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Abstract 
Background 
Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), 

the factors that mediate the interactions between CRC tumors and the microbiome are poorly 

understood. MicroRNAs (miRNAs) are known to regulate CRC progression and patient survival 

outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial 

growth and influence the composition of the gut microbiome. Here, we investigated the 

association between miRNAs expression in human CRC tumor and normal tissues and the 

microbiome composition associated with these same tissues. 

Method 
We sequenced the small RNAs from patient-matched tumor and normal tissue samples 

collected from 44 human CRC patients performed an integrated analysis with microbiome 

taxonomic composition data from these same samples. We then interrogated the functions of 

the bacteria correlated with miRNAs that were differentially expressed (DE) between tumor and 

matched normal tissues, as well as the functions of miRNAs correlated with bacterial taxa that 

have been previously associated with CRC, including Fusobacterium, Providencia, Bacteroides, 

Akkermansia, Roseburia, Porphyromonas, and Peptostreptococcus. 

Results 
We identified 76 miRNAs as DE between CRC and normal tissue, including known oncogenic 

miRNAs miR-182, miR-503, and miR-17~92. These DE miRNAs were correlated with the 

relative abundance of several bacterial taxa, including Firmicutes, Bacteroidetes, and 

Proteobacteria. Bacteria correlated with DE miRNAs were enriched with distinct predicted 

metabolic categories. Additionally, we found that miRNAs correlated with CRC-associated 

bacteria are predicted to regulate targets that are relevant for host-microbiome interactions, and 

highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic 

microbial taxa.  

Conclusions 
Our work characterized a global relationship between microbial community composition and 

miRNA expression in human CRC tissues. Our results support a role for miRNAs in mediating a 

bi-directional host-microbiome interaction in CRC. In addition, we highlight sets of potentially 

interacting microbes and host miRNAs, suggesting several pathways that can be targeted via 

future therapies.   
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Introduction 

The colon microenvironment hosts trillions of microbes, known as the gut microbiome. A healthy 

microbiome helps maintain colon microenvironment homeostasis, immune system development, 

gut epithelial function, and other organ functions [1–5]. Although many factors impact the 

composition of the gut microbiome, the overall functional profiles remain stable over time [6, 7]. 

Nevertheless, changes in the taxonomic and functional composition of the microbiome have 

been implicated in many diseases, including colorectal cancer (CRC) [8–11]. Although the 

association between microbiome alterations and disease processes has been extensively 

demonstrated, the directionality, as well as the mediators of the host-microbiome interaction, 

remain unclear. 

 

Diet has been independently associated with both the gut microbiome and CRC. For example, 

the western diet (characterized by low fiber and high protein, fat, and sugar) affects gut 

microbiome composition in humanized mice, whereby mice fed with western diet have 

increased Firmicutes and decreased Bacteroidetes relative abundance [12, 13]. The same 

western diet has also long been considered as a risk factor for developing CRC [14–16]. Using 

an animal model of CRC, Schulz et al. demonstrated that the high-fat diet (HFD) exacerbates 

CRC progression; however, treating animals with antibiotics blocks HFD-induced CRC 

progression [17]. This suggests that diet can drive microbiome composition change in the gut as 

a precursor to CRC development. 

 

Recent studies have found that host genetic variation can affect microbiome composition. For 

example, a polymorphism near the LCT gene, which encodes the lactase enzyme, is associated 

with the abundance of Bifidobacterium in the gut microbiome, and Christensenellaceae family 

are shown to be heritable, with a higher similarity between monozygotic than dizygotic twins. 

[18–23]. This could explain uni-directional host-to-microbiome interaction, especially in CRC, 
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where genetic mutations in host cells are common [24, 25]. Interestingly, in a genetic mutation 

model of intestinal tumors, germ-free animals developed significantly fewer tumors in the small 

intestine [26]. Although the finding is limited to the small intestine, the trend shows that CRC 

development partially depends on the microbiome. In an animal model of colitis-associated CRC, 

Uronis et al. showed that germ-free mice exhibit normal histology and do not develop tumors, 

compared to 62% for conventionalized mice that have developed tumors (n=13) [27]. 

Additionally, Ridaura et al. demonstrated that when transplanting the microbiome from twins 

discordant for obesity to germ-free mice, the mice that received the obesity-associated 

microbiome developed an obese phenotype while the mice that received lean microbiome did 

not [13]. Clearly, this evidence suggests that host genetics only partially explains host-

microbiome interaction. 

 

A recent report demonstrated that a fecal microRNAs (miRNAs) can shape the composition of 

the gut microbiome [28], indicating a mechanism by which host cells can regulate the microbial 

community. In CRC, several miRNAs, such as miR-182, miR-503, and miR-17~92 cluster, can 

regulate multiple genes and pathways and have been found to promote malignant 

transformation and disease progression [29–31]. Interestingly, studies have also found that 

microbiome-derived metabolites can change host gene expression, including expression of 

miRNAs, in the colon [32, 33]. Taken together, these results suggest a bi-directional interaction 

between host cells and microbes, potentially mediated through miRNA activity. However, we still 

know very little about the role of miRNAs in host-microbiome interaction, especially in the 

context of CRC. With thousands of unique miRNAs and microbial taxa present in the CRC 

microenvironment, it is challenging to experimentally study all possible pairwise interactions. 

Nevertheless, genomic characterization of both miRNA expression and microbial composition in 

CRC can identify potential interactions between miRNAs and microbes, which can then be used 

as candidates for functional inspection. 
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Here, we establish the relationships between miRNAs expression and microbiome composition 

in CRC patients. We sequenced small RNAs and integrated 16S rRNA gene sequencing data 

from both tumor and normal colon tissues from 44 patients (88 samples total). We explored the 

correlation between miRNAs and the microbiome through imputing the miRNA functional 

pathways and microbiome metabolic pathways in silico (Supplementary Figure 1). To our 

knowledge, this is the first analysis to establish the global relationship between miRNAs 

expression and microbiome in CRC patients. 

 

Methods 

 

Tissue samples. A total of 88 matched tumor and adjacent normal tissues were collected from 

44 patients by the University of Minnesota Biological Materials Procurement Network. A detailed 

description of sample collection was previously published [8]. Briefly, all patients provided 

written, informed consent. All research conformed to the Helsinki Declaration and was approved 

by the University of Minnesota Institutional Review Board, Protocol 1310E44403. Tissue pairs 

were resected concurrently, rinsed with sterile water, flash frozen in liquid nitrogen, and 

characterized by staff pathologists. Detailed deidentified sample metadata, including age, 

gender, tumor location, tumor stage, and microsatellite stability (MSS) status is available in 

Supplementary Table 1. 

 

16S rRNA sequencing and sequence analysis. The 16S rRNA gene sequencing data were 

previously published [8]. Raw sequences were deposited at NCBI Sequence Read Archive 

under project accession PRJNA284355, and processed data files are available in Burns et al. 

[8]. Briefly, total DNA was extracted from approximately 100 mg of tissue. Tissues were first 

physically disrupted by placing the tissue in 1 mL of Qiazol lysis solution in a 65 °C ultrasonic 
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water bath for 1–2 h. The efficiency of this approach was verified by observing high abundances 

of Gram-negative bacteria across all samples, including those from the phylum Firmicutes. DNA 

was then purified using AllPrep nucleic acid extraction kit (Qiagen, Valencia, CA). The V5-V6 

region of the 16S rRNA gene was PCR amplified with multiplexing barcodes [34]. The barcoded 

amplicons were pooled and ligated to Illumina adaptors. Sequencing was performed on a single 

lane on an Illumina MiSeq instrument (paired-end). The forward and reverse read pairs were 

merged using the USEARCH v7 program 'fastq_mergepairs’, allowing stagger, with no 

mismatches, allowed [35]. OTUs were picked using the closedreference picking script in QIIME 

v1.7.0 using the Greengenes database (August 2013 release) [36–38]. The similarity threshold 

was set at 97%, reverse read matching was enabled, and reference based chimera calling was 

disabled. The unfiltered OTU table used for the analysis is available in Supplementary Table 1. 

 

MicroRNA sequencing. To prepare samples for small RNA sequencing, total RNA was 

extracted using AllPrep nucleic acid extraction kit (Qiagen, Valencia, CA). RNA was quantified 

using RiboGreen fluorometric assay (Thermo Fisher, Waltham, WA). RNA integrity was then 

measured using BioAnalyzer 2100 (Agilent, Santa Clara, CA). Library creation and sequencing 

were performed by the Mayo Clinic Genome Analysis Core. Briefly, small RNA libraries were 

prepared using 1 ug of total RNA per the manufacturer’s instructions for NEBNext Multiplex 

Small RNA Kit (New England Biolabs; Ipswich, MA). After purification of the amplified cDNA 

constructs, the concentration and size distribution of the PCR products was determined using 

an Agilent Bioanalyzer DNA 1000 chip (Santa Clara, CA) and Qubit fluorometry (Invitrogen, 

Carlsbad, CA). Four of the cDNA constructs are pooled and the 120-160bp miRNA library 

fraction is selected using Pippin Prep (Sage Science, Beverly, MA). The concentration and size 

distribution of the completed libraries was determined using an Agilent Bioanalyzer DNA 1000 

chip (Santa Clara, CA) and Qubit fluorometry (Invitrogen, Carlsbad, CA). Sequencing was 

performed across 4 lanes on an Illumina HiSeq 2000 instrument (paired end).  
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MicroRNA sequence data processing and QC. See Supplementary Figure 1 for an 

overview of the data analysis steps. Briefly, quality control of miRNA sequencing data was 

performed using FastQC before and after adaptor trimming with trimmomatic [39]. Then, the 

paired-end reads were assembled using PANDASeq and aligned to hg38 genome assembly 

using bowtie2 [40, 41]. Finally, the total mature miRNA counts were generated with HTseq [42]. 

We removed 7 samples due to low number of total raw reads (fewer than 500,000 raw reads) 

from the analysis. The remaining 81 samples have between 519,373 and 17,048,093 (median 

6,010,361) reads per library, with an average quality score greater than 37 in all libraries. 

Between 66.79% and 96.14% (median 83.53%) of reads passed adapter trimming 

(Supplementary Figure 2). Of all the reads passing adapter trimming, between 287,356 and 

11,102,869 (median 3,701,487) reads are identified as concordant pairs by PANDASeq. After 

mapping to hg38 genome, between 18,947 and 4,499,805 (median 859,546) reads were 

assigned to a total of 2,588 mature miRNAs (Supplementary Figure 3). Principle component 

analysis (PCA) showed a clear separation between tumor and normal samples (Figure 1A), 

while tumor location, gender, age, total raw reads, and total mature miRNA reads do not appear 

to have an impact on the data (Figure 1B-F). Similarly, a PCA plots including an additional 

principal component did not detect clustering based on these factors (Supplementary Figure 4). 

Between 283 and 1,000 (median 670) miRNAs had coverage over 1 read, and between 134 and 

599 (median 367) miRNAs had coverage over 5 reads (Figure 1G). Overall the quality of our 

sequencing results is on par with previous studies and our previous observations [43] 

 

MicroRNA differential expression and correlation analysis. We identified differentially 

expressed (DE) miRNAs between tumor and normal samples using the DESeq2 package 

(1.10.1) in R (version 3.2.3) [44]. Raw miRNA counts were filtered to include miRNAs with ≥ 1 

read in ≥ 80% of the samples. The remaining 392 miRNAs were then used for DESeq2 analysis. 
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We define DE miRNAs as showing fold change over 1.5 with false discovery rate (FDR) 

adjusted p-value (q-value) < 0.05. We performed correlation analysis using Sparse Correlations 

for Compositional data (SparCC) at the genus level for bacteria [45]. To increase the accuracy 

of estimation, we performed 20 iterations for each SparCC procedure. We calculated pseudo p-

values using 100 random permutations. Significant correlations were defined as r over 0.05 (or 

less than -0.05) with a pseudo p-value ≤ 0.05 [8]. Heat maps of the correlation were generated 

in R using the pheatmap package. We performed hierarchical clustering for both column and 

rows with average linkage method using Pearson's correlation. We included bacteria with 

significant correlations with DE miRNAs to perform metagenomic prediction using PICRUSt 

v1.0.0 [46]. We included miRNAs with significant correlations with CRC associated genera 

(Fusobacterium, Providencia, Bacteroides, Akkermansia, Roseburia, Porphyromonas, and 

Peptostreptococcus) to perform pathway enrichment analysis using miRPath v.3 [47, 48]. We 

generated network visualization of miRNA-microbe using Cytoscape v3.5.1 

 

Results 

 

MicroRNAs differentially expressed in tumor tissues. Before performing differential 

expression (DE) analysis, we performed extensive quality control of the miRNA data. Our 

results indicate that miRNA expression is not strongly affected by tumor location, patient gender, 

patient age, and read coverage, and shows a clear clustering of miRNA data by tumor and 

normal samples (see Figure 1 and Methods above). To identify small RNAs that are DE 

between tumor and normal samples, we performed DE analysis using DESeq2 (see Methods). 

A total of 76 DE miRNAs were identified, with 55 up-regulated and 21 down-regulated in tumor 

tissues compared to normal tissues (p-value < 0.05 after FDR correction). A full list of DE 

miRNAs is available in Supplementary Table 3. DE miRNAs with higher expression levels in 

tumor tissues include miR-182, miR-183, miR-503, and miR-17~92 cluster miRNAs (Figure 2; 
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Supplementary Table 3), all consistent with our previous reports [29, 49]. These miRNAs have 

all been previously shown to contribute to CRC disease progression; for example, miR-182 and 

miR-503 were found to cooperatively target FBXW7 and contribute to CRC malignant 

transformation and progression, and were also predictive of patient survival [29]. The miR-

17~92 cluster regulates multiple tumor-suppressive genes in CRC and other cancers [50]. In 

addition, miR-1, miR-133a, and miR-448 (Supplementary Table 3) were observed at higher 

levels in normal tissues compared with matched tumor tissues, also in agreement with previous 

reports [49, 51].  

 

Predicted functions of microbiome taxa correlated with DE miRNAs. To investigate the 

relationship between individual miRNA and microbiome in CRC tumor samples, we performed 

correlation analysis using SparCC. SparCC is developed specifically to analyze compositional 

genomic survey data, such as 16S rRNA gene sequencing and other types of high-throughput 

sequencing data [45]. Hierarchical clustering revealed several clusters of significantly correlated 

miRNAs and bacterial taxa (Supplementary Figure 5). To further investigate the relationship 

between miRNAs and microbiome in CRC we selected bacteria significantly correlated with the 

DE miRNAs (Figure 3A). The correlations clearly show a distinct pattern based on the 

enrichment of miRNAs, even though the correlation analysis is performed only in tumor samples. 

We then built a network visualizing the relationship between the top 10 DE miRNAs and their 

significantly correlated bacteria (Figure 3B). The correlation network shows a highly-

interconnected relationship between these miRNAs and bacteria. Interestingly, Blautia, a genus 

previously found to have lower abundance in tumor samples, is negatively correlated with miR-

20a, miR-21, miR-96, miR-182, miR-183, and miR-7974, which are all miRNAs with high 

expression levels in tumor tissues. Blautia is also positively correlated with the expression level 

of miR-139, which is a miRNA with high expression levels in normal tissues. Experimental 

validations are required to investigate the correlations. 
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We then analyzed the predicted functional composition of the microbiome data and investigated 

correlations with miRNAs (Figure 3C). We hypothesized that if miRNAs selectively affect the 

growth of certain bacteria, then bacteria correlated with DE miRNAs are likely to represent 

functional differences between tumor and normal tissues, while the uncorrelated bacteria would 

not. Using the PICRUSt v.1.0.0 software, we generated the predicted functional profiles of the 

correlated and uncorrelated bacteria by assigning pathways and enzymes using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database. A total of 25 pathways have 

significantly altered enrichment (two-sided Wilcoxon signed rank test with FDR corrected p-

value < 0.05; Figure 3C). Interestingly, several metabolic pathways and signaling pathways, 

including signal transduction, amino acid metabolism, energy metabolism, and linoleic acid 

metabolism, were all enriched in the uncorrelated group, suggesting increased metabolic 

processes in this group. For bacteria significantly correlated with DE miRNAs, however, 

pathways related to transporters, peptidoglycan, and terpenoid backbone biosynthesis have 

significant enrichment. 

 

Predicted functions of miRNAs correlated with CRC associated bacteria  

To investigate the function of miRNAs correlated with CRC-associated bacteria, we focused on 

bacteria genera previously associated with CRC, including Fusobacterium, Providencia, 

Bacteroides, Akkermansia, Roseburia, Porphyromonas, and Peptostreptococcus [8, 52–55]. We 

hypothesized that if these bacteria affect CRC through modulating miRNA expression, then 

miRNAs that are significantly correlated with the bacteria are expected to show enrichment in 

cancer-related genes and pathways. A list of miRNAs significantly correlated with these bacteria 

is available in Supplementary Table 4. We separated these miRNAs into groups with positive 

correlation and negative correlation with each bacteria independently. Then, using the miRPath 

v.3 software, we predicted the functions of miRNAs by assigning pathways to the miRNA targets 
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using the KEGG database (Supplementary Table 5). We visualized the pathways with q-value 

< 0.01 (modified Fisher's Exact Test; FDR corrected) in Figure 4. 

 

Our results show that Akkermansia is the only taxon correlates with miRNAs associated with 

“colorectal cancer” pathway. Fusobacterium, Providencia and Roseburia correlate with miRNAs 

associated with cancer-related pathways, including “Glioma”, “Pancreatic cancer”, “Renal cell 

carcinoma” and “Pathways in cancer”. Interestingly, glycan-related pathways, including “mucin-

type O-glycan biosynthesis”, “Other O-Glycan biosynthesis”, “Glycosaminoglycan biosynthesis − 

heparan sulfate/heparin”, and “Proteoglycans in cancer”, have correlations with all bacteria 

genera analyzed, except for Akkermansia. This finding corresponds to a previous study showing 

that Fusobacterium nucleatum infection stimulates mucin secretion in vitro [56]. Additionally,  

Fusobacterium nucleatum binds to specific Gal-GalNAc, which is expressed by CRC tumors, 

through the Fap2 protein [57]. Porphyromonas gingivalis were shown to induce a proteoglycan, 

syndecan-1, shedding in oral epithelial cells [58]. However, the role of the bacteria and glycan 

interaction is not clear in the context CRC. Cell signaling pathways previously implicated in CRC, 

such as Ras, PI3K/Akt, ErbB and Hippo pathways are also correlated with these bacteria [59–

62]. 

 

Discussion 

Although there is a known association between gut microbiome composition change and CRC 

[8–11], the potential mediators of this relationship remain unclear. One potential mediator is host 

genetics, and specifically CRC tumor mutational profiles [26, 27]. Additional evidence indicates 

that miRNAs can mediate host-microbiome interactions in CRC [28]. Here, we presented the 

first integrated analysis of miRNA expression and gut microbiome profiles in CRC patients. Our 

data show a highly interconnected correlation network between miRNA expression and the 

composition of the microbiome and supports the role for miRNAs in mediating host-microbiome 
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interactions.  

 

Active interactions between host and the microbiome in CRC has been previously observed, 

leading to the proposition that pathogenic “passenger” bacteria colonizing tumor tissue could 

lead to exacerbated tumor progression [63]. In our analysis, we focused on potential “passenger” 

bacteria, including Fusobacterium, Providencia, Bacteroides, Akkermansia, Roseburia, 

Porphyromonas, and Peptostreptococcus. Fusobacterium includes several pathogenic species, 

and are implicated in dental disease, infections, and CRC [64–66]. Similarly, Providencia has 

also been implicated in gastrointestinal infections [8, 67–69]. The mechanism of Fusobacterium 

in promoting CRC tumorigenesis and progression has been investigated. It activates the Wnt/β-

catenin signaling pathway through FadA protein which binds to the E-cadherin protein on the 

intestinal epithelial cells (IECs), thus promoting cell proliferation [64]. Several mechanisms could 

explain this observation. One possibility is that bacteria can infiltrate the intestinal epithelial 

barrier after certain pathogenic bacteria cleaving the E-cadherin [64, 70]. This could lead to an 

increased inflammatory response in the colon microenvironment, and the inflammation can lead 

to DNA damage and contribute to disease progression [63, 64]. Another potential mechanism is 

that bacteria can directly cause mutations in IECs through virulence proteins. Several of these 

virulence proteins were found in Escherichia coli and Helicobacter pylori [71, 72], and results 

indicate that these virulence factors may be enriched in the CRC microbiome, especially in 

Fusobacterium and Providencia [8]. However, it is unclear if these bacteria produce virulence 

proteins that can directly cause DNA damage, and further investigation is required to elucidate 

this mechanism.  

 

The Wnt/β-catenin pathway activation by Fusobacterium can lead to upregulation of numerous 

genes related to CRC [73–75]. One such gene, MYC, is a transcription factor that targets 

multiple genes related to cell proliferation, cell cycle, and apoptosis. The miR-17~92 cluster is a 
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known target of MYC and has oncogenic properties in several cancer types [31, 50, 76, 77]. 

Interestingly, butyrate, a short-chain fatty acid (SCFA) produced by members of the microbiome, 

diminishes MYC-induced miR-17~92 overexpression in CRC in vitro through its function as 

histone deacetylase inhibitor [32]. Studies in CRC have consistently found low fecal butyrate 

levels as well as a reduced relative abundance of butyrate-producing bacteria, such as 

Firmicutes phylum [32, 52, 78]. One potential explanation is in CRC, the DE miRNAs can affect 

the growth of certain microbes, which eventually outcompete other species and form a biofilm 

on tumor tissues [28]. Indeed, our data shows several enriched bacterial nutrient biosynthesis 

and metabolism pathways in the microbes uncorrelated with DE miRNAs, but not in the 

correlated group. Interestingly, pathways in bacterial cell motility and secretion are also enriched 

among uncorrelated bacteria, suggesting that, in addition to promoting bacterial growth, certain 

miRNAs may be involved in recruiting bacteria to tumor tissues. This may also provide a 

possible explanation for the observed difference in alpha diversity of tumor microbiomes [8, 79, 

80]. 

 

In our analysis of the functions of miRNAs correlated with selected bacteria known to have 

associations with CRC, the prion diseases, glioma, and morphine addiction pathways found to 

be enriched in our analysis do not immediately seem related to cancer (Figure 4). Upon further 

investigation of miRNAs gene targets in these pathways, we found that several genes included 

in the pathways may have relevant functions in cancer. For example, Mitogen-activated Protein 

Kinase (MAPK) is central to cell proliferation and survival; Interleukin-6 (IL6) and Interleukin-

beta (IL1β) are cytokines involved in inflammation; Protein Kinase A (PKA) is important in 

regulating nutrient metabolism; Bcl-2-associated X protein (BAX) is a tumor suppressor gene; 

and Prion protein (PRNP) are known to have a significant role in regulating immune cell function 

[81–83].  
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A recent study has suggested an additional mechanism affecting host-microbiome interactions 

that may promote CRC tumorigenesis and progression [57, 84]. Abed et al. showed that Fap2 

produced by Fusobacterium binds to glycan produced by CRC to attach to the tumor tissue [57]. 

Interestingly, glycan biosynthesis pathways were enriched in targets of the miRNAs correlated 

with CRC-associated bacteria. The increased glycan production may increase recruitment of 

certain bacteria, such as Fusobacterium, to the tumor location. This result highlights a novel 

potential mechanism for miRNAs, through regulating glycan biosynthesis, to attract specific 

microbes to the tumor microenvironment, and thus impact tumor development. Interestingly, 

mucin-type O-glycan biosynthesis pathway is enriched in miRNAs positively correlated with 

Fusobacterium but negatively correlated with Bacteroides and Porphyromonas. This suggests 

that these bacteria may have different mechanisms of attachment to the mucosal surface due to 

different ability to bind to O-glycan [85]. Additional studies are required to test the association 

between Fusobacterium, tumorigenesis, and miRNA-driven glycan production. 

 

It is important to note that our study uses 16S rRNA gene sequencing to characterize 

microbiome taxonomic composition and computationally predicted pathway composition using 

PICRUSt v1.0.0 [46]. Although this method is widely used, metagenomics shotgun sequencing 

can be more accurate and informative in understanding the functional makeup of a microbial 

community. Similarly, to impute miRNA functional profiles, we used an in silico prediction 

method, miRPath [46, 47]. While these two methods have both been rigorously tested and 

validated with experimental data, the results remain predictions and may not represent the real 

biological system [46, 47]. Another limitation of our approach is that it identifies correlations and 

not causal relationships. Nevertheless, this approach allows us to generate a microbiome- and 

miRNA transcriptome-wide characterization of potential interactions, which shed light on 

potential new mechanisms of host-microbiome interactions. In addition, we highlight candidates 

for potentially interacting host miRNAs and microbial taxa, which can be validated in model 
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organism studies that will address causality. 

 

Conclusions 

Our analysis, together with evidence from previous studies, suggests that miRNAs likely 

mediate host-microbiome interaction in CRC. We identify potential novel mechanisms that 

mediate this interaction and may have a role in CRC tumorigenesis, including a possible role for 

miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. The 

interactions identified here could be a direct target for developing therapeutic strategies that can 

benefit CRC patients. Follow-up studies in model organisms are warranted to assess the causal 

role of individual microbes and miRNAs in CRC. 
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Figure legends 
 
Figure 1: Small RNA sequencing data quality.  
Principle component analysis showing PC1 on the x-axis and PC2 on the y-axis. Each dot is 
colored by (a) normal/tumor, (b) tumor location, (c) patient gender, (d) patient age, (e) raw read 
count, and (f) mature miRNA mapped read count. (g) Bar plot of the numbers of mature 
miRNAs identified in each sample, with coverage over 1 read (gray) and over 5 reads (blue). 
 
Figure 2: Differentially expressed miRNAs between matched normal and tumor. 
Boxplot and dot plot showing differentially expressed miRNAs. Each panel represents a single 
miRNA with normalized expression level on the y-axis. Lines connects a normal and tumor 
sample from the same individual, with red lines indicate higher expression level in tumor tissues 
and green lines indicate higher expression level in normal tissues. miR-17,-18a,-20a,92a,-182 
and -503 were found to have significantly higher expression levels in tumor tissues. 
 
Figure 3: Bacteria significantly correlated with DE miRNAs. 
(a) Heatmap showing bacterial genera (in columns) significantly correlated with the DE miRNAs 
(in rows). Red indicates negative correlations and green indicates positive correlations. (b) 
Interaction network showing the ten most significantly DE miRNAs and their correlated bacteria 
(showing bacteria with relative abundance > 0.1% and correlation pseudo p-value ≤ 0.05). Edge 
thickness represents the magnitude of the correlation, with blue indicating negative correlation 
while red indicating positive correlation. (c) Metabolic pathway (KEGG) enrichment of 
microbiome correlated and uncorrelated with DE miRNAs. The bar graph (left panel) shows the 
fold enrichment for each group. FDR corrected p-value from Wilcoxon Rank Sum test (on a 
negative log10 scale) are shown on the right panel. The solid red line indicates q-value of 0.05. 
 
Figure 4: miRNA target pathways correlated with CRC-associated bacteria. 
The heat map shows the predicted pathways of miRNAs (rows) correlated with CRC-associated 
bacteria (columns) with q-value < 0.01 (modified Fisher's Exact Test; FDR corrected). Positive 
correlations are shown in blue and negative correlations are shown in red. The color intensity is 
shown in -log10 scale of FDR corrected p-value from modified Fisher’s exact test generated by 
miRPath, with darker color indicating lower q-value. 
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