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The spatial architecture of signaling pathways and the inter-
actionwith cell size andmorphology are complex but little
understood. With the advances of single cell imaging and
single cell biology it becomes crucial to understand intracel-
lular processes in time and space. Activation of cell surface
receptors often triggers a signaling cascade including the
activation of membrane-attached and cytosolic signaling
components, which eventually transmit the signal to the cell
nucleus. Signaling proteins can form steep gradients in the
cytosol, which cause strong cell size dependence. We show
that the kinetics at the membrane-cytosolic interface and
the ratio of cell membrane area to the enclosed cytosolic vol-
ume change the behavior of signaling cascades significantly.
We present amathematical analysis of signal transduction
in time and space by providing analytical solutions for differ-
ent spatial arrangements of linear signaling cascades. These
investigations are complemented by numerical simulations
of non-linear cascades and asymmetric cell shapes.
K E YWORD S
signaling cascades | intracellular gradients | bulk-surface
reaction-diffusion equations

Abbreviations: MAPK, mitogen-activated protein kinase; PC, pure cytosolic; MMC, mixed membrane-cytosolic; PDE, partial-
differential equation.

1



2 GIESE ET AL.

1 | INTRODUCTION
Cells need to respond toa largevarietyof external stimuli suchas environmental changesor extracellular communication
signals. Signals transmitted from cell surface receptors to target genes in the nucleus are frequently transduced by
cascades of covalent protein modifications. Thesemodifications consist of inter-convertible protein forms, for instance,
a phosphorylated and an unphosphorylated protein. Signaling cascades occur inmany different variations including
mitogen-activated protein-kinase (MAPK) cascades and small GTPase cascades.

Signal transductionmechanisms carried out by networks of protein-protein interactions are highly modular and
regulatory behavior arises from relatively simple modifications Bhattacharyya et al. (2006). The spatial arrangement of
signaling cascades varies in different biological systems. We focus on the localization of signaling components, which
can be tethered to the cell-membrane or freely diffuse in the cytosol. Tethering to the cell-membrane can bemediated
by protein prenylationGelb et al. (2006);Wang andCasey (2016), co-localization bymembrane-bound scaffoldsGordley
et al. (2016) or membrane anchoring proteins Alberts et al.. Frequently, the first steps of signal transduction occur at
themembrane and are then continued into the cytosol.

In many experimental and theoretical studies on signaling cascades, the cell is regarded as a number of well-mixed
compartments with no variation in size, shape or organelle location. An extensivemathematical analysis of temporal
aspects of signaling processes has been carried out in quantitative biology Heinrich et al. (2002); Kofahl and Klipp
(2004); Klipp and Liebermeister (2006); Beguerisse-Díaz et al. (2016). However, the spatial description of signaling
processes has received less attention despite its relevance in understanding cell morphology and growth regulation in
time and space Kholodenko et al. (2010). Examples of spatial effects on the length scale of single cells range from the
yeast mating processMaeder et al. (2007); Dudin et al. (2016) to the propagation of spatial information in hippocampal
neurons which is controlled by cell shape and vice versaNeves et al. (2008); Chay et al. (2016).

We investigate linear signaling cascadeswith different realizations of spatial arrangements of signaling components
as shown in Figure 1. Here, we focus on the membrane-cytosolic interface, which is included in the signaling motif
shown in Figure 1(B, C).

Since the cytosol scaleswith cell volumeand the cellmembranewith the cell surface, reactions on themembraneand
in the cytosol scale with the cell-surface to cell-volume ratio. For instance, we obtain an area/volume ratio of ∝ 3/Rcell

for a spherical cell geometry, where Rcell is the cell radius. Wewill show that this affects the global phosphorylation
rate of signaling proteins that diffuse in the cytoplasmic volume, which depends on cell size. While cytosolic gradients
naturally occur from themembrane to the nucleus, membrane-bound components can only form gradients along the
membrane, which changes the response to heterogeneous signals. Furthermore, the diffusion on themembrane is much
slower for membrane-bound components than for cytosolic components Klünder et al. (2013). Both of these factors are
expected to largely change signal transduction properties of the pathway.

An analysis and comparison of spatial signal transductionmotifs in response to spatially homogeneous and hetero-
geneous signals is presented in this study. The natural extension of widespread used ordinary differential equations
are bulk-surface partial differential equations Elliott and Ranner (2012); Eigel and Müller (2017). Here, bulk refers
to the cellular compartments that are represented as a volume such as the cytoplasm or the nucleus, while surface
refers to all cellular structures that are represented as an area such as the cellular or nuclearmembrane. Since their
introduction to cell signaling systems Levine and Rappel (2005), bulk-surface partial differential equations have been
successfully employed in several models for cell polarization Rätz and Röger (2012); Klünder et al. (2013); Giese et al.
(2015); Thalmeier et al. (2016). However, membrane-cytosolic interfaces at different stages of a signaling cascade have
not yet been investigated.

We start with an analysis of two different motifs with simplified linear kinetics, which allows to develop exact
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F IGURE 1 Spatial organization of signaling cascades. A: Sketch of the classical temporal signal transductionmodel.
Extension of this model into three-dimensional space naturally results in a variety of different spatial motifs. B: The
signal is first processed by signaling components tethered to themembrane, and then transduced at
membrane-cytosolic interface into the cytosol. C: The signaling components are directly activated at the
membrane-cytosolic interface and diffuse through the cytosol. Note, that diffusion coefficients for lateral diffusion
along themembrane aremuch lower than in the cytosol.

analytical solutions of the steady state. Bothmotifs differ in their cell size dependence andwe show further that their
behavior can drastically differ from the assumption ofwell-mixed compartments. The time-scaling of signal transduction
is investigated using the recently introduced method of local accumulation times Berezhkovskii et al. (2010). We
continue by investigating the response and sensitivity to spatially heterogeneous signals such as signaling gradients for
symmetrical and asymmetrical cell shapes. In the last section, we proceed with numerical investigations of systems
with non-linear Hill kinetics as well as negative feedbacks and oscillations. A Fourier analysis in time is used to provide
insight into the dependency of oscillation frequency and amplitude on cell size. Depending on the spatial motif, cell size
limits for the extinction of oscillatory behavior are obtained.

2 | THE MODEL

We start with a linear signaling cascadewith different localizations of themembrane-cytosolic interface as shown in
Figure 1. We employ a simple cascademodel fromHeinrich et al. (2002), in which stimulation of a receptor leads to the
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consecutive activation of several down-stream protein kinases. This model is extended into space in the following. We
assume a linear cascadewith N components, where the firstM < N components are localized at themembranewhile
the remaining N −M components are assumed to freely diffuse in the cytosol. The equations for themembrane-bound
components read

∂Pn
∂t

= Dmem∆ΓPn + v
a
n − v dn on the cell membrane,

for n = 1, . . . ,M . (1)

Here, Pn ( ®x , t ) are the local concentrations on the cell membrane and P0( ®x , t ) is the input signal. All of these species
are functions of space and time, where ®x is a point on themembrane, t is the time andDmem the diffusion rate on the
cell membrane. Since themembrane is a surface in three-dimensional space with negligible thickness, the natural unit
for concentrations of the cell membrane-bound species Pn , n = 1, . . . ,M is molecules per area (see Table 2). The
phosphorylation rates v an as well as the dephosphorylation rates v dn have units molecules per area and time. Note, that
if the input signal is homogeneous in space, meaning P0( ®x , t ) = P0(t ) , all spatial fluxes Dmem+ΓPk are zero and the
equation system for themembrane-bound species can be described by an equivalent system of ordinary differential
equations (SI text). In contrast to the membrane-bound signaling components P1, . . . , PM , the signaling component
PM+1 can freely diffuse in the cytosol. For the modeling of the membrane-cytosolic interface, we need to include
diffusion in the cytosol and reactions on its boundaries, which are themembranes. These processes aremodeled by a
reaction-diffusion equation

∂PM+1

∂t
= Dcyt∆PM+1 − v dM+1 in the cytosol, (2)

with the boundary condition

−Dcyt+PM+1 · ®n = v aM+1 − v
i on the cell membrane. (3)

Since PM+1 is activated by the upstream component PM , which is tethered to the membrane, there is a phosphory-
lation reaction only on the cell membrane but not in the cytosol. This reaction is, therefore, modeled as a boundary
condition. The reactions at themembrane-cytosolic interface are described by the phosphorylation rate v a

M+1 and the
dephosphorylation ratev i , bothwith units molecules per area and time. The species PM+1 diffuses freely in the cytosolic
volume with the diffusion rate Dcyt and therefore its local concentration is described in molecules per volume. The
dephosphorylation rate v d

M+1 is, therefore, given in molecules per volume and time. For the flux on all other membrane
enclosed organelles we assume a zero-flux condition

−Dcyt+PM+1 · ®n = 0. (4)

The equations for the components of the downstream cytosolic cascade read
∂Pn
∂t

= Dcyt∆Pn + v
a
n − v dn , in the cytosol,

for n = M + 2, . . . ,N . (5)



GIESE ET AL. 5

The concentrations at position ®x in the cytosolic volume at time t of the cytosolic components, Pn ( ®x , t ) with n =

M + 1, . . . ,N , are given in molecules per volume (see Table 2). For the cytosolic components we assume zero-flux
conditions:

−Dcyt+Pn · ®n = 0, on the cell membrane, (6)
−Dcyt+Pn · ®n = 0, on the nuclear membrane, (7)

for n = M + 2, . . . ,N .

In classical MAPK cascades the last component of the cascade, which is the phosphorylatedMAPK is imported into
the nucleus. Examples range fromHog1 nuclear import in yeast Klipp et al. (2005); Muzzey et al. (2009) to the import
of ERK inmammals Nardozzi et al. (2010). In this case the boundary condition (7) on the nucleus for the last cytosolic
component PN needs to bemodified to

−Dcyt+PN · ®n = −εPN , (8)

where ε represents a nuclear-import reaction rate on the nuclear membrane.
Wewill test and compare systemswith three components N = 3 as shown in Figure 1, where the spatial arrange-

ment of the components is varied. Here,M = 2 describes the case of twomembrane-bound and one cytosolic element
(motif Figure 1B) andM = 0 the case of only cytosolic components (motif Figure 1C). In the following the caseM = 2 is
referred to asmixedmembrane-cytosolic (MMC) andM = 0 as pure cytosolic (PC) cascade.

3 | RESULTS

3.1 | Themixedmembrane-cytosolic cascade is strongly size dependent
A spherical cell with radius Rcell is assumed in the following analysis. The nucleus is as well represented as sphere
with radius Rnuc, which is placed at the center of the cell. The input signal is denoted by P0(t ) and is assumed to be
homogeneous on the cell surface. The concentrations of protein kinases are described by functions Pi (r , t ) depending
on space and time. Note, since the cellular geometry is radially symmetric and the input signal P0 acts homogeneously
on the cell membrane, these functions depend only on the radial distance from the origin denoted by r and time t . The
model equations for themixedmembrane-cytosolic cascade (MMC,M = 2) with linearized kinetics read

∂P1
∂t

= Dmem∆ΓP1 + α1P0 − β1P1 on themembrane, (9)
∂P2
∂t

= Dmem∆ΓP2 + α2P1 − β2P2 on themembrane, (10)
∂P3
∂t

= Dcyt∆P3 − β3P3 in the cytosol, (11)

and boundary conditions for the cytosolic species P3:

−Dcyt+P3 · ®n = α3P2 − γP3 on themembrane, (12)
−Dcyt+P3 · ®n = −εP3 at the nucleus. (13)
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Here, αi describe phosphorylation and βi desphosphorylation rates. In (11), the rate γ with units µm/s describes
saturation of the activation reaction on themembrane.

The steady state for the first two elements is given by P̄1 = α1
β1P0 and P̄2 = α1α2

β1β2
P0. For the steady state of P3, the

solution is given by

P̄3(r ) = Ai0

(
r

√
β3
Dcyt

)
+ Bk0

(
r

√
β3
Dcyt

)
, (14)

where the coefficientsA and B are derived in the SI text. The steady state solution for different cell sizes is shown in
Figure 2. The concentration is maximal at the cell membrane and decays towards the nucleus. An approximation of the
decay length Lgradient of the intracellular gradient (with highest concentration at themembrane) is given by Brown and
Kholodenko (1999)

Lgradient =

√
Dcyt

β3
. (15)

This decay length can be comparedwith the actual cell size. Their ratio is called the Thiele modulus, a dimensionless
measure defined as Φ = Rcell

Lgradient
=

√
β3R

2
cell

Dcyt
Meyers et al. (2006). For Φ > 1 strong intracellular gradients and

concentration heterogeneities of signalingmolecules are to be expected, while forΦ < 1 the concentration is almost
homogeneous.

The effect of cell size on intracellular concentration gradients is shown in Figure 2. However, the cell size depen-
dence in cell signaling systems does not only arise by the characteristic length scale for intracellular gradient formation
Lgradient as reported in Brown and Kholodenko (1999); Meyers et al. (2006), but by the change of absolute intracellular
concentration levels. The dependence of absolute concentration levels on themembrane-cytosolic interface is shown in
Figure 2 and supplementary Figure S1 for a set of different parameters.

In the special case that there is no nucleus or excluding volume, Rnuc = 0, we have B = 0 and the steady state
solution reads

P̄3(r ) = Ai0

(
r

√
β3
Dcyt

)
,

A =
α3P2√

Dcytβ3i1

(
Rcell

√
β3
Dcyt

)
+ γi0

(
Rcell

√
β3
Dcyt

) . (16)

The coefficientA represents theminimal concentration in the cell center (r = 0). Themaximal concentration at the cell
membrane is bounded by

α3P2√
Dcytβ3 + γ

< P3(Rcell) <
α3P2
γ
. (17)

The concentration level at the membrane tends towards the upper bound in the limit of small cells, meaning Φ � 1,
while it tends towards the lower bound in the limit of large cells, meaningΦ � 1. This effect is shown in supplementary
Figure S1. Note, that for a large inactivation rate at the membrane-cytosolic interface γ > √

Dcytβ3, the cell size
dependence decreases. Therefore, cell size dependence is mainly determined by γ and√

Dcytβ3 but is independent of
thephosphorylation rateα . In order to achieve cell size independence and a reasonable concentrationof phosphorylated
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F IGURE 2 Intracellular concentration profiles for two different signal-transductionmotifs. A: The concentration of
the third cascade element P3 was plotted along a slices through three-dimensional cells. The numbers below the cells
indicate the cell radius in microns, the radius of the nucleus is 1/3 of the cell radius. Strong intracellular concentration
gradients are generated in the case of theMMC cascadewith twomembrane-bound components and only one cytosolic
species [above]. Concentration gradients aremuch shallower for the pure cytosolic cascade, where all three
components diffuse freely in the cytosol [below]. The parameters usedwere
Dmem = 0.03,Dcyt = 3.0, α1 = α2 = α3 = 1.5, β1 = β2 = β3 = 1.0, γ = 10.0, P0 ≡ 1.0. B:AMMC cascadewith two
membrane-bound components and only one cytosolic species is shown. C: In contrast the PC cascade, where all three
components diffuse freely in the cytosol exhibits much shallower gradients. For both spatial motifs size dependence of
the concentration level decreases with higher values of γ.
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signalingmolecules, the phosphorylation rate α has to be increased together with γ.
We can further investigate the evolution of the average concentration levels for this model in the case γ = 0, which

implies strong cell size dependence. In case of arbitrary cell shapes with cell volumeVcell and cell membrane areaMcell,
the average concentration level is obtained from

P
avg
3 =

1

|Vcell |

∫
Vcell

P3dV . (18)

It can be shown that in this case the average concentration levels follow the system of ordinary differential equations
dP

avg
1 (t )
d t

= α1P
avg
0 (t ) − β1P avg

1 (t ), (19)
dP

avg
2 (t )
d t

= α2P
avg
1 (t ) − β2P avg

2 (t ), (20)
dP

avg
3 (t )
d t

=
|Mcell |
|Vcell |

α3P
avg
2 (t ) − β3P avg

3 (t ), (21)

where P avg
1 and P avg

2 are the average concentration levels in molecules per cell membrane area. For a derivation see
supplementary text S1. The steady state for the average concentration of P3 is given by

P̄
avg
3 =

|Mcell |
|Vcell |

α1α2α3P0
β3

. (22)

Therefore, the average concentration level scales with the ratio of |Mcell|
|Vcell | . The effective global phosphorylation rate forthe average concentration of active signalingmolecules in the cytosol is therefore determined by α̃3 = |Mcell |

|Vcell | α3. Theserelations give us a correspondence between widespread used ordinary differential equations and the bulk-surface
partial differential equations employed in this paper. In summary, we have strong cell size dependence, with decreasing
concentrations for larger cells. For cells with Φ > 1 also the concentration differences from cell membrane to cell
nucleus become important and a description in terms of average concentrationmay become invalid.

3.2 | Efficient cytosolic transport via cytosolic cascades

In the following we consider a PC (pure cytosolic) cascade with three elements, in which all elements freely diffuse
through the cytosol. The reaction-diffusion system is given by

∂P1
∂t

= Dcyt∆P1 − β1P1, (23)
−Dcyt+P1 · ®n = α1SR − γ1P1, (24)

∂P2
∂t

= Dcyt∆P2 + α2P1 − β2P2, (25)
−Dcyt+P2 · ®n = 0, (26)

∂P2
∂t

= Dcyt∆P3 + α3P2 − β3P3, (27)
−Dcyt+P3 · ®n = −εP3 . (28)
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In the special case of β1 = β2 = β3 = β analytical approximations to cytosolic cascades in a one-dimensional system
have been derived in Stelling and Kholodenko (2009); Muñoz-García et al. (2009). While a one-dimensional cellular
geometry can be used to study gradient formation qualitatively, spatial effects such as the cell surface to volume ratio
are neglected. Therefore, we present exact analytical solutions to the linear system in three dimensions. The steady
state solutions for P̄n (r ) are expanded as follows

P̄n (r ) =
n∑
k=1

An,k r
k−2 exp(

√
β

D
r )

+
n∑
k=1

Bn,k r
k−2 exp(−

√
β

D
r ). (29)

The algebraic expressions of the coefficientsAn,k andBn,k and their derivation are shown in the SI text. In comparison to
theMMC cascade, which was discussed in the previous section, the third cascade element P3 is more evenly distributed
in the cell and concentration gradients are much more shallow (see Figure 2). In the case γ = 0, we can derive a
expressions for the steady states of the average concentration of signaling components, which are given by

P̄
avg
1 =

|Mcell |
|Vcell |

α1
β
P0, P̄

avg
2 =

|Mcell |
|Vcell |

α1α2
β

P0,

P̄
avg
3 =

|Mcell |
|Vcell |

α1α2α3
β

P0 . (30)

Therefore, the average concentration of the third cascade element P avg
3 takes the same values in theMMC and PC

cascade. Themajor distinction of both spatial motifs is given by the fact that the concentration differences obtained
at the cell membrane and nucleus are larger in theMMC cascade than in the PC cascade. Similarly as in the previous
section, we can formulate a system of ordinary differential equations for the average concentrations

dP
avg
1 (t )
d t

=
|Mcell |
|Vcell |

α1P
avg
0 (t ) − β1P avg

1 (t ), (31)
dP

avg
2 (t )
d t

= α2P
avg
1 (t ) − β2P avg

2 (t ), (32)
dP

avg
3 (t )
d t

= α3P
avg
2 (t ) − β3P avg

3 (t ). (33)

The dependence of absolute concentration levels on themembrane-cytosolic interface is shown in Figure 2 and supple-
mentary Figure S1 for a set of different parameters.

3.3 | The timing of spatial signaling
The timing of signal transduction in linear signaling cascades for well-stirred homogeneous systems has been analyzed
in Heinrich et al. (2002). It was shown that phosphatases have amore pronounced effect than kinases on the rate and
duration of signaling, whereas signal amplitude is controlled primarily by kinases. A thorough analysis of linear models
assuming a homogeneous distribution of signalingmolecules for different kinds of external stimuli has been recently
worked out in Beguerisse-Díaz et al. (2016). Here, we want to extend and compare these findings to spatial signal
transduction omitting the simplification of homogeneous concentrations. The time-scale analysis for spatial models is
more difficult and thereforewe used the recently introducedmeasure of accumulation times Berezhkovskii et al. (2010).
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TABLE 1 An overview on values and parameters. The numerical values given in the paper all use the units shown in
this table.

entity value unit description
Dmem 3.0 × 10−2 µm2/s diffusion coefficient for themembrane-bound species
Dcyt 3.0 µm2/s diffusion coefficient for the cytosolic species
αi - s−1 phosphorylation rate
βi - s−1 phosphatase activity
γ - µm/s reaction rate at themembrane- cytosolic interface

at the cell membrane
ε - µm/s import rate/permeability at themembrane- cytosolic inter-

face at the nucleus
Rcell, Rnuc - µm radius of the cell/nucleus

TABLE 2 An overview on values and parameters. The numerical values given in the paper all use the units shown in
this table.

The fraction of this steady state level that accumulated at distance r and time t is expressed as

ρ(r , t ) = (P̄i (r ) − P (r , t ))/P̄i (r ). (34)

The difference ρ(r , t1) − ρ(r , t2) can be interpreted as the fraction of the steady state level P̄i (r ) that accumulated in the
time interval [t1, t2]. In an infinitesimal time interval [t , t + d t ] the fraction of accumulated activated signalingmolecules
at steady state is given by − ∂ρ(r ,t )∂t d t . Note, that ∂ρ( ®x ,t )∂t satisfies

∞∫
0

∂ρ(r , t )
∂t

d t = 1, (35)

since the initial condition at time t = 0 is given by Pn (r , 0) ≡ 0. Based on this expression the local accumulation time is
defined as Berezhkovskii et al. (2010)

τ(r ) = −
∞∫
0

t
∂ρ(r , t )
∂t

d t .

The accumulation time can be derived from the steady state solution even if no closed form of the time-dependent
solution is known Berezhkovskii et al. (2010). The timing of the average concentrations given in the system of ordinary
differential equations for theMMCcascade (19) - (21) and thePC cascade (31) - (33) are the same and can be analytically
expressed as

τ(r ) = 1

β1
+
1

β2
+
1

β3
. (36)
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This expression also coincides with signaling times calculated by Heinrich et al. Heinrich et al. (2002). However, for
the spatial model the local accumulation times at the membrane and nucleus differ. They are generally faster at
the membrane and slower at the nucleus, where the degree of the difference increases with cell size (see Figure 3).
Furthermore, also the two spatial motifs show significant differences. For theMMC cascade the accumulation time
for the second element P2 is exactly 1

β1
+ 1
β2
on the membrane, while it is faster for the cytosolic species (compare

Figure 3). The accumulation time of P3 at the nucleus is, as expected, much longer. For a small cell with a Thiele modulus
of Φ < 1, the intracellular concentration is spatially homogeneous and the approximation 1

β1
+ 1
β2
+ 1
β3
holds, while

for signal propagation to the nucleus increases with cell size. An analytical solution of the accumulation times for P3
for theMMC cascade and the special case of Rnuc = 0 can be derived Ellery et al. (2013), which is given in the SI Text.
The accumulation time for the signal at the nucleus is, as expected longer. For a small cell withΦ < 1, the intracellular
concentration is spatially almost homogeneous and again the approximation 1

β1
+ 1
β2
+ 1
β3
holds. However, for larger cells,

the time for signal propagation to the nucleus increases with cell size. For the PC cascade, the increase in accumulation
time at the nucleus with cell size is less pronounced than for themixed-membrane cytosolic cascade.

While a constant stimulus was applied to calculate the accumulation times, we also tested a decaying signal
P0(t ) = exp(−λt ). A comparison of theMMC and PC is shown in Figure 3. Interestingly, the concentration level at the
membrane for the PC cascade decreases from the first level P1 to the second level P2 and than increases again from
the second P2 to the third P3 level, while there is an increase from cascade level to cascade level at the nucleus. This
phenomenon is caused by the concentration differences from cell membrane to nucleus, which is larger for P1 than for
P2 in the PC cascade. Note, that the parameters were chosen as αβ = 2), whichmeans a twofold increase for the average
concentration levels from one signaling cascade element to the next. Therefore, the spatial system can behave entirely
different than the homogeneous system.

For calculation of higher moments of the time scaling and the special case of a cell without nucleus we refer to
Ellery et al. (2013). An analysis for time scaling of a linear cascade in one spatial dimension with four elements including
higher moments has been carried out in Simpson et al. (2013).

3.4 | Quantifying the pathway sensitivitywith respect to spatially heterogeneous signals

In the following we present a method for analyzing the signal transduction of heterogeneous signals. The signaling
cascade can be spatially localized as in the case of directed growth. Examples are S. cerevisieMaeder et al. (2007) or S.
pombeDudin et al. (2016). Biochemical properties of protein-protein interactions andmorphological properties can be
tightly connected Peletier et al. (2003). We test the linear signaling cascadewith a graded stimulus of the form

P0( ®x ) = P base
0 + P slope

0 (x1 − xmid
1 ), ®x = (x1, x2, x3), (37)

where PBase
0 and P slope

0 are constants describing the basal signal strength and the slope of the signal, respectively. Here
we choose the origin coordinates to be in the center of the cell and, therefore, xmid

1 = 0.

The gradient can naturally be defined as the difference of concentration at two points over the euclidean dis-
tance of these two points. In the case of the kinase concentrations, the gradient can be computed from (Pn ( ®xfront) −
Pn ( ®xback))/ | ®xfront − ®xback |. However, to compare gradients of kinases at different levels, we calculated a normalized
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F IGURE 3 Signaling time at themembrane and nucleus for themixedmembrane-cytosolic (MMC) cascade (A,B)
and pure cytosolic (PC) cascade (C,D) at themembrane and at the nucleus. A: Time course of the concentration of P1, P2
and P3 for themixedmembrane-cytosolic cascade. The cascade levels are indicated by the numbers. The signal
P0( ®x , t ) = exp(−λt )was applied and the parameters usedwere Rcell = 6µm, Rnuc = 2µm , λ = 1, α1, α2, α3 = 1 and
β1, β2, β3 = 0.5. B: Simulation of the pure cytosolic cascade, but otherwise the same setup and parameters as in (A).C:
Accumulation times for themixedmembrane-cytosolic cascade. In this scenario, a constant signal P0( ®x , t ) = 1was
applied and the cells size varied. The ratio of cellular to nuclear radius was kept at Rcell/Rnuc = 3. Otherwise the same
parameters as in (A) and (B) were used. D: Simulation of the pure cytosolic cascade, but with the same setup and
parameters as in (C),

gradient in order to eliminate signal amplification of the total concentration

gradnorm
cell Pn =

1

P cell
n

Pn ( ®xfront) − Pn ( ®xback)
| ®xfront − ®xback |

, (38)

gradnorm
nuc Pn =

1

P nuc
n

Pn ( ®xfront) − Pn ( ®xback)
| ®xfront − ®xback |

, (39)

where P cell
n and P nuc

n are the average concentrations on the cell membrane and at the nucleus, respectively. For both
spatial motifs we performed a parameter study (see Figure 4).

Interestingly, the gradient of the third cascade level P3 first increases and than decreases for both spatial motifs.
This effect is muchmore pronounced at the nucleus than at themembrane. It can be explained by the effect that for
a small cells, the concentration is almost homogeneous in the cytosol and concentration differences are balanced by
diffusion. However, with increasing cell size the absolute concentration level decreases in the cell and at the nucleus.
As a consequence, also the absolute gradient decreases. The normalized gradient at the nucleus for the PC cascade
behaves qualitatively similar for theMMC cascade, however the peak for the normalized gradient is obtained for larger
cell sizes. For the PC cascade the normalized gradient is increasing with cell size in the observed range of cell sizes.

The findings can also be generalized to higher order spatial heterogeneities, meaning heterogeneities with multiple
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maxima andminima (see SI Text). The signal can be decomposed using spherical harmonics

P0(θ,φ, t ) =
∞∑
l=0

l∑
m=−l

Am0,l (t )Y
m
l (θ,φ), (40)

Am0,l (t ) =
2π∫
0

π∫
0

P0(θ,φ, t )Y m∗l (θ,φ) sin(θ) dθdφ. (41)

In this decomposition the amplitudes of higher order, where the order is denoted by l , are generally more strongly
damped than gradients or spatial heterogeneities of lower order (see SI Text). In this manner, the results shown here can
be extended to complex spatial signals on the cell surface.

Furthermore, we tested the influence of asymmetries in cell shape and organelle position. The first asymmetry is a
cell with a nucleusmoved away from the cell center (see Figure 5). The second asymmetry is a cell with a protrusion,
as occurs for instance inmating yeast Diener et al. (2014). Both cellular asymmetries induce an intracellular gradient
along the cell membrane as well as the nuclear membrane even if a spatially homogeneous gradient is applied on the
cell surface (see Figure 5B). For a cell with the nucleus moved away from the center a gradient is induced, since the
nucleus acts like a dam against the diffusive flux from themembrane into the cytosol (see Figure 5B). For the cell with a
protrusion the concentration of P3 is higher in the protrusion than in the opposite distal end, which is the spherical part
of the cell. This effect emerges due a higher local surface to volume ratio in the protrusion region. Therefore, a larger
portion of cytosolic signalingmolecules, which freely diffuse in the cytosol, is phosphorylated in the protrusion part
leading to a gradient from the protrusion tip to the opposite distal end of the cell. The influence of cellular asymmetries
has also been investigated in Giese et al. (2015) for gradients of the small Rho-GTPase Cdc42 during cell polarization.
However, this system reacts in the opposite way since the flux of molecules is directed from the cytosol onto the
membrane and one observes a gradient of from the distal end to the protrusion. For a cell with an organelle moved
away from the cell center, the polarization system results in a lower concentration in the vicinity of the organelle. These
effects occur due to the different architectures of both systems. In the PC andMMC signaling cascades, we have signal
transduction from themembrane to the nucleus and, therefore, a diffusive flux of activated signalingmolecules from the
membrane into the cytosol, while in the polarization system the flux of signaling molecules is directed from the cytosol
onto themembrane, which is the opposite direction. Therefore, both system respond differently to cellular asymmetries
with respect to gradient formation. This interplay of both systems is especially interesting, since inmany organisms a
polarization system is interacting with aMAPK cascade Thomson et al. (2011); Ventura et al. (2014). To complete our
investigations, we varied the slope of the signal and investigated the sensitivity of both cell shapes towards different
slopes of signals and compared the response with a symmetric cell (see Figure 5C).

4 | DISCUSSION

Stimulated by the progress in cell imaging and the increasing need to understand intracellular dynamics, we investigated
and discussed a general approach of modeling cellular signal transduction in time and space. We showed that modeling
of the membrane-cytosolic interface is crucial as well as the ratio of membrane area and cytosolic volume, which
are both spatial properties. The results imply strong cell size dependence of signal transductionwithin cells. Widely
used time-dependent models of ordinary differential equations can naturally be extended into space by using bulk-
surface differential equations. Applying this extension to a class of linear signal transductionmodels, we compared the
assumption of a well mixed cell with two different spatial signal transductionmotifs. We derived and discuss criteria
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that can be used to test the well-mixed assumption and show that kinetics that connect membrane-bound species with
cytosolic species naturally cause size dependence. The results are therefore of general importance for kinetic models of
signal transduction.

Our findings have relevant biological implications. Since the signals transduced by linear signaling cascades from the
cell membrane to the nucleus decrease exponentially on a length scale of a fewmicrons, our theoretical findings suggest
a strong cell size dependence in response to extracellular stimuli. Interesting studies of the response in cell populations
often lack the response behavior attributed to cell size andmorphology. Examples range from the switch-like behavior
in populations of oocytes Ferrell andMachleder (1998) to the pheromone response in yeast cells Conlon et al. (2016);
Banderas et al. (2016). Therefore, single cell data where the cell size is assigned to themeasurements is needed for a
faithful quantitative investigation of the pathway, to disentangle biochemical properties of protein-protein interactions
tomorphological properties such as size and shape of whole cells.

In non-linear systems, the differences that we observed in the linear signaling cascade models are likely to be
amplified. Non-linear kinetics can amplify gradient formation, which leads to even stronger intracellular concentration
differencesWartlick et al. (2009). This also holds for absolute concentration levels that can behave in a switch-like
manner depending on the kinetics Kholodenko (2000); Ferrell andMachleder (1998). The same holds for the time scales
of signaling. Higher order kinetics can amplify the accumulation time differences in different cellular locations Gordon
et al. (2011).

The model can be extended to more complex spatial heterogeneities for example by using the Laplace series as
suggested in this paper. With localized signals arising frommembrane structures like lipid rafts, septins, co-localization
due to protein-protein interactions can be represented. Since these are often precursors for cell shape and organelle
structures the interplay with cell shape needs to be addressed by future research. The intrinsic geometry dependence
of bulk-surface signaling systems has recently been shown for ellipsoidal cell shapes in theMinE-MinD systemHalatek
and Frey (2012); Thalmeier et al. (2016);Wu et al. (2016), but also in the yeast systemOrlandini et al. (2013); Giese et al.
(2015); Chen et al. (2016). Here, not only the global but also the local surface to volume ratio in cell protrusion plays an
important role. Recent developments of mathematical methods such as the finite element method for bulk-surface
equations Elliott and Ranner (2012); Eigel andMüller (2017) as well as stability analysis techniques Rubinstein et al.
(2012); Edelstein-Keshet et al. (2013); Rätz and Röger (2014); Giese et al. (2015); Garcke et al. (2016);Madzvamuse
et al. (2016) are expected to provide further insight in the behavior of biological systems.

METHODS

We used the finite-element software FEniCS Alnæs et al. (2015); Logg et al. (2012) to generate the corresponding
meshes and to solve the arising partial differential equations in the Python programming language. The non-linear
equations were solved using a fixed-point schemeMilicic et al..
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