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Abstract 

We present a fast and model-free 2D and 3D single-molecule localization 

algorithm that allows more than 3 million localizations per second on a standard 

multi-core CPU with localization accuracies in line with the most accurate algorithms 

currently available. Our algorithm converts the region of interest around a point 

spread function (PSF) to two phase vectors (phasors) by calculating the first Fourier 
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coefficients in both x- and y-direction. The angles of these phasors are used to 

localize the center of the single fluorescent emitter, and the ratio of the magnitudes 

of the two phasors is a measure for astigmatism, which can be used to obtain depth 

information (z-direction). Our approach can be used both as a stand-alone algorithm 

for maximizing localization speed and as a first estimator for more time consuming 

iterative algorithms. 

Introduction 

Single-molecule localization microscopy (SMLM) has become a widely used 

technique in the biomolecular sciences since seminal contributions successfully 

demonstrated a roughly ten-fold improvement in spatial resolution over conventional 

fluorescence microscopy1–3. The key concept of SMLM is that the position of a single 

fluorescent emitter can be determined with an accuracy exceeding the diffraction 

limit as long as the emission of different molecules is sufficiently separated in time 

and space4–6. To localize the individual particles with sub-diffraction accuracy in two 

or three dimensions, a number of approaches have been developed7. Frequently 

employed localization algorithms involve the use of two-dimensional Gaussian 

functions to fit the intensity profile of individual emitters with high precision. These 

approaches, however, tend to be slow due to their iterative nature8,9, albeit data 

analysis in real time using graphics processing units (GPU) has been successfully 

demonstrated10. Faster localization algorithms using, for example, center of mass 

(CoM) calculations11 or radial symmetry12,13 tend to have lower localization accuracy 

or lack the ability to assess 3D information. Although a Fourier domain localization 

scheme for non-iterative 2D localization has been demonstrated theoretically, that 

method has not been widely adopted as it did not offer significant improvements in 

either localization speed or accuracy compared to iterative algorithms14. 
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Here, we introduce a simple and non-iterative localization algorithm with minimal 

computation time and high localization accuracy for both 2D and 3D SMLM. Our 

approach is based on the phasor approach for spectral imaging15. In pSMLM-3D, we 

calculate the location and astigmatism of two-dimensional point spread functions 

(PSF) of emitters. The real and imaginary parts of the first coefficients in the 

horizontal and vertical direction of the discrete Fourier transformation represent 

coordinates of the x- and y-phasors in a phasor plot. The associated angles provide 

information on the x- and y-position while the ratio of their magnitudes is a measure 

for astigmatism that can be used to determine the z-position of the emitter after 

introducing a cylindrical lens in the detection pathway of the microscope16,17. Our 

analysis of simulated PSFs with different photon counts indicates that phasor-based 

localization achieves localization rates in the MHz range, using only the CPU rather 

than requiring a GPU implementation, with similar localization accuracy as 

Gaussian-based iterative methods. Next to this, we localized microtubules in 

dendritic cells in three dimensions obtaining similar results with pSMLM-3D as with 

an iterative Gaussian-based algorithm. Finally, we implemented our algorithm both 

as a stand-alone MATLAB script and into the freely available ImageJ18 plug-in 

ThunderSTORM19. 

Methods 

Data analysis in SMLM consists of the following steps: Identifying potential 

molecules and selecting regions of interests (ROIs) around their approximate 

localization, sub-pixel localization within the ROI, and visualization of results (Fig. 

1a). Here, we will only focus on the sub-pixel localization step. We simulated the 

intensity pattern of a point source emitter using a full vectorial model of the PSF as 

described previously20 and depict it pixelated and with shot noise, mimicking a typical 
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camera acquisition under experimental conditions (Fig. 1b). As our algorithm is able 

to utilize astigmatism commonly introduced by placing a cylindrical lens in the 

emission path for localization in three dimensions16,17, we simulated the full-width at 

half-maximum (FWHM) of the PSF in y-direction to be larger than in x-direction. We 

then calculated the first Fourier coefficients in the x- and y- direction by isolating 

them from the full two-dimensional discrete Fourier transformation of the ROI (see 

also SI: S1). Although the coefficients can also be calculated without calculating the 

complete Fourier transformation, this did not improve localization speed in the 

MATLAB environment. The real and imaginary part of each first Fourier coefficient 

are the coordinates of a phasor, which both are fully described by their phase angles 

(Θ� and Θ�) and magnitudes (�� and ��), representing the relative position of the 

emitter in real space and values for the PSF ellipticity, respectively (Fig. 1c). To aid 

the reader, we calculated the inverse Fourier transformation using only the isolated 

first Fourier coefficients to show the data which is used for calculation of the emitters 

position and widths in real-space (Fig. 1d). We also show the localized position as 

determined from the phasor plot (Fig. 1d, green cross) and the ground-truth position 

(Fig. 1d, pink cross). The two elements represented in the phasor plot (Fig. 1c) have 

different distances to the origin. These magnitudes are inversely proportional to the 

FWHM of the original PSF: �� < ��, leading to FWHMy > FWHMx, in agreement with 

the simulated data. The ratio of the PSF width in x- and y-direction can be used to 

calculate unknown z-positions of emitters in sample data after recording of 

calibration data. 
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Results 

To assess the performance of the phasor algorithm, we analyzed simulated data 

with a background level of 10 photons/pixels and a varying degree of total photon 

counts from the emitter ranging from 80 to 50,000 photons using images of 15x15 

pixels. We compared the localization speed and accuracy of pSMLM-3D with other 

well established localization algorithms (for details see SI: S2): Gaussian-maximum 

likelihood estimation (Gauss-MLE)10, Gaussian-least squares fit (Gauss-LS)21, radial 

symmetry12 (RS) and centroid11,21 (Fig 2). We further included the Cramer-Rao 

Lower Bound (CRLB) to indicate the theoretically achievable resolution where 

relevant22.  

In terms of localization speed, pSMLM-3D achieved more than 3 million 

localizations per second (3 MHz) when using ROIs with 7x7 pixels (Fig 2a). This 

localization rate is at least an order of magnitude faster than our adapted 

implementations of other CPU-based algorithms and even significantly faster than 

GPU-enabled Gauss-MLE. Moreover, we found that the localization speed of GPU-

based algorithms depends on the amount of data transferred to the GPU: Whereas a 

stack of 5,000 7x7 pixel images was analyzed at a rate of 30 kHz, a stack of 500,000 

images (representing 49 MB of transferred data to the GPU), could be analyzed at 

600 kHz. For CPU-based algorithms, this dependency is absent, allowing fast 

analysis of small PSF-containing image stacks, indicative that CPU-based methods 

are well suited for real-time analysis. 

To assess the localization accuracy of the different localization algorithms, we 

cropped the area around each simulated PSF (15x15 pixels) to create ROIs of 7x7 

pixels (in line with the ‘rule of thumb’ fitting region size of 2 ∙ 3	
�� + 1)10 for analysis 
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by all methods, except for phasor where we used ROIs of either 5x5 (for simulated 

photon counts < 103 photons) or 7x7 (≥ 103 photons). We note that determining the 

optimal ROI size is often challenging for all localization algorithms: albeit working 

with larger ROIs can potentially increase the localization accuracy as more 

information from the PSF is extracted, larger contributions from background and 

near-by other emitters can have a diametric effect. Moreover, these effects depend 

on the photon count of the PSF and the type of localization algorithm used for 

analysis (see also SI: S3).  

The comparison showed that for PSFs consisting of 80 photon counts, the 

localization accuracy is around 0.3 unit pixels for Gauss-MLE, Gauss-LS, RS and 

phasor and reduces to 0.005 unit pixels at 50,000 photon counts in line with the 

theoretically expected improvement of the localization accuracy being proportional to 

the square root of the photon number23 (Fig 2b). Between these outer limits, pSMLM-

3D shows on average a small 3.7% decrease in accuracy compared to Gauss-MLE. 

We further note that the computationally inexpensive centroid based localization 

algorithm has a substantially worse localization accuracy, in line with earlier results12. 

We repeated all simulations at reduced background levels of 1 or 5 photons per pixel 

showing that the localization accuracies of all methods improve with lower 

background levels (SI: S4). 

So far, we limited our analysis to localizations in two dimensions. As our algorithm 

allows using the ratio of the relative widths of the PSF in x- and y-direction 

introduced by astigmatism, the position of an emitter in three dimensions can be 

determined after performing a calibration routine in which photostable fluorescent 

emitters (e.g. latex beads) are imaged at different focus positions. Compared to non-

astigmatic PSFs, we used larger ROIs (11x11 pixels for phasor, and 13x13 pixels for 
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other methods, see SI: S5 – Fig. S4 for details) to account for the larger PSF 

footprint. Comparison of phasor with other algorithms on simulated astigmatic PSFs 

showed that phasor remained the fastest tested algorithm whilst providing a lateral 

localization accuracy close to that of Gauss-MLE, and better than Gauss-LS and 

Centroid (SI: S5 – Fig S5). It should be noted that RS is not capable of determining 

the ellipticity of PSFs. With Gaussian-based methods, the PSF FWHM can be 

elucidated directly from the Gaussian fit; in our algorithm, the phasor magnitudes 

depend not only on the PSF FWHM in the respective directions, but also on the 

background. This dependency can introduce a bias if the background of the 

calibration series differs from that of the actual data. However, the ratio of the phasor 

magnitude in x versus in y remained unaltered (SI: S6), indicating that calibration of 

the ratio between the magnitudes versus z-depth should be performed. We 

calculated the axial localization accuracies using phasor and Gauss-MLE both of 

which provide similar accuracies decreasing from around 200 nm at very low photon 

counts (<500 per PSF) to under 20 nm at high photon counts (>10,000 per PSF) (SI: 

S7). 

To demonstrate the effectiveness of pSMLM-3D, we performed a standard 3D-

STORM measurement of fixed immature dendritic cells with fluorescently labeled 

microtubules. In total, we recorded 50,000 frames (512x512 pixels), resulting in 24.8 

GB of raw data containing roughly 860,000 localized molecules. We analyzed this 

data with the ThunderSTORM19 plugin for ImageJ18 both with phasor and Gaussian-

MLE. Fig. 3A shows an overview of the localization data as acquired via 

ThunderSTORM-phasor and ThunderSTORM-Gauss-MLE. During image 

acquisition, the limited signal-to-noise ratio required changing the size of the ROIs 

for phasor and Gauss-MLE to 7x7 and 11x11 pixels, respectively. The lateral (Fig. 
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3B) and axial (Fig. 3C) resolving power of phasor is in line with that of Gauss-MLE. 

The complete analysis time using multi-core computing, including the filtering of the 

image to find potential single molecules and excluding the loading of the data in the 

computer’s memory, was up to 2 hours and 23 minutes for Gaussian-MLE, while it 

took only around 7 minutes for pSMLM-3D. Entirely omitting sub-pixel localization 

shortened the computation time by only ~15 s, which means that over 95% of the 7 

minute computation time is spend on image filtering and obtaining the approximate 

localization. Complete SMLM analysis with phasor under these conditions is at 117 

frames per second, indicative that it is fast enough for real-time analysis applications 

(Fig. 3D).  

Discussion and Conclusion 

The presented pSMLM-3D combines excellent localization accuracies in three 

dimensions with exceptional localization speeds achievable on standard PCs. In 

depth analysis of synthetic point spread functions with different photon counts and 

background levels indicated that pSMLM-3D achieves a localization accuracy 

matching that of Gaussian-based maximum likelihood estimation even at low signal-

to-noise ratios. Moreover, we demonstrated localization rates above 3 MHz, which is 

at least an order of magnitude increase in speed compared to other CPU-based 

algorithms. In fact, even compared to GPU implementations of Gaussian-based 

localization algorithms24, our algorithm is faster thus significantly reducing the 

computational barrier and costs to analyze experimental SMLM data. Porting the 

phasor approach to a GPU environment is likely to achieve only marginal 

improvements in speed as the bandwidth of transferring raw data is becoming a 

limiting factor. However, implementations using field programmable gate arrays 
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(FPGAs) directly connected to the camera chip are feasible, with real-time SMLM 

analysis with Gaussian methods shown before25.  

Subpixel localization rates in the MHz range satisfy even the most demanding 

applications as frame rates of cameras suitable for single-molecule detection are 

currently not above 100 Hz (full frame), indicating that phasor localization could be 

used in real-time environments. Moreover, some iterative localization algorithms 

currently use the centroid-based localization as a first estimation10. We believe that 

in that setting, the phasor approach can replace the initial step as it shows a speed 

as well as an accuracy improvement. We note that all necessary functions for 

performing the phasor algorithm are trivial, which allows for an easy upgrade of 

existing SMLM software packages. In computational environments in which a fast 

Fourier transformation function is not inherently present, a minimal algorithm to 

compute only the first Fourier coefficient can be written to minimize computation 

times, as we did for our JAVA implementation of phasor (SI: S9, Supplementary 

Software). 

Compared to MLE, subpixel localization is possible in smaller areas around each 

emitter with good localization accuracy, allowing to use effectively a higher 

concentration of fluorescently active emitters. This is especially apparent with 

astigmatism, where a 11x11 pixel size in the phasor approach gives similar 

localization accuracy as 13x13 pixel size in the Gauss-MLE approach. This directly 

results in a possible increase of 40% in fluorophore density with the same chance of 

having partial emitter overlap. However, we note that our current phasor 

implementation does not provide means of resolving molecules whose emission 

partially overlap.  
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Like most localization algorithms currently available, pSMLM-3D assumes well-

behaved PSFs with symmetrical emission profiles. Therefore, the algorithm depends 

on emitters having sufficient rotational mobility as emission profiles deviating from 

symmetrical PSFs can result in significant localization errors as has been 

discussed26–29.  

In summary, we believe that pSMLM-3D holds great promise to replace or 

complement commonly used localization algorithms, as the combination of high 

localization speeds and high localization accuracy has not been shown to this extent 

before. 
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MATERIAL AND METHODS 

PSF simulations 

PSF simulations have been performed as described earlier20 with NA = 1.25, 

emission light at 500 nm, 100 nm/pixel camera acquisition and image sizes set to 

15x15 pixels. We used a full vectorial model of the PSF needed to describe the high 

NA case typically used in fluorescent super-resolution imaging. We accounted for the 

fact that in fluorescent super-resolution imaging the emitter can rotate freely during 

the excited state lifetime (~ns), so for many excitation-emission cycles an average 

over randomly distributed emission dipole orientations will be observed in one 

camera frame (~ms). 

Computer and software specifications 

All computational work was performed on a 64-bit Windows 7 computer with an 

Intel Core i7 6800K CPU @ 3.40GHz (6 cores, 12 threads), NVIDIA GTX1060 GPU 

(1280 CUDA cores, 8 GHz memory speed, 6GB GDDR5 frame buffer, driver version 

376.51), and 64 GB of DDR4 RAM on a ASUSTeK X99-E WS motherboard. 

We used two software packages in this work: MATLAB (MathWorks, UK) version 

2016b and FIJI30. FIJI is based on ImageJ18 version 1.51n, using JAVA version 

1.8.0_66.  

Software scripts used 

Unless specified otherwise, we used variants of the phasor script we have written 

in MATLAB (SI: S8). JAVA-implementation of the phasor approach is based around 

a written minimal discrete Fourier transformation (SI: S9). Gauss-MLE, Gauss-RS, 

radial symmetry, center-of-mass, and Cremer-Rao lower bound algorithms were 
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adapted from earlier uses10,12. For Gauss-MLE, 15 iterations were used; Gauss-LS 

had 400 maximum iterations, with a tolerance of 10-6. 

Chemicals 

All chemicals were purchased from Sigma-Aldrich and used without further 

purification, unless specified differently. 

Labeling of in vivo microtubules 

Monocyte derive human dendritic cells31 were fixated via 4% PFA and 0.1% GA in 

PBS, after which GA-induced fluorescence was reduced by treatment with NaBH4. 

Microtubule were fluorescently labeled via a double antibody labeling; primary 

antibody was a mouse-anti-βTubulin, clone E7, isotype mouse IgG1; the secondary 

antibody was labeled with Alexa 647 (Goat anti-Mouse IgG (H+L) Superclonal 

Secondary Antibody, Alexa Fluor 647, ThermoFischer). 

The labeling procedure was as follows: The cells were permeabilized with 0.1% 

triton-X100 in PBS for 5 minutes, after which they were washed in PBS pH 7.2. Next, 

a blocking step to prevent unspecific adsorption was performed by adding 3% BSA 

in PBS pH 7.2 + 20 mM glycine (MP Biomedicals) and incubated for 1h. Primary 

antibody was added and incubated for 1h. After washing with PBS, the secondary 

antibody was added and incubated for 45min. After a final washing step, the cells 

were stable for imaging for several days in PBS. 

During imaging, a buffer, described in more detail elsewhere32, was added to 

boost blinking of the fluorophores. This blinking buffer was freshly prepared on the 

day of imaging. 1 mL of this buffer consisted of 30 µl Oxyrase (OxyFluor), 200 µl 

sodium-L-lactate, 50 µl mercaptoethylamine, and 690 µl PBS (pH 7.2). The pH of the 

buffer was adjusted to 8.0-8.5 by addition of 30 µl NaOH. 
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Single-molecule microscopy 

We used a home-built microscope for imaging similar to a microscope described 

in more detail elsewhere33. Briefly, our microscope is equipped with a laser engine 

(Omicron, Germany), a 100x oil immersion SR/HP objective with NA = 1.49 (Nikon, 

Japan), and an Zyla 4.2 plus sCMOS camera for image acquisition (Andor, UK). 2x2 

binning was used during acquisition, which resulted in a pixel size of 128x128 nm. A 

cylindrical lens with 1000 mm focal distance was placed in the emission path at 51 

mm from the camera chip to enable astigmatic measurements; alignment of the lens’ 

optical axis was performed to ensure PSF elongation in x- or y-direction.  

Microtubule imaging and analysis 

Fully labeled cells with added blinking buffer were imaged for 50,000 frames of 20 

ms. A 642 nm laser at 22 mW was used for imaging of the fluorophores, a 405 nm 

laser at 3.2 mW was used to induce blinking of the fluorophores. Analysis was 

performed via the ThunderSTORM19 plugin for ImageJ18, with phasor added as sub-

pixel localization option (SI: S9 and Supplementary Software). ThunderSTORM 

parameters for image filtering and approximate localization were kept constant for 

phasor and Gauss-MLE localization: a β-spline wavelet filter with order 3 and scale 3 

was used, and approximate localization was done via an 8-neighbourhood 

connected local maximum, with a peak intensity threshold equal to the standard 

deviation of F1 of the wavelet filter. These settings are the default ThunderSTORM 

settings; the only difference was a β-spline wavelet filter scale of 2 rather than 3. 

Sub-pixel localization was performed with either elliptical Gauss-MLE (11x11 

pixels, 1.6px initial sigma) or phasor (7x7 pixels). Calibration files were recorded 

under similar circumstances with immobilized fluorescent latex beads (560 nm 

emission, 50 nm diameter), and moving the piezo z-stage from -1000 nm to +1000 
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nm. These calibration files were used during the sub-pixel localization to calculate 

the z-position of the fluorophores. 

Visualization of the superresolution data was done via the average shifted 

histogram options, with a magnification of 3 (Fig 3A,C) or 5 (Fig 3B). No lateral or 

axial shifts were added. 3D was enabled and visualized colored, after which a 

composite image was formed in FIJI (Fig 3A). 

SUPPORTING INFORMATION 

Supporting information is available online. 

ACKNOWLEDGEMENTS 

J.H. acknowledges support from a Marie Curie Career Integration Grant (#630992). 

K.M. is funded by a VLAG PhD fellowship awarded to J.H. B.R. acknowledges 

support from European Research Council grant no. 648580. We thank Ben Joosten 

and Gert-Jan Bakker from Radboud UMC Nijmegen for kindly providing us with fixed 

dendritic cells and relevant labeled antibodies. We thank Sjoerd Stallinga for 

providing PSF simulation code. 

REFERENCES 

1 E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. 

Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hess, Science 313, 

1642―1645 (2006). 

2 M.J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006). 

3 S.T. Hess, T.P.K. Girirajan, and M.D. Mason, Biophys. J. 91, 4258 (2006). 

4 H. Deschout, F.C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S.T. 

Hess, and K. Braeckmans, Nat. Methods 11, 253 (2014). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2017. ; https://doi.org/10.1101/191957doi: bioRxiv preprint 

https://doi.org/10.1101/191957
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

5 Z. Liu, L.D. Lavis, and E. Betzig, Mol. Cell 58, 644 (2015). 

6 N. Gustafsson, S. Culley, G. Ashdown, D.M. Owen, P.M. Pereira, and R. 

Henriques, Nat. Commun. 7, 12471 (2016). 

7 A. Small and S. Stahlheber, Nat. Methods 11, 267 (2014). 

8 S.J. Holden, S. Uphoff, and A.N. Kapanidis, Nat. Methods 8, 279 (2011). 

9 L. Zhu, W. Zhang, D. Elnatan, and B. Huang, Nat. Methods 9, 721 (2012). 

10 C.S. Smith, N. Joseph, B. Rieger, and K.A. Lidke, Nat. Methods 7, 373 (2010). 

11 R. Henriques, M. Lelek, E.F. Fornasiero, F. Valtorta, C. Zimmer, and M.M. 

Mhlanga, Nat. Methods 7, 339 (2010). 

12 R. Parthasarathy, Nat. Methods 9, 724 (2012). 

13 S.-L. Liu, J. Li, Z.-L. Zhang, Z.-G. Wang, Z.-Q. Tian, G.-P. Wang, and D.-W. Pang, 

Sci. Rep. 3, 2462 (2013). 

14 B. Yu, D. Chen, J. Qu, and H. Niu, Opt. Lett. 36, 4317 (2011). 

15 F. Fereidouni, A.N. Bader, and H.C. Gerritsen, Opt. Express 20, 12729 (2012). 

16 B. Huang, W. Wang, M. Bates, and X. Zhuang, Science 319, 810 (2008). 

17 L. Holtzer, T. Meckel, and T. Schmidt, Appl. Phys. Lett. 90, 053902 (2007). 

18 C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012). 

19 M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G.M. Hagen, Bioinformatics 

30, 2389 (2014). 

20 S. Stallinga and B. Rieger, Opt. Express 18, 24461 (2010). 

21 M.K. Cheezum, W.F. Walker, and W.H. Guilford, Biophys. J. 81, 2378 (2001). 

22 A. Van den Bos, Parameter Estimation for Scientists and Engineers (John Wiley & 

Sons, 2007). 

23 R.J. Ober, S. Ram, and E.S. Ward, Biophys. J. 86, 1185 (2004). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2017. ; https://doi.org/10.1101/191957doi: bioRxiv preprint 

https://doi.org/10.1101/191957
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

24 A. Kechkar, D. Nair, M. Heilemann, D. Choquet, and J.-B. Sibarita, PLOS ONE 8, 

e62918 (2013). 

25 F. Grull, M. Kirchgessner, R. Kaufmann, M. Hausmann, and U. Kebschull, in Field 

Program. Log. Appl. FPL 2011 Int. Conf. On (IEEE, 2011), pp. 1–5. 

26 J. Enderlein, E. Toprak, and P.R. Selvin, Opt. Express 14, 8111 (2006). 

27 N. Karedla, S.C. Stein, D. Hähnel, I. Gregor, A. Chizhik, and J. Enderlein, Phys. 

Rev. Lett. 115, 173002 (2015). 

28 S. Stallinga and B. Rieger, Opt. Express 20, 5896 (2012). 

29 M.D. Lew, M.P. Backlund, and W.E. Moerner, Nano Lett. 13, 3967 (2013). 

30 J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. 

Preibisch, C. Rueden, S. Saalfeld, B. Schmid, and others, Nat. Methods 9, 676 

(2012). 

31 I.J.M. de Vries, A.A.O. Eggert, N.M. Scharenborg, J.L.M. Vissers, W.J. Lesterhuis, 

O.C. Boerman, C.J.A. Punt, G.J. Adema, and C.G. Figdor, J. Immunother. 

Hagerstown Md 1997 25, 429 (2002). 

32 L. Nahidiazar, A.V. Agronskaia, J. Broertjes, B. van den Broek, and K. Jalink, 

PLoS ONE 11, (2016). 

33 S. Farooq and J. Hohlbein, Phys. Chem. Chem. Phys. 17, 27862 (2015). 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2017. ; https://doi.org/10.1101/191957doi: bioRxiv preprint 

https://doi.org/10.1101/191957
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

FIGURES  

 

Fig 1: Illustration of sub-pixel localization using the phasor approach. (A) Standard 

workflow in single-molecule localization microscopy: (1) Acquisition of raw image 

data; (2) Image filtering; (3) Approximate localization of emitters: obtaining ROIs; (4) 

Sub-pixel localization. (B) Strongly pixelated image (7x7 pixel) including noise 

representing standard conditions using camera-based detection of a simulated 

ellipsoidal point spread function with the ground-truth localization indicated by a pink 

cross. (C) Phasor plot representation of the two first Fourier coefficients of the image 

data. By plotting their real versus the imaginary part, the angles Θ� and Θ� represent 
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the position (phase) of the molecule in real image space as the markings on the 

straight circle in the Fourier domain indicate the normalized 1D position of the true 

center. Furthermore, the magnitudes �� and �� are reciprocally related to the PSF 

width in x and y in real space, respectively. Dotted lines are added for visual 

guidance. (D) Inverse Fourier transformation of the two first Fourier coefficients with 

the cumulated discrete intensity profile plotted in x- and y-direction and fitted with a 

sinusoid for visual guidance. From the angles Θ� and Θ� obtained from (C) and 

plotted in (D), we obtain the position of the molecule in the image domain using �� 

and �� marked by a green cross, with the pink cross from the ground-truth position 

shown for comparison.  
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Figure 2: Comparison of computation speed and localization accuracy of phasor 

with other localization algorithms (Gaussian-MLE10 , Gaussian-LS21, radial 

symmetry12 and centroid11,21). (A) Speed of localization after loading the raw data in 

the memory in MATLAB. 7x7 pixel ROIs are used; the amount of PSFs at once 

supplied to the method is varied. (B) Accuracy comparison of phasor localization 

with other localization algorithms, comparing simulated PSFs with different total 

photon counts on a 10 photon/pixel background. Accuracy in the horizontal direction 

of all methods together with the Cramer-Rao lower bound22 are shown. ROI size is 

5x5 (<103 photons) or 7x7 (>103 photons) pixels for the phasor algorithm, and 7x7 

pixels for all other algorithms. 
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Figure 3: Analysis of a superresolved microtubule network of a fixed monocyte 

derived human dendritic cell. (A) Visualization of superresolution data after 

ThunderSTORM analysis using phasor (top, 7x7 pixel ROI) or Gauss-MLE (bottom, 

11x11 pixel ROI) as sub-pixel localization algorithm. Axial position is color-coded 

between -350 nm and +350 nm. Note that this does not encompass all localized 

fluorophores. (B) Lateral resolving power of phasor (red bars) and Gaussian-MLE 

(blue line). Shown here are three microtubule spaced below the diffraction limit taken 

from panel B in (A). (C) Axial resolving power of phasor (top) and Gaussian-MLE 

(bottom). Each subpanel shows localized fluorophores in a 100 nm window. (D) 

Localization speed of complete analysis (image filtering, approximate localization, 

and sub-pixel localization) using ThunderSTORM without sub-pixel localization (top), 

ThunderSTORM-Phasor (middle) and ThunderSTORM-Gauss-MLE (bottom). Error 

bars represent standard deviations of at least three repeats. 
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