index size. For example, an index of the human genome constructed in such
a manner (i.e., by deBGA or kallisto) may require 40—100GB of RAM (see Table 2). This already
exceeds the memory requirements of moderate servers (e.g., those with 32G or 64G of RAM), and these
requirements quickly become untenable with larger genomes or collections of genomes.

useq

GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTCACGGCGGCTGTCCTGGTGCAGTATGTGGACACGCT

MPHF (h)

k = ACGGC 
pos

ph(k)

utab

{ref1, p10, o10}, {ref6, p60, o60}

…

…

…

…

{ref80, p80M, o80M}, {ref3, p3M, o3M}, {ref12, p12M, o12M}

rank(ph(k)) = 3

bv

h(k)

1  1  1  1  

      

1  

Fig. 1: An illustration of searching for a particular k-mer in the dense pufferfish index. The minimum
perfect hash yields the index, ph(x̂) in the pos vector where the k-mer appears in the unipath array.
The k-mer is validated against the sequence recorded at this position in useq (and, in this case, it
matches). A rank operation on ph(x̂) is performed in the boundary vector (bv), which yields the cor-
responding unipath-level information in the unipath table (utab). If desired, the relative position of
the k-mer within the unipath can be retrieved with an extra select and rank operation.

2 Methods

We present pufferfish, a software tool implementing a novel indexing data structure for the compacted de
Bruijn graph and the colored compacted de Bruijn graph. We focus on making the compacted de Bruijn
graph index practical in terms of disk and memory resources for genomic and metagenomic data while
maintaining very fast query speeds over the index. While we are conscious of memory usage, we don’t
aim to build the smallest possible index. Furthermore, we introduce two different variants of our index,
the dense and sparse pufferfish indices. Similar to the FM-index25, in the sparse pufferfish index, there
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is a sampling factor that can be tuned to trade off search speed for index size. The dense index is, in a
sense, just a variant of the sparse index tuned for maximum speed (and, hence, taking maximum space).
However, as we believe the dense index will be a popular choice, we implement a few optimizations and
describe the structures separately.

Pre-processing We assume as input to pufferfish the compacted de Bruijn graph on the reference or set
of references to be indexed. The pufferfish software itself accepts as input a graphical fragment assembly
(GFA) format⋆ file that describes the compacted de Bruijn graph. Specifically, this file encodes the
unipaths (i.e., non-branching paths) of the compacted de Bruijn graph as “segments” and the mapping
between these unipaths and the original reference sequences as “paths”. Each path corresponds to an
input reference sequence (e.g., a genome), and is spelled out by an ordered set of unipath IDs and the
orientation with which these unipaths map to the reference, so that each unipath has an overlap of k − 1
with its following unipath in the path (either in the forward or reverse-complement direction).

GFA is an evolving standard that is meant to be a common format used by tools dealing with graphical
representations of genomes or collections of genomes. We note that there are a number of software tools
for building the compacted de Bruijn graph directly (i.e., without first building the un-compacted de
Bruijn graph). We adopt TwoPaCo21, which employs a time and memory-efficient parallel algorithm for
directly constructing the compacted de Bruijn graph, and whose output can be easily converted into GFA
format. We note that, due to a technical detail concerning how TwoPaCo constructs the compacted de
Bruijn graph and the GFA file, the output cannot be directly used by pufferfish. Therefore, the current
workflow of pufferfish includes a GFA-to-GFA converter that prepares the TwoPaCo-generated GFA file
for indexing by pufferfish⋆⋆.

The dense pufferfish index
Here we describe the basic (i.e., dense) pufferfish index. The index consists of 6 components (one of
which is optional) as described below, and the overall structure is similar to what is explained by Liu
et al. 17 :

useq: The unipath sequence array (useq) consists of the (2-bit encoded) sequence of all unipaths of the
compacted de Bruijn graph packed together into a single array. Typically, the size of this structure is
close to (or smaller than) the size of the 2-bit encoded reference sequence, since redundant sequences
are represented only once in this structure. We note that the unipath array contains the sequence of
every valid k-mer, as well as that of potentially invalid k-mers (those which span unipath boundaries
in the packed array, as the sequences in the array follow each other without any delimiters or gaps.).
We denote by Ls the total length (in nucleotides) of the unipath array.

bv: The boundary vector (bv) is a bit-vector of length Ls. The bits of this vector are in one-to-one
correspondence with the nucleotides of the unipath array, and the boundary vector contains a one at
each nucleotide corresponding to the end of a unipath in useq, and a zero everywhere else. We can
retrieve the index of each unipath in useq using the rank operation on bv. rank(bv[i]) returns the
number of 1s in bv before the current index, i, or, in other words, the index of the current unipath.
This can be used to get reference information for the current unipath from utab, which is explained
below. We note that bv is typically very sparse, and so can likely be compressed (using e.g., RRR26

or Elias-Fano encoding), though we have not explored this yet.
h : The minimum perfect hash function (h) maps every valid k-mer in the unipath array (i.e., all k-mers

not spanning unipath boundaries) to a unique number in [0, N), where N is the number of distinct
valid k-mers in useq. We make use of the highly-scalable MPHF construction algorithm of Limasset
et al. 27 . We also note that we build the MPHF on the canonicalized version of each k-mer.

pos: The position vector (pos) stores, for each valid k-mer x, the position where this k-mer occurs in
useq. Specifically, for k-mer x, let x̄ be the reverse complement of x and let x̂ be the canonical form
of x (the lexicographically smaller of x and x̄). Then pos [h(x̂)] contains the starting position of x in
useq such that useq [h(x̂) : h(x̂) + k] = x⋆ ⋆ ⋆.

⋆ https://github.com/GFA-spec/GFA-spec
⋆⋆ Specifically, the TwoPaCo compacted de Bruijn graph has two main differences with the format that is expected

by pufferfish. First, it is not the case that k-mers and their reverse complements will appear only once in the
TwoPaCo compacted de Bruijn graph. Second, the GFA generated by TwoPaCo assumes that edges of size at
least k + 1 will act as GFA segments, implying that they will overlap by k nucleotides. However, we require
that segments be of at least size k and overlap by exactly k − 1 nucleotides.

⋆ ⋆ ⋆ Throughout this manuscript, we adopt Python notation to represent string manipulation, and string slices,
prefixes and suffixes.
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utab: The unipath table utab stores, for each unipath appearing in useq, the reference sequences (in-
cluding reference ID, offset and orientation) where this unipath appears in the reference. This is
similar to a “posting list” in traditional inverted indices, where all occurrences of the item (in this
case, an entire compacted de Bruijn graph unipath) are listed. The order of the unipaths in utab is
the same as their order in useq, allowing the information for a unipath to be accessed via a simple
rank operation on bv.

eqtab: Optionally, an equivalence class table that records, for each unipath, the set of reference sequences
where this unipath appears. Pre-computation and storage of these equivalence classes can speed up
certain algorithms (e.g., pseudoalignment 16).

These structures allow us to index every k-mer in the compacted de Bruijn graph efficiently, and to
recall, on demand, all of the reference loci where a given k-mer occurs. We note here that the k-mers of
the compacted de Bruijn graph constitute only a subset of the k-mers in useq. We refer to all k-mers
in useq that do not span the boundary between two unipaths as valid k-mers; these are in one-to-one
correspondence with the k-mers of the compacted de Bruijn graph.

k-mer query in the dense pufferfish index By using a minimum perfect hash function (MPHF), h,
to index the valid k-mers, we avoid the typically large memory burden associated with standard hashing
approaches. Instead, the identity of the hashed keys is encoded implicitly in useq. Given a k-mer x,
we can check for its existence and location in the following way. We first compute i = h(x̂), the index
assigned to k-mer x by h. If i ≥ N , then we immediately know that x is not a valid k-mer. Otherwise,
we retrieve the position pi stored in pos[i]. Finally, we check if the encoded string useq[pi : pi + k] is
identical to x (or x̄). If so, we have found the unipath location of this k-mer. Otherwise, x is not a valid
k-mer.

Given pi, we can retrieve the reference positions by computing rpi = rank(bv[pi]), which provides
an index into utab that is associated with the appropriate unipath. This provides all of the reference
sequences, offsets and orientations where this unipath appears. We compute the offset of k-mer x in the
unipath as oi = pi − select(rpi), where select(rpi) returns the start position of the unipath in utab. This
allows us to easily project this k-mer’s position onto each reference sequence where it appears. We note
that querying a k-mer in the pufferfish index is an asymptotically constant-time operation, and that the
reference loci for a k-mer x can be retrieved in O(occ(x)) time, where occ(x) is the number of occurrences
of x in the reference.

The sparse pufferfish index

The pufferfish index, as described above, is relatively memory-efficient. Yet, what is typically the biggest
component, the pos vector, can still grow rather large. This is because it requires ⌈lg(Ls)⌉ bits for each
of the N valid k-mers in useq. However, at the cost of a slight increase in the practical (though not
asymptotic) complexity of lookup, the size of this structure can be reduced considerably. To see how, we
first make the following observation:

Observation 1 In the compacted de Bruijn graph (and hence, in useq), each valid k-mer occurs exactly
once (k-mers occuring between unipath boundaries are not considered). Hence, any valid k-mer in the
compacted de Bruijn graph is either a complex k-mer (i.e., it has an in or out degree greater than 1), is
a terminal k-mer (i.e., it appears at the beginning or end of some input reference sequence), or it has a
unique predecessor and / or successor in the orientation defined by the unipath.

We can exploit this observation in pufferfish to allow sampling of the k-mer positions. That is, rather
than storing the position of each k-mer in the unipath array, we store the position only for some subset
of k-mers, where the rate of sampling is given by a user-defined parameter s. For those k-mers that are
not sampled, we store, instead, three pieces of information; the extension that must be applied to move
toward the closest k-mer at a sampled position (the QueryExt vector), whether or not the corresponding
k-mer in useq is canonical (the isCanon vector), and whether the extension to reach the nearest sampled
position should be applied by moving to the right or the left (the Direction vector). The QueryExt vector
encodes the extensions in a 3-bit format so that variable-length extensions can be encoded, though every
entry in this vector is reserved to take the same amount of space (3 times the maximum extension length,
e). The isCanon vector is set to 1 whenever the corresponding k-mer appears in useq in the canonical
orientation, and is set to 0 otherwise. The Direction vector is set to 1 whenever the corresponding, non-
sampled, k-mer should be extened to the right, and it is set to 0 when the corresponding k-mer should
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be extended to the left. We additionally store an extra bit vector with the same size as useq (the isSamp
vector) that is set to 1 for any k-mer whose position is sampled and 0 for all other k-mers.

This idea of sampling the positions for the k-mers is similar to the idea of sampling the suffix array
positions that is employed in the FM-index25, and the idea of walking to the closest sampled position
to verify a k-mer occurs is closely related to the shallow forest covering idea described by Belazzougui,
Djamal and Gagie, Travis and Mäkinen, Veli and Previtali, Marco 28 for verifying membership of a k-mer
in their fully-dynamic variant of the de Bruijn graph. This scheme allows us to trade off query time for
index space, to allow the pufferfish index to better scale to large genomes or collections of genomes.

k-mer query in the sparse pufferfish index k-mer query in the sparse pufferfish index is the same
as that in the dense index, except for the first step — determining the position of the k-mer x in useq.
When we query the MPHF with x to obtain i = h(x̂), there are three possible results.

1. In the first case, if i ≥ N , this implies, just as in the dense case, that x is not a valid k-mer.
2. In the second case, if i < N and isSamp[i] = 1, this implies that we have explicitly stored the

position for this k-mer. In this which case we can retrieve that position as pi = pos[rank(isSamp[i])]
and proceed as before in the dense case to validate x and retrieve its reference positions.

3. In the third case, if i < N and isSamp[i] = 0, this implies we do not know the position where x
would occur in useq, and we must find the closest sampled position in order to decode the position
of x (if it does, in fact, occur in useq). This is accomplished by Algorithm 1.

Algorithm 1 Find Query Offset
1: procedure FindQueryOffset
2: x← the query k-mer
3: x̂q ← x̂
4: i← h(x̂)
5: offset← 0
6: while i < N and not isSamp[i] do
7: extIdx← i− rank(isSamp[i])
8: extNuc← QueryExt[extIdx]
9: extLen← len(extNuc)

10: if isCanon[extIdx] and Direction[extIdx] then
11: x← x̂[extLen :] + extNuc
12: offset← offset + e

13: if not isCanon[extIdx] and Direction[extIdx] then
14: x← ¯̂x[extLen :] + extNuc
15: offset← offset + e

16: if isCanon[extIdx] and not Direction[extIdx] then
17: x← extNuc + x̂[: −extLen]
18: offset← offset− e

19: if not isCanon[extIdx] and not Direction[extIdx] then
20: x← extNuc + ¯̂x[: −extLen]
21: offset← offset− e

22: i← h(x̂)
23: if i ≥ N then return −1
24: pi ← pos[rank(isSamp[i])]− offset
25: if useq[pi : pi + k] == x̂q or useq[pi : pi + k] == ¯̂xq then
26: return pi

27: else
28: return −1

Intuitively, Algorithm 1 appends nucleotides stored in the QueryExt array to x to generate a new
k-mer, x′, which either has a sampled position, or is closer to a sampled position than is x. The extension
process is repeated with x′, x′′, etc. until either an invalid position is returned by h, or a sampled position
is reached. If an invalid position is returned at any point in the traversal, the original k-mer cannot have
been a valid query. On the other hand, if a sampled position is reached, one still needs to verify that the
k-mer implied by the query procedure is identical to the original k-mer query x (or x̄). To check this,
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one simply traverses back to the position in useq for the original k-mer x that is implied by the sampled
position and sequence of extension operations. The rest of the search proceeds as for the dense case. The
whole process of a (successful) k-mer query in sparse index is illustrated in Figure 2 through an example.

GCGGCTG

TCACGGCGGCTGTCCTG
1000000001000 T000

CT00

ACT0

CACT

CCT0

CT00

T000

TCCT

…
…

IsSamp

Direction

GCGGCTG

MPHF h(x)x=

h(x) - rank(IsSamp[h(x)])

TCCT =x’

h(x’)

k’

Extension Vectorx … …
Unipath Array

pos[rank(IsSamp[h(x’)])]

x - queried k-mer (not sampled)

x’- sampled k-mer (nearest)

-00001111-000

pos(x) = pos[rank(IsSamp[h(x’)])] - 4

0110000001000
IsCanon

CAGCCGC

Fig. 2: An illustration of searching for a particular k-mer in the sparse pufferfish index with sample fac-
tor (s) of 9 and extension size (e) of 4. Vector isSamp has length equal to the number of valid k-mers,
and isCanon and Direction have length equal to the total number of non-sampled k-mers. The mini-
mum perfect hash yields the index h(x̂) for x = CAGCCGC in isSamp, where we discover that the
k-mer’s position is not sampled. Since isCanon [h(x̂) − rank(isSamp [h(x̂)])] = 0 we know that the k-
mer, if present, is not in the canonical orientation in useq. Since x is in the canonical orientation, we
must reverse-complement it as x̄ = GCGGCTG before adding the extension nucleotides. Then, based
on the value of Direction[h(x̂) − rank(isSamp[h(x̂)])], we know that to get to the closest sampled k-
mer we need to append the extension nucleotides to the right of x̄. The extension is extracted from the
QueryExt vector. Since extensions are recorded only for non-sampled k-mers, to find the index of the
current k-mer’s extension, we need to determine the number of non-sampled k-mers preceding index
h(x̂). This can easily be computed as h(x̂) − rank(isSamp[h(x̂)], which is the index into QueryExt
from which we retrieve this k-mers’s extension. We create a new k-mer, x′, by appending the new ex-
tension to x̄, and also removing its first e = 4 bases. Then, we repeat the same process for the new
k-mer x′. This time, the k-mer is sampled. Hence, we go directly to the index in useq suggested by
pos[rank(isSamp[h(x̂′)])]. To check if the original k-mer we searched for exists, we need to compare
the k-mer starting from e = 4 bases to the left of the current position with the non-canonical version
of the original k-mer (since the sampled k-mer x′ was arrived at by extending the original query k-mer
by 4 nucleotides to the right). Generally speaking, once we reach a sampled position, to check the orig-
inal query k-mer, we need to move in useq to either the right or the left by exactly the distance we
traversed to reach this sample, but in the opposite direction.

By altering the stored extension size e and the maximum sampling rate s, one can limit the maximum
number of extension steps (and hence the maximum number of hash lookups) that must be performed
in order to retrieve the potential index of x in useq. A denser sampling and longer extensions require
fewer possible extension steps, while a sparser sampling and shorter extensions require less space for
each non-sampled position. If e ≥ s−1

2 , one can guarantee that at most a single extension step needs to
be performed for any k-mer query, which allows k-mer queries to remain practically very fast while still
reducing the index size for large reference sequences.

Even though the sparse index maintains a number of extra bit vectors not required by the dense index,
it is usually considerably smaller. Assume a case where the extension length e = s−1

2 is approximately
half of the sampling factor (the minimum length that will guarantee each query requires at most a single
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extension step). Since we keep the extension required to get to the closest position in the left or right
direction, we need to keep e bases for a k-mer, with each base represented using 3 bits (since we need
to allow encoding extensions of length < e, for which the encoding must allow a delimiter). Hence, this
requires 3e bits per k-mer for the QueryExt vector. The isCanon and Direction vectors each require
a single bit per non-sampled k-mer, and the isSamp vector requires a single bit for all N of the valid
k-mers. Assume, for simplicity of analysis, that the sampled k-mers are perfectly evenly-spaced (which is
not possible in practice since e.g., we must require to sample at least one k-mer from each unipath), so
that the number of sampled k-mers is simply given by N

s = N
2e+1 . Further, since we are ignoring unipath

boundary effects, assume that N = Ls. Since the space required by the rest of the index components
(e.g. the MPHF, and utab, etc.) is the same for the dense and sparse index, the sparse index will lead to
a space savings whenever

N

2e + 1
⌈lg(N)⌉ +

[
N +

(
N −

(
N

2e + 1

))
(3e + 2)

]
< N⌈lg(N)⌉.

Under this analysis, in a typical dataset, such as the human genome with lg(Ls) ≈ lg(N) ≈ lg(3×109) ≥
30 bits, and choosing s = 9 and e = 4, so that we sample every 9th k-mer on average, and require at most
one extension per query, we save, on average, ∼ 14.5 bits per k-mer. Of course, the practical savings are
less because of the boundary effects we ignored in the above analysis.

3 Results

We explored the size of the index along with the memory and time requirements for index building
and k-mer querying (a fundamental building block of many mapping and alignment algorithms) using
pufferfish and two other tools, BWA (BWA-MEM6, specifically) and kallisto.

Though BWA is not a graph-based index, it was chosen as it implements the highly memory-efficient
FMD-index6, which is representative of a memory-frugal approach. It is also worth noting that, although
we only test querying for fixed-length k-mers here, BWA is capable of searching for arbitrary length
patterns — an operation not supported by the kallisto or pufferfish indices. On the other hand, kallisto 16

adopts a graph-based index, and provides very fast k-mer queries. Both BWA and kallisto implement all
phases of index construction (i.e., the input to these tools is simply the FASTA files to be sequenced).
For pufferfish, however, we first need to build the compacted de Bruijn graph. We build the compacted
de Bruijn graph and dump it in GFA format using TwoPaCo21. Then (as the output does not satisfy
our definition of a compacted de Bruijn graph) we need to further prepare the GFA file for indexing. We
call this process pufferization. It converts the GFA file to the format accepted by pufferfish (i.e., each
k-mer should appear only once in either orientation among all the unipaths, and all unipaths connected
in the compacted de Bruijn graph should have an overlap of exactly k − 1 bases). Finally, we build both
dense and sparse pufferfish indexes and benchmark the time and memory for all steps of the pipeline
individually. All experiments were performed on an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20GHz
with 44 cores and 56MB L3 cache) with 512GB RAM and a 4TB TOSHIBA MG03ACA4 ATA HDD
running ubuntu 16.10, and were carried out using a single thread except for compacted de Bruijn graph
building step using TwoPaCo. For all datasets, we consider k = 31, and the sparse pufferfish index was
constructed with s = 9 and e = 4.

References and query datasets We performed benchmarking on three different reference datasets, selected
to demonstrate how the different indices scale as the underlying reference size and complexity increases.
Specifically, we have chosen a common human transcriptome (GENCODE version 25, 201 MB), a recent
build of the human genome (GRCh38, 2.9 GB), and an ensemble of > 8000 bacterial genomes and
contigs (18G) downloaded from RefSeq (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/). The
human transcriptome represents a small reference sequence (which nonetheless exhibits considerable
complexity due to e.g., alternative splicing), the human genome represents as a moderate (and very
common) size reference, and the collection of bacterial genomes acts as a large reference set. For the k-
mer query experiments, we search for all the k-mers from an experimental sequencing dataset associated
with each reference. To query the human transcriptome, we use k-mers from SRA accession SRR1215997,
with 10,683,470 reads, each of length 100 bases. To query the human genome, we use k-mers from SRA
accession SRR5833294 with 34,129,891 reads, each of length 250 bases. Finally, to query the bacterial
genomes, we use k-mers from SRA accession SRR5901135 (a sequencing run of E. coli) with 2,314,288
reads, each of length 250 bases.
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Tool Memory (MB) Time (h:m:s)
Human

Transcriptome
Human

Genome
Bacterial
Genomes

Human
Transcriptome

Human
Genome

Bacterial
Genomes

BWA 292 4,443 32,213 2:56 0:58:27 13:11:45
kallisto 3,552 150,657 315,387 3:05 3:27:42 9:07:35
pufferfish dense 1,466 27,438 241,721 0:04:13 2:09:25 24:36:41
pufferfish sparse 1,466 27,438 241,721 0:04:41 2:28:53 25:12:52
TwoPaCo 1,466 18,004 241,721 0:02:47 0:56:12 21:25:46
pufferize 584 27,438 75,342 0:0:10 0:21:53 1:03:17
pufferfish dense index 438 20,000 50,459 0:01:16 0:51:20 2:07:38
pufferfish sparse index 331 17,745 50,457 0:01:44 1:10:48 2:43:49

Table 1: Upper half of the table shows construction time and memory requirements for BWA, kallisto
and pufferfish (dense and sparse) on three different datasets. In the lower half of the table, the con-
struction statistics are provided for different phases of pufferfish pipeline. The time requirement for
pufferfish is the sum of different sub parts of the workflow, where the memory requirement is the max
of the same.

Tool Memory (MB) Time (h:m:s)
Human
Transcriptome

Human
Genome

Bacterial
Genome

Human
Transcriptome

Human
Genome

Bacterial
Genome

BWA 308 4,439 27,535 0:17:35 0:50:31 0:14:05
kallisto 3,336 110,464 232,353 0:02:01 0:19:11 0:22:25
pufferfish dense 454 17,684 41,532 0:02:46 0:10:37 0:06:03
pufferfish sparse 341 12,533 30,565 0:08:34 0:22:11 0:08:26

Table 2: The time and memory required load the index and query all k-mers in reads of the input
FASTQ files for different datasets.

Construction time The construction time for various methods depends, as expected, on the size and
complexity of the references being indexed (Table 1). No tool exhibits faster index construction than all
others across all datasets, and the difference in construction time between the fastest and slowest tools for
any given dataset is less than a factor of 3. All tools perform similarly for the human transcriptome. For
indexing the human genome, BWA is the fastest, follwed by pufferfish and then kallisto. For constructing
the index on all bacterial genomes, kallisto finished most quickly, followed by BWA and then pufferfish.
The time (and memory) bottleneck of index construction for pufferfish is generally TwoPaCo’s construc-
tion of the compacted de Bruijn graph. This is particularly true for the bacterial genomes dataset where
TwoPaCo’s compacted de Bruijn graph construction accounts for ∼ 85% of the total index construction
time. This motivates considering potential improvements to the TwoPaCo algorithm for large collections
of genomes (as well as considering other tools which may be able to efficiently construct the required
compacted de Bruijn graph input for pufferfish).

Construction memory usage Unlike construction time, the memory required by the different tools for
index construction follows a clear trend; BWA requires the least memory for index construction, followed
by pufferfish, and kallisto requires the most memory. There are also larger differences in the construction
memory requirements than the construction time requirements. For example, to construct an index
on the human genome, kallisto requires ∼ 34 times more memory than BWA (and ∼ 5.5 times more
memory than pufferfish). With respect to the current pipeline used by pufferfish, we see that TwoPaCo
is the memory bottleneck for the human transcriptome and bacterial genomes datasets, while pufferize
consumes the most memory for the human genome. For the bacterial genomes dataset in particular,
TwoPaCo consumes over 3 times as much memory as the next most intensive step (pufferize) and ∼ 4.8
times as much memory as actually indexing the input compacted de Bruijn graph. We note that TwoPaCo
implements a multi-pass algorithm, which can help control the peak memory requirements in exchange for
performing more passes (and therefore taking longer to finish). However, we did not thoroughly explore
different parameters for TwoPaCo’s Bloom filter size (which indirectly affects the number of passes).

Query time and memory To measure the query time required for k-mer lookup by the different methods,
we performed experiments in which k-mer queries were issued from sequencing read sets related to each
of the reference sequences (see the description of the query datasets above). Specifically, for each method
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and each dataset, we measure the time it takes to load the index into memory, stream through each valid
k-mer in each read (i.e., k-mers not containing non-ATCG characters), and record the total number of
occurences of all queried k-mers in the corresponding reference index. By querying with experimental
data, we mimic a realistic distribution of queries for both present and absent k-mers in the index. Since
we only perform k-mer queries here (and not read mapping or alignment), we consider only the first end
of paired-end read datasets. Comparing the times recorded in Table 2, we can see that pufferfish (both
the dense and sparse variants) and kallisto generally tend to complete the query task faster than BWA,
except in the bacterial genomes dataset, where BWA takes less time than kallisto (partly because of
the time required by kallisto to load its large index on this dataset). Again, this can be attributed, at
least in part, to the fact that both pufferfish and kallisto are k-mer-based indices, while BWA provides
a full-text index. However, much of the speed of the hashing-based solutions may also be attributed to
the efficiency of hashing as a lookup scheme and to the ability of the compacted de Bruijn graph to
efficiently represent highly-repeated patterns. As expected, query in the sparse pufferfish index is slower
than in the dense index, though the sparse index still remains practically fast in these benchmarks.

When examining the memory required for querying, we observe a pattern similar to that which
we saw with construction memory. That is, BWA requires the least memory, followed by pufferfish, and
kallisto requires the most memory. Here, however, the gap between BWA and pufferfish is reduced, as the
final pufferfish index typically consumes considerably less memory than is required during construction
(especially for the bacterial genomes dataset). In fact, we see that the disk space and query memory
requirements of pufferfish are very similar, as is the case with BWA. For kallisto, however, the hash
table consumes much more memory than does the serialized index on disk†. The difference in memory
requirements is particularly striking for the large and diverse bacterial genomes dataset.

Tool
Human

Transcriptome
Human

Genome
Bacterial
Genomes

BWA 347M 5.12G 31G
kallisto 1.7G 58G 120G
pufferfish dense 387M 16G 37G
pufferfish sparse 271M 11G 26G

Table 3: Disk space required for the index of each tool on different datasets.

4 Conclusion and Future Work

In this paper we proposed a new efficient data structure for indexing compacted colored de Bruijn graphs,
and implement this data structure in a tool called pufferfish. We showed how pufferfish can achieve a
balance between time and space resources. By building upon a MPHF27, we provide practically fast
k-mer lookup, and by carefully organizing our data structure and making use of succinct representations
where applicable, we greatly reduce the space compared to traditional hashing-based implementations.
The main components of the data structures are a minimum perfect hash function (MPHF) built on
k-mers, the concatenated unipath array from which the k-mers are sampled, a bit vector that marks the
boundary of unitigs in the concatenated array, a vector containing the offset position for the k-mers, and
a unipath table enumerating the occurrences of each unipath in the reference sequences.

Moreover, we presented two variants of the pufferfish data structure; namely, a dense and a sparse
variant. The first is optimized for fast queries and the second provides the user with the ability to trade
off space for speed in a fine-grained manner. In the sparse index, we only keep offset positions for a subset
of k-mers. To query a k-mer whose position is not sampled, the sparse representation is aided with a few
auxiliary data structures of much smaller size. Since the largest component of the index is the position
vector, adopting this sparse representation significantly reduces the required memory and disk space. Our
analyses suggest that pufferfish (dense) achieves similar speed to existing hash-based approaches, while
greatly reducing the memory and disk space required for indexing, and that pufferfish (sparse) reduces
the required space even further, while still providing fast query capabilities. We consider indexing and
† We also note that on large sequences (e.g., the human genome and bacterial genomes), kallisto seemed to

require an inordinate amount of time (i.e., days) to load the index into memory. This occurred during the final
phase of index loading. However, by modifying the index loading code, we were able to resolve this issue and
hence provide k-mer query times for these samples.
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query on both small (human transcriptome) and large (> 8000 bacterial genomes) reference datasets.
Pufferfish strikes a desirable balance between speed and space usage, and allows for fast search on large
reference sequences, using moderate memory resources.

Having built an index for a reference genome, transcriptome, or metagenome using pufferfish, the
immediate future work consists of implementing relevant applications based on this index. These applica-
tions fall into the categories of problems that need mapping or alignment as their initial step. Therefore,
we would like to build a fast mapper or aligner by adopting an algorithm such as that described in Sarkar
et al. 29 , and modifying it to use pufferfish as its indexing methodology. Later, we can use the result of this
aligner for mapping to a population of genomes, and performing downstream tasks such as contaminant
detection, metagenomic abundance estimation, etc. We expect the memory efficiency of pufferfish will be
beneficial in working with larger collections of genomic and transcriptomic and metagenomic datasets.
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