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Abstract

Motivation: Drug repositioning has been proposed
as an effective shortcut to drug discovery. The avail-
ability of large collections of transcriptional responses
to drugs enables computational approaches to drug
repositioning directly based on measured molecular
effects.
Results: We introduce a novel computational
methodology for rational drug repositioning, which
exploits the transcriptional responses following treat-
ment with small molecule. Specifically, given a thera-
peutic target gene, a prioritisation of potential effec-
tive drugs is obtained by assessing their impact on the
transcription of genes in the pathway(s) including the
target. We performed in silico validation and com-
parison with a state-of-art technique based on similar
principles. We next performed experimental valida-
tion in two different real-case drug repositioning sce-
narios: (i) upregulation of the glutamate-pyruvate
transaminase, which has been shown to induce re-
duction of oxalate levels in a mouse model of primary
hyperoxaluria, and (ii) activation of the transcription
factor TFEB, a master regulator of lysosomal biogen-
esis and autophagy, whose modulation may be bene-
ficial in neurodegenerative disorders.
Availability: free at http://gene2drug.tigem.it
Contact: dibernardo@tigem.it

1 Introduction

The study of approved drugs for new therapeutic
applications, i.e. drug repositioning, is a potential
shortcut in the drug discovery process [1]. Computa-
tional analysis of transcriptional responses of cells to
chemical and genetic perturbations or in disease has
been successfully applied for preclinical investigations
of new drug indications [8, 4, 22, 11, 23, 16].

Transcriptomic approaches in industrial and aca-
demic settings leverage large scale collections of gene
expression profiles such as the Connectivity Map
(CMap [13]), which includes a total of 7,056 genome-
wide expression profiles obtained upon treatment of
5 different cell lines with different concentrations of
1309 small molecules. The CMap project is currently
being scaled up by 3 orders of magnitudes by includ-
ing 1.4M profiles, derived from treatment of 15 cell
lines with 15,000 small molecules and 5000 genetic
perturbagens, although only 1000 genes are measured
in this case (LINCS [28, 18]).

Drugs inducing a transcriptional response opposite
to the one induced by a disease may exert therapeu-
tic effects independently of their molecular targets [4].
An advantage of transcriptomics approaches is that
they can be applied in a completely data-driven fash-
ion, without prior knowledge about disease or ther-
apeutic mechanisms. Although fully data-driven ap-
proaches do not require any prior information, they
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Figure 1: Bioinformatics pipeline to compute the pathway-based version of the Connectivity
Map. (a) Raw genome wide expression profiles were collected from the Connectivity Map and preprocessed.
(b) Control-treatment fold change values were computed and converted to ranks. Profiles referring to the
same small molecule in different experimental conditions were merged together. (c) Enrichment Scores and
p-values are computed for each Drug-pathway pair. (d) ESs are converted to column-wise ranks according
to their p-values (most significantly upregulated on top, most significantly downregulated at the bottom).

cannot take advantage of it when available. From
this perspective, a complementary well-established
route to drug repositioning is provided by rational
approaches. In rational drug repositioning, a spe-
cific therapeutic target gene is known in advance
and drugs modulating its activity are investigated.
Many drug-target prioritisation methods have been
proposed in which chemo-structural considerations
guide the selection of small molecules for their bind-
ing affinity with the target (target-based), or for their
similarity to existing small molecules known to bind
the target (ligand based) [15]. Nonetheless, 80%
of newly discovered drugs tend to bind targets that
are interactors of previously known therapeutic tar-
gets [5]. Available information about protein-protein
interactions can thus be exploited to improve target-
based drug discovery methods. Indeed, a number of
computational drug repositioning approaches exploit
the known protein interactors of the therapeutic tar-
get to predict the small molecules with highest prob-
ability of modulating the target [7, 30, 3].

In the context of rational approaches, transcrip-
tional responses to drug treatment can also provide
important information about drug mode of action,
i.e. its molecular target [8, 19, 10]. However, drug-

induced differential expression of the molecular tar-
get, if present, can be masked by the much larger
differential expression of off-target genes [9]. Never-
theless, off-targets may be functionally related to the
intended target, so that their differential expression
level can be exploited as an indirect marker of the
therapeutic target activity. For this reason, compu-
tational drug repositioning methods exploiting both
drug-induced transcriptional responses and protein-
protein interaction networks have been recently de-
veloped [12, 6, 9].

A recently published comparison of 13 different
computational approaches to drug repositioning [9],
including methods based on the expression of the tar-
get alone, on protein-protein interactions alone, or
on a combinations of gene expression and protein-
protein interactions, found the best performance for
a method of the latter type, namely “Local Radiality”
(LR). LR takes into account the protein interactions
among the significantly differentially expressed genes
in the drug-induced transcriptional response and the
therapeutic target in order to predict which drugs
may modulate the target and thus are candidates for
repositioning.

Here, we developed a novel approach to ratio-
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nal drug repositioning combining drug-induced tran-
scriptional responses with annotated pathways as an
alternative to protein interaction networks. Specif-
ically, our method relies on the identification of
drugs inducing significant transcriptional modulation
of pathways that involve the target gene, as opposed
to its protein interactors in a protein-protein inter-
action network. While this approach may prioritise
drugs directly acting on the therapeutic target, any
drug modulating the expression of the target-related
pathways, even not directly, will be selected as a po-
tential candidate for repositioning.

We implemented the method as on line tool named
“Gene2Drug”, which takes advantage of publicly
available pathway annotations from different sources.
We computationally assessed the performance ob-
tained by Gene2Drug using 10 different pathway
databases and compared its performance both to the
LR method and a naive method based on the target
gene expression alone.

To investigate the efficiency of the method on
real case scenarios, we tested Gene2Drug experimen-
tally in two different settings: (i) to find drugs able
to induce the expression of the Glutamic-Pyruvate
Transaminase (GPT, aka Alanine Aminotransferase)
whose over-expression was reported to reduce oxalate
levels in mouse models of Primary Hyperoxaluria
Type I, an inborn error of liver metabolism [21]; (ii) to
find drugs activating the transcription factor TFEB,
a master regulator of lysosomal biogenesis and au-
tophagy, whose modulation maybe beneficial in the
treatment of neurodegenerative disorders [24].

2 Methods

2.1 Approach

Gene2Drug uses gene expression data obtained
from the Connectivity Map (CMap) [13], including
genome-wide transcriptional response to treatments
with 1,309 different small molecules. The CMap is
currently the largest single collection of drug-induced
gene expression profiles in which the expression of
most genes is measured (LINCS data include the ex-
pression of just 1000 genes, while the expression of

the other ≈ 11,000 genes is computationally inferred
[28]). Gene2Drug relies on a pathway-based version
of the CMap that we previously derived [19], in which
all the pathways in a database are ranked according
to how much the expression of genes annotated to
each pathway changes after drug treatment, as shown
in Fig. 1. Ten different pathway databases are sup-
ported (Tab. 1).

Given a subset of pathways including the thera-
peutic target gene, Gene2Drug computes for each
drug an Enrichment Score (ES) and its p-value ac-
cording to how much they tend to be up- or down-
regulated by that drug, as shown in Fig. 2. This
is done by applying Gene Set Enrichment Analysis
(GSEA [25]) but for a set of pathways rather than a
set of genes. Gene2Drug then outputs the list of 1,309
drugs ranked according to the computed p-values.

To support gene-drug prioritisation directly,
Gene2Drug takes a single gene as input and it gener-
ates automatically the subset of pathways including
the input gene. While a user may want to manually
select a specific subset of pathways of interest and
possibly obtain better results in this way, the perfor-
mance of the tool was assessed using this automatic
selection.

2.2 Data preparation

The 6,100 differential gene expression profiles from
the CMap were first reduced to 1,309 ranked lists of
genes (one per drug), as shown in Fig. 1, by merging
together those obtained with the same small molecule
[8]. Each ranked list of genes was subsequently con-
verted to a ranked list of pathways by means of Gene
Set Enrichment Analysis (GSEA) [25]. GSEA uses
a generalization of the Kolmogorov-Smirnov statis-
tic as Enrichment Score (ES) to assess how much the
genes in a pathway are distributed towards the top or
bottom of the ranked list of genes. The actual imple-
mentation of GSEA used by Gene2Drug is available
on line [19].

Given a database of pathways, we thus obtained a
matrix of signed p-values (a negative p-value is the
p-value of a pathway with a negative ES), with path-
ways along the rows and drugs along the columns, as
shown in Fig. 1 [19]. Each element (i, j) of the ma-
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Figure 2: Schematics of the Gene2Drug ap-
proach. Given a set of pathways containing the ther-
apeutic target, the Enrichment Score is computed for
each drug to identify those able to significantly up-
regulate (or downregulate) the pathways in the set.
In this example, the drug in the 4th column is pre-
dicted to inhibit the target, whereas the drug in the
9th column is predicted to activate the target.

trix thus contains a p-value assessing how significant
the modulation of pathway i following treatment with
drug j is. Finally, we ranked each of the columns ac-
cording to the signed p-values, so that significantly
up- (down-) regulated pathways appear at the top
(bottom) of each column (Fig. 1). We applied this
procedure to 10 different pathway databases, listed
in Tab. 1, thus obtaining 10 pathway-drug matrices.

2.3 Identification of drugs modulating
a target gene of interest.

Given a subset of pathways containing the target
gene, Gene2Drug assesses how much these pathways
tend to appear at the top or bottom of each ranked
list of pathways (one for each drug), as exemplified in
Fig. 2. To this end, GSEA is used to compute an En-
richment Score and a pvalue for each drug. The final
output is a list of drugs ranked by the corresponding
p-values.

2.4 Experimental validation methods

Besides computational validation, Gene2Drug was
tested in two different experimental settings. The
corresponding experimental procedures follow.

2.4.1 GPT: Luciferase assays

Both the human Huh-7 hepatic cells and the mouse
Hepa1-6 hepatoma cells were cultured at 37 in Dul-
becco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Cells were plated in 24-
well plates and transfected with a reporter construct
carrying the human GPT promoter driving the ex-
pression of the luciferase reporter gene (Switchgear
Genomics) using Lipofectamine 2000 Transfection
reagent according to the manufacturer’s instructions
(Life Technologies). 24 hours post-transfection cells
were treated with different concentrations of small
molecule drugs: Fulvestrant (Sigma-Aldrich) (20µM ,
50µM , 100µM , 125µM , 250µM , 500µM), Toma-
tidine (Extrasynthese) (5µM , 10µM , 20µM), and
Nifuroxazide (Sigma-Aldrich) (5µM , 10µM , 20µM).
Prior to the treatment, the concentrations of each
small molecule were tested in cells and were not found
to result in cell mortality by microscopic observa-
tion. DMSO was used as drug-vehicle. After 24
hours treatment, cells were washed with PBS, lysed
and assayed for Renilla luciferase activity using the
Dual-GLO Luciferase Assay System (Promega) by
Glomax 96 microplate luminometer. All assays were
performed in at least triplicate and the data are pre-
sented as means ± standard deviation.

2.4.2 TFEB: nuclear translocation assay

Following a previously described protocol [17], HeLa
cells stably expressing TFEB-GFP construct were
seeded in a 384-well plate, incubated for 24h and
treated with the different compounds at 0, 0.1, 1,
10, 20 and 30 µM for additional 24h. After that
cells were fixed with 4% paraformaldehyde or ice-
cold methanol and permeabilized/blocked with 0.05%
(w/v) saponin, 0.5% (w/v) BSA and 50 µM NH4Cl
in PBS (blocking buffer). Images were acquired using
the high content Opera system (Perkin Elmer) and
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Source Name Description #

BioMart GO BP Gene Ontology - Biological Processes 3262
BioMart GO MF Gene Ontology - Molecular Function 939
BioMart GO CC Gene Ontology - Cellular Component 556
MSigDB CP Expert-defined Canonical Pathways 243
MSigDB KEGG Kyoto Encyclopedia of Genes and Genomes 186
MSigDB Biocarta Biocarta community-fed molecular relationships 217
MSigDB Reactome Open-source, open access, manually curated and peer-reviewed

pathway database
669

MSigDB CGP Genetic and Chemical Perturbations 3262
MSigDB TFT Transcription Factor Targets 615

MIPS CORUM Comprehensive Resource of Mammalian protein complexes 300

Table 1: Pathway databases currently supported by Gene2Drug. Pathways were obtained from 10
publicly available collections.

analyzed using Harmony software and a dedicated
script. Non-linear regression curves were determined
by using Prism software.

3 Results

3.1 Gene2Drug

The aim of Gene2Drug is to identify one or more
drugs able to modulate a therapeutic target of inter-
est and thus proritise these drugs for repositioning.

As shown in Fig. 1, Gene2Drug makes use of pub-
licly available data: the CMap, a collection of tran-
scriptional responses to drug treatments, and a col-
lection of annotated pathway databases, as listed in
Tab. 1. Gene2Drug uses these data to build a ranked
list of pathways for each drug in CMap represent-
ing the cellular response to drug treatment (Fig.1
and Methods). Pathways at the top (bottom) of the
list include those genes which tend to be transcrip-
tionally upregulated (downregulated) following drug
treatment. This resource constitutes a higher level
description of the well known ranked lists of genes and
it is available for download from the Gene2Drug web-
site. We derived 10 different versions of the pathway-
wise CMap, one for each of 10 different pathway
databases (Tab. 1) including signaling pathways, cel-
lular components, biological processes, transcription

factor targets, co-expressed and co-localized genes.

As shown in Fig. 2, and described in details in the
Methods, Gene2Drug exploits the well-established
GSEA statistics to rank the 1,309 drugs according to
their ability to modulate the therapeutic target. To
this end, Gene2Drug first identifies the set of path-
ways in the database that includes the therapeutic
target. It then quantifies the drug-induced transcrip-
tional modulation of these pathways by applying the
GSEA method, where the gene-set is replaced by
the pathway-set and the ranked list of genes by the
ranked list of pathways. In this way, Gene2Drug as-
signs to each drug an Enrichment Score and a p-value.
Finally, drugs are ranked according to their signed p-
value (a negative p-value is the p-value of a pathway
with a negative Enrichment Score). Drugs at the top
of the list are those predicted to most activate the
therapeutic target, whereas the drugs at the bottom
of the list, are the ones most inhibiting the therapeu-
tic target.

Gene2Drug is implemented as a user-friendly web
site publicly available at http://gene2drug.tigem.it.
The web site supports both the manual input of a
pathway set of interest and the automatic generation
of the set starting from a target gene.
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Figure 3: Validation of Gene2Drug against the STITCH experimental gold-standard. Only drug-
target pairs present in STITCH and supported by experimental evidence were included in this gold-standard
(refer to Tab. 2 for additional gold-standards). For each one of the 12 methods, we obtained a list of drug-
target pairs ranked according to their weight as computed by the method. The Positive Predictive Value
TP/(TP + FP ) was computed for each rank, according to the STITCH experimental gold-standard, and
divided by the ”random” PPV obtained by ranking drug-target pairs randomly (Normalised PPV). Each
line represents the PPV of one of the 12 methods as indicated in the legend for the top 10,000 drug-target
pairs. Inset: PPV versus drug-targets but this time showing the PPV for all of the possible drug-target
pairs, which vary according to the chosen database (BP: 1,853,544; MF: 1,864,016; CC: 1,233,078; CP:
1,117,886; KEGG: 1,127,049; BIOCARTA: 1,848,308; REACTOME: 1,424,192; CGP: 1,479,170; MIPS:
1,916,376; TFT: 442,442; SGE: 335,104; LR: 1,524,985).
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3.2 Validation

We first validated the method in silico in order to
have a general assessment of its performances as com-
pared to existing state-of-the-art tools. We then
performed two experimental validations on different
two molecular targets: the liver-specific enzyme GPT
(aka ALT) and the transcription factor TFEB.

3.2.1 In silico validation

To assess Gene2Drug performance in comparison to
a state-of-the-art method, we implemented the LR
method, which was reported to be the best per-
forming one across 13 different approaches [9]. LR
makes use of a protein-protein interaction (PPI) net-
work as obtained from the STRING database [26].
Given the set of significantly differentially expressed
genes (DEGs) following a drug treatment, the short-
est paths across the PPI network from each DEG to
the therapeutic target gene of interest is computed.
The average length of such paths is used to score
the drug-target pair (the shorter the better). Note
that there is a weak correlation between LR and
Gene2Drug as genes in the same pathway tend to
be closer in the PPI network (Suppl. Fig. S1).

We also implemented a naive single-gene based
method as a baseline to compare with. This method
simply ranks drugs according to the differential ex-
pression of the therapeutic target of interest in the
CMap dataset. We refer to this method as Single
Gene Expression (SGE).

To build a gold standard, we followed the approach
described by Isik et al [9] based on the STITCH
protein-chemical database [27]. Of the 1,309 com-
pounds in CMap, 607 small molecules are present
in the STITCH database, corresponding to total of
133,146 drug-target pairs. This number includes
4 different evidence types (“experimental”, “predic-
tion”, “database”, and “text-mining”). Each pair has
a score for at least one of the four evidence types. A
“combined score” is also provided, which is computed
over the non-missing scores, but it is heavily biased
by the “text-mining” evidence (61% of the pairs have
a “text-mining” evidence, against 14%, 2%, and 33%
respectively for the “experimental”, “prediction” and

“database” evidences, see Suppl. Fig. S2). For this
reason we used all the marginal scores separately. In
order to retain the most reliable predictions for the
gold standard, we selected only the drug-target pairs
in the top quartile of the score. To limit the com-
putational burden, when more than 5000 drug-target
pairs are present in the top quartile, only the first
5000 were used (this condition happened only for the
“database” and “text-mining” evidences).

Note that assessing Gene2Drug and other com-
putational methods against such a gold standard is
likely to provide significantly pessimistic outcomes, as
they necessarily include a large number of false neg-
atives. For example, it was noted that while the es-
timated number of possible drug targets lies between
6000 and 8000 [20, 29], only around 1300 known drugs
are in DrugBank [14]. Nonetheless, the gold standard
represents a fair common ground to assess the rela-
tive performances of different methods.

Given one of the 4 gold standards, we used
Gene2Drug with each of the 10 pathway databases
and compared the resulting performances with those
obtained using the naive SGE and the state-of-the-
art LR methods. For the sake of clarity, we will refer
to all of them as a set of 12 different methods.

Given one of the 12 methods, for each known tar-
get, we obtained a full weighed ranking of the 1,309
CMap small molecules (where the weights are given
by the p-values for Gene2Drug, the gene ranks for
the SGE, and the Local Radiality scores for the LR
method). We then generated a single ranked list of
drug-target pairs by merging together the lists ob-
tained for the different targets according to their
weights. Finally, we assessed the performance of each
method by analysing how much the top ranked drug-
target pairs were enriched for true positives according
to the 4 STITCH gold standards.

Figure 3 reports a summary of such analysis for
the STITCH “experimental” gold standard which in-
cluces only drug-target pairs supported by experi-
mental evidence. In Fig. 3, the precision value
(or Positive Predicted Values, PPV) is normalised
against the expected PPV for a random ordering of
drug-target pairs and it is plotted as a function of
drug-target pairs ordered according to one of the 12
methods. For this gold standard, the Gene2Drug ap-
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proach using the CC and TFT databases performed
significantly better than the others, scoring up to 5
and 6 fold better then random respectively.

To further summarise the results, we computed
also the median PPV of each method and for each
gold standard considering only the top ranked 1%
drug-target pairs. Tab. 2 reports the ranking of
the methods according to this score for each gold
standard. The Gene2Drug method with databases
TFT and CC generally outperformed the LR method,
which appeared particularly powerful when matched
against the “text-mining” gold standards. The SGE
method is almost always outperformed by the others,
confirming again the hypothesis that the expression
of the target gene alone is not a good predictor of
drug mode of action.

3.2.2 Experimental validation: upregulation
of GPT expression

The glutamate-pyruvate transaminase (GPT) plays
a key role in the intermediary metabolism of glu-
cose and amino acids. GPT overexpression reduces
oxalate in mouse models of Primary Hyperoxaluria
Type I [21], a rare genetic disorder caused by loss-of-
function mutations of the Alanine-Glyoxylate Amino-
transferase gene (AGXT). We applied Gene2Drug to
find drugs effective at increasing the expression of
GPT to reduce the hyperoxaluria.

The GPT gene was annotated within 7 of our path-
way databases. However, Reactome, a metabolism-
centric database, included the pathways most rel-
evant to the known GPT function (metabolism of
amino acids and derivatives end amino acid synthe-
sis and interconversion transamination). Note that
this is an example of user-directed choice driven by
prior knowledge on the therapeutic target function
that is not readily supported by methods other than
Gene2Drug.

We thus run Gene2Drug with the Reactome
database using GPT as input. Table 3 shows the
first 3 compounds (out of 1,309 compounds in CMap)
ranked by Gene2Drug as those ones most upregulat-
ing the pathways involving GPT (a list of the top 30
is reported in Suppl. Tab. S1). We experimentally
tested the efficacy of these 3 compounds to upregulate

GPT in two different cell lines: Huh-7 (human hepa-
tocytes) and Hepa1-6 (mouse hepatoma cells). Cells
were transfected with the GPT promoter driving the
expression of the luciferase reporter gene (Methods).
Table 3 summarizes the results for the Huh-7 cells,
additional details and results for the Hepa1-6 cells are
reported in the supplemenatary materials. Fulves-
trant resulted in significant upregulation of luciferase
only at concentrations above 125µM (left panel of
Fig. 4). Tomatidine resulted in dose-dendent in-
crease of luciferase expression at low concentrations
(right panel of Fig. 4). Nifuroxazide did not show any
effect at concentration less than 20µM and was toxic
in cells at higher concetrations (data not shown).
Similar results for all the three compounds were con-
firmed also in the Hepa1-6 cell line (Suppl. Fig. S3-
S8).

Because of the significant effect induced by fulves-
trant and tomatidine, we wondered whether using
the naive single gene expression (SGE) approach, i.e.
simply ranking compounds according to the differen-
tial expression of GPT, would yield similar results.
Surprisingly, SGE would rank fulvestrant 695th out
of 1,309 among drugs overexpressing GPT, while
GPT would be 6,126th out of 12012 among genes
overexpressed by fulvestrant (data not shown). Sim-
ilarly, tomatidine would rank 247th for GPT, while
GPT would rank 2,391th for tomatidine (Suppl. Tab.
S2).

3.2.3 Experimental validation: induction of
TFEB nuclear translocation

We then asked whether Gene2Drug can help iden-
tifying compounds able to modulate the activity of
a transcription factor (TF) - a particularly difficult
task because TFs are usually considered undruggable
targets [2]. To this end, we chose TFEB, a mas-
ter regulator of lysosomal biogenesis and autophagy
whose modulation has potential for the treatment of
neurodegenerative disorders [24]. Also in this case,
we chose to run Gene2Drug using a specific database
based on the functional relevance of the pathways
in which TFEB is annotated. We chose the Gene
Ontology - Biological Processes (GO-BP) database
which included terms such as lysosome organization
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Method Experimental Database Prediction Text-mining Median

CC 2 2 2 8 2.0

TFT 1 8 1 5 3.0

LR 3 4 4 1 3.5

MIPS 11 1 7 6 6.5

MF 7 7 10 7 7.0

BIOCARTA 6 10 8 3 7.0

REACTOME 5 3 9 12 7.0

CP 10 12 6 4 8.0

CGP 4 6 11 10 8.0

BP 8 9 3 9 8.5

KEGG 12 5 12 2 8.5

SGE 9 11 5 11 10.0

Table 2: Rankings of the methods across the 4 STITCH gold standards and corresponding
medians. The Gene Ontology - Cellular Component database (CC) showed the most consistent performance
across all the gold standards except Text-mining. The Transcription Targets database (TFT) was the best
performing method for the Experimental and Prediction gold standards. Local Radiality (LR) was the best
for Text-mining. MIPS ranked top for Database, however performed poorly for Experimental, which is likely
the most reliable gold standard. The Single-gene method (SGE) performed consistently worse than the
others.

Rank Compound ES p-value
Concentration

5-20µM
Concentration

125-500µM

1 fulvestrant 0.98 0.002 No Yes
2 tomatidine 0.97 0.002 Yes N.T.
3 nifuroxazide 0.97 0.002 No toxic

Table 3: Summary of luciferase assays for the three top ranked drugs predicted to upregulate
GPT by Gene2Drug. A plasmid encoding for the luciferase reporter downstream of the GPT promoter
was transiently transfected in Huh-7 cells (Methods). Each of the three compounds were tested at concen-
trations of 5µM, 10µM and 20µM for 24 h. Fulvestrant did not show any effect at these concentrations, but
it induced luciferase activity at higher concentrations (125µM , 250µ and 500µM) (Supplementary Informa-
tion). Tomatidine significantly increased luciferase expression compared to vehicle control treatment and
therefore higher concentrations were not tested (N.T.). Nifuroxazide failed to increase luciferase expression
and higher concentrations were not tested because they resulted in cell toxicity.
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Figure 4: Experimental validation of predicted GPT modulators. Dose-dependent increase in relative
luminescence units (RLU) in Hepa1-6 and Huh-7 cells transfected with a plasmid expressing the luciferase
gene under the control of the GPT promoter and incubated with various concentrations of fulvestrant (left)
and tomatidine (right). The dashed line idicates RLU fold change = 1 (no effect). The two compounds
were ranked 1st and 2nd respectively among the small molecules predicted to upregulate pathways including
GPT by Gene2Drug.
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DMSO DEPTROPINE 30µM

Figure 5: Deptropine induces TFEB nuclear
translocation. Hela cells stably expressing TGEB-
GFP were seeded, incubated for 24h and treated with
deptropine 30 µM or DMSO 0.2% (control) for 6h.

and positive regulation of autophagy.

Table 4 shows the 10 compounds (out of 1,309
compounds in CMap) ranked by Gene2Drug as
those most upregulating the GO-BP terms containing
TFEB.

Among the top 10 drugs ranked by Gene2Drug, 9
were available to us. For each of the 9 drugs, we
performed a High Content Screening assay for the
TFEB nuclear translocation (TFEB-NT [17]) at 3h
following drug administration at concentrations be-
tween 0.1µM and 30µM (Methods). Out of these 9
drugs, 4 were able to induce TFEB nuclear translo-
cation, 3 of which at concentrations below 10 µM, as
reported in Tab. 4. A representative experimental
result for deptropine (one of the 4 positives drugs) is
shown in Fig. 5.

4 Discussion and Conclusions

We introduced a computational approach for ratio-
nal drug repositioning integrating transcriptional re-
sponses to small molecules with prior knowledge in
the form of annotated pathway databases.

Gene2Drug implements a complementary ap-
proach to other state-of-the-art computational meth-
ods which exploit prior knowledge in the form of gene
and protein interaction networks [9].

Gene2Drug is designed to be a semi-automated
pipeline where the user chooses the pathways that
best describe the function of the target gene, whose
pharmacological modulation is deemed to be thera-

peutic.

Gene2Drug ranks small molecules in the CMap
database according to their ability to induce tran-
scriptional changes both in the therapeutic target as
well as in the other genes in the selected pathways.

Using the STITCH database as a gold standard
for drug-chemical interactions, we demonstrated that
Gene2Drug consistently outperforms the naive single-
gene method, where drugs are ranked according to
the differential expression of the therapeutic target
gene only.

We experimentally validated Gene2Drug in two dif-
ferent settings: targeting a metabolic enzyme (GPT)
and a Transcription Factor (TFEB). We showed that
in both cases, Gene2Drug was effective at identify-
ing small molecules with the desired effects, at least
in cell lines, whose known direct targets where either
unknown (e.g. tomatidine) or completely unrelated
to the desired effect (e.g. deptropine).

Gene2Drug can be easily extended to larger col-
lections of gene-expression profiles, such as the new
LINCS database. However the L1000 platform, which
LINCS is based on, actually measures the expression
of ˜1000 genes, with all the others being computa-
tionally inferred. While methods based on the simi-
larity of transcriptional responses may not be signif-
icantly impacted by this limitation, the effectiveness
of pathway enrichment analysis on L1000 data re-
mains to be investigated.

In conclusion, Gene2Drug’s approach to rational
drug repositioning combines transcriptomics with
prior knowledge in the form of pathway databases,
and it is complementary to those methods based on
protein interaction networks.
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Rank Compound ES p-value EC50 (µM)

1 pimozide 0.79 0.001 > 30
2 deptropine 0.78 0.001 6.636
3 maprotiline 0.77 0.002 11.579
4 nifurtimox 0.75 0.002 > 30
5 benzethonium 0.75 0.003 > 30
6 alprenolol 0.75 0.003 > 30
7 0297417-0002B 0.74 0.003 N.A.
8 miconazole 0.74 0.003 7.223
9 loperamide 0.73 0.003 6.585
10 etoposide 0.73 0.003 > 30

Table 4: Drugs tested for TFEB nuclear translocation. 9 of the top 10 ranked by Gene2Drug were
available to us. 4 of them induced TFEB translocation at concentrations lower than 30 µM.
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