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Abstract: Breast cancer prognosis and response to endocrine therapy strongly depends on the 

expression of the estrogen and progesterone receptors (ER and PR, respectively). Although much is 

known about ERα gene (ESR1) regulation after hormonal stimulation, how it is regulated in 

hormone-free condition is not fully understood. We used ER-/PR-positive breast cancer cells to 

investigate the role of PR in ESR1 regulation in the absence of hormones. We show that PR binds to 

the low-methylated ESR1 promoter and maintains both gene expression and DNA methylation of 

the ESR1 locus in hormone-deprived breast cancer cells. Depletion of PR reduces ESR1 expression, 

with a concomitant increase in gene promoter methylation. The high amount of methylation in the 

ESR1 promoter of PR-depleted cells persists after the stable re-expression of PR and inhibits PR 

binding to this genomic region. As a consequence, the rescue of PR expression in PR-depleted cells 

is insufficient to restore ESR1 expression. Consistently, DNA methylation impedes PR binding to 

consensus progesterone responsive elements. These findings contribute to understanding the 

complex crosstalk between PR and ER and suggest that the analysis of ESR1 promoter methylation 

in breast cancer cells can help to design more appropriate targeted therapies for breast cancer 

patients. 
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1. Introduction 

Estrogen and progesterone are the main players in the progression and outcome of breast cancers 

[1]. Both hormones act through their cognate receptors, estrogen receptor (ER) and progesterone 

receptor (PR) [1]. Upon hormone exposure, PR and ER exhibit enhanced binding to specific DNA 

sequences known as hormone-responsive elements, which are generally located within target gene 

enhancers or promoters [1,2]. The DNA-bound receptors orchestrate the assembly of large cofactor-

containing protein complexes that can either positively or negatively affect gene transcription [1]. In 

addition, hormone-activated ER and PR attached to the cell membrane can trigger rapid signaling by 

interacting with several kinases, which also participate in hormonal gene regulation [1,3]. 

PR and ER profoundly affect the breast cancer cell biology. Approximately one-third of breast 

cancers lack both hormone receptors (ER–/PR–) and generally shows poor histological differentiation 

with higher growth rates [4]. These cancers rarely respond to hormone therapies and exhibit a poor 

clinical outcome compared to breast cancers that express both hormone receptors (ER+/PR+) [4,5]. In 

addition, ER-positive tumors lacking PR (ER+/PR−) are less likely to respond to endocrine therapy 

compared to ER+/PR+ cancers [4,5]. Consistent with this data, unliganded PR enhances breast cancer 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 6, 2018. ; https://doi.org/10.1101/192567doi: bioRxiv preprint 

mailto:lara.llobet@crg.eu
mailto:roni.wright@crg.eu
mailto:javier.quilez@crg.eu
mailto:francois.ledily@crg.eu
mailto:speiro@vhio.net
mailto:gverde@uic.es
mailto:miguel.beato@crg.eu
https://doi.org/10.1101/192567


 2 of 15 

cell response to estrogen and to the selective ER modulator used for endocrine therapy, including 

tamoxifen and others antiestrogens [6,7]. However, how the presence of hormone-free PR affects the 

breast cancer sensitivity to these external stimuli is not completely understood. 

About two-thirds of breast cancers are resistant to steroid hormones at the time of diagnosis, but 

often retain functional hormone receptors and remain highly sensitive to growth factors. Growth 

factors induce breast cancer cell proliferation by enhancing the transcriptional activity of the 

hormone-free PR via the protein kinases’ signaling pathways [8]. The phosphorylated and under-

SUMOylated unliganded PR positively regulates the expression of growth-promoting genes by 

recruiting steroid receptor coactivator 1 (SRC1) to gene promoters [9]. In contrast, SUMOylated PR 

downregulates the expression of the same class of genes by recruiting histone deacetylase 3 (HDAC3) 

to promoters [9]. Thus, unliganded PR affects breast cancer progression by regulating gene 

expression at the chromatin level, even if the molecular mechanisms put into play are not completely 

clear. 

The key role of unliganded PR for the responsiveness of breast cancers to endocrine therapy and 

growth factors [7,8], as well as the high correlation between PR and ER levels in breast cancers [10] 

led us to explore whether and how PR regulates the ERα gene (ESR1) expression in hormone-free 

breast cancer cells. Here, we report that PR binds to the low-methylated ESR1 promoter to maintain 

its basal expression and its low level of DNA methylation in hormone-free breast cancer cells. 

Consistent with these data, we show that DNA methylation hinders PR binding to hormone-

responsive elements 

2. Results 

2.1. Unliganded PR is Required to Maintain ESR1 Gene Basal Expression in Breast Cancer Cells 

Comparing the ESR1 gene expression in T47D breast cancer cells and a derived clone selected 

for its low PR expression (T47D-Y) [11], as previously observed [12], we confirmed that low PR 

expression is accompanied by a low expression of ESR1 at both the transcript and protein levels 

(Figure 1a,b, left panels). Although the PR inhibits ESR1 gene expression in T47D cells upon progestin 

exposure [13], the decrease of ESR1 expression in T47D-Y cells led us to hypothesize that the 

hormone-free PR could be involved in maintaining basal ESR1 gene expression. To test this 

possibility, we knocked down PR in T47D breast cancer cells using the short-hairpin RNA approach 

(shPR) and analyzed PR and ESR1 gene expression by RT-qPCR and Western blotting assays. 

Concomitant with the decrease of PR levels, RNA and protein amount of ESR1 decreased in shPR 

cells compared to control cells (shC) (Figure 1a,b, right panels; Figure S1a,b). Interestingly, the 

strongest PR knockdown cells showed the lowest ESR1 levels (Figure S1a,b), demonstrating a 

quantitative relationship between the levels of the two hormone receptors. 

To further confirm the decrease of PR and ER levels in PR-depleted cells (shPR) and PR-deficient 

cells (T47D-Y), we analyzed the transcription of PR-target or ER-target genes in control cells, T47D-Y 

and shPR cells treated with progestin (R5020), estradiol (E2) or vehicle (ethanol). The results showed 

that the progestin-mediated gene expression was strongly affected in T47D-Y and shPR cells 

compared to control cells, confirming that the low PR levels of these cells affected the transcription 

of PR-target genes (Figure S2). In the same manner, the estradiol-mediated induction of TFF1 gene 

transcription in control cells was strongly reduced in shPR and T47D-Y cells (Figure 1c), consistent 

with the reduced ERα level upon PR loss. 

Finally, to test the role of PR in the maintenance of ESR1 gene expression in different cellular 

backgrounds, we depleted the PR levels in two additional ER/PR positive cell lines, MCF7 and BT474, 

using the same short-hairpin RNA approach. Despite a moderate decrease of the PR levels in these 

cell lines, this slight decrease of PR was accompanied by a concomitant decrease of ESR1 expression 

compared to control cells (Figure S1c,d), confirming the importance of PR levels in maintaining ESR1 

expression in different breast cancer cell lines. 
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Figure 1. Loss of PR reduces the ESR1 expression in hormone-deprived T47D breast cancer cells. (a) 

Gene-specific mRNA expression measured by quantitative RT-PCR in T47D or PR-deficient cells 

(T47D-Y) (left panel) and T47D cells transduced with shRNA against PR (shPR, clone trcn0000010776) 

or scramble shRNA (shC) (right panel). The gene-specific expression levels were normalized to 

GAPDH expression and are represented as relative values in the T47D cells. RMND1 was used as a 

PR-independent control. PGR, PR-encoding gene; ESR1, ER-encoding gene. Error bars represent the 

SD of three independent experiments. ** p less than or equal to 0.01, *** p less than or equal to 0.005, 

unpaired two-tailed Student’s t-test. (b) PR and ERα protein levels measured by Western blot in T47D 

and T47D-Y cells (left panel) and in T47D transduced with shRNA against PR (shPR; clone 

trcn0000010776) or scramble shRNA (shC) (right panel). α-tubulin protein was used as the loading 

control. The intensities of the PR and ER bands were normalized to α-tubulin and represented as the 

relative value in the control cells. The vertical white line depicts a removed lane between the two 

samples. Blots are representative of three independent experiments. (c) PR depletion impairs TFF1 

estrogen-mediated gene transcription. T47D cells, PR-deficient (T47D-Y) cells, short hairpin control 

(shC) and PR-depleted cells (shPR, clone trcn0000010776) were treated with estradiol (E2, 10 nM) or 

ethanol (vehicle) for 6 h, at which point TFF1 mRNA expression was measured by quantitative RT-

PCR. The TFF1 gene expression was normalized to GAPDH expression and is represented as fold 

change relative to the vehicle (E2/vehicle). Error bars represent the standard deviation (SD) of three 

independent experiments. * p less than or equal to 0.05, ** p less than or equal to 0.01, unpaired two-

tailed Student’s t-test. 

2.2. PR Binds to the ESR1 Locus in Hormone-Free Breast Cancer Cells 

To test whether PR directly regulates ESR1 gene expression prior to hormone stimulation, we 

analyzed ChIP-seq data obtained with an antibody against PR in serum-starved T47D cells [14]. In 

the absence of hormones, PR appears to bind to two genomic regions within the ESR1 locus, one 

located within the gene promoter (chromosome 6: 152,128,500–152,129,000 hg19) and another within 

the third intron (chromosome 6: 152,222,250–152,222,650 hg19) (Figure 2a). The specificity of these 

two hormone-free PR binding events was confirmed by ChIP-qPCR using T47D cells and PR-deficient 

cells (T47D-Y) or PR-depleted cells (shPR). PR bound to the promoter and the intronic regions in 

T47D cells, but not in T47D-Y cells (Figure 2b) or in shPR cells (Figure 2c). Strikingly, our analysis of 
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previously published ChIP-seq experiments performed in the same conditions [2,15] revealed that 

the intronic sequence bound by PR in hormone-deprived T47D cells exhibited marks of active 

enhancers, including histone H3 mono-methylation on lysine 4 (H3K4me1) and DNase 

hypersensitivity (Figure 2a) [16]. 

 

Figure 2. PR binds to the promoter and to an enhancer-like intron of the ESR1 gene in hormone-

deprived T47D breast cancer cells. (a) Screen shot from the UCSC genome browser showing the ESR1 

gene, the RNA reads and the ChIP-seq results from PR binding, with a peak at the gene promoter 

marked by polymerase 2 binding (Pol2), histone 3 trimethylated at lysine 4 (H3K4me3), low DNA 

methylation (5 mC) and a CpG island at the bottom. Another PR peak is found in an intronic region 

containing the classical enhancer epigenetic marks of the DNase hypersensitive site (DNase), histone 

3 monomethylated at lysine 4 (H3K4me1) and low DNA methylation signal (5mC). The negative 

control immunoprecipitation is indicated by the IgG antibody. (b,c) The ChIP assay was performed 

with a specific antibody against PR or total rabbit IgG in T47D cells and PR-deficient cells (T47D-Y) 

(b) or PR-depleted cells (shPR, clone trcn0000010776) and control cells expressing a scrambled shRNA 

(shC) (c). Specific binding was assessed by quantitative PCR amplification of the ESR1 gene promoter, 

an enhancer-like intronic sequence and a genomic region localized at the 3′-end of the enhancer-like 

intron (negative control region). Error bars represent the SD of three independent experiments. * p 

less than or equal to 0.05, ** p less than or equal to 0.01, *** p less than or equal to 0.005, unpaired two-

tailed Student’s t-test. 

We also tested PR binding at the ESR1 locus in MCF7 cells by ChIP-qPCR and found that in this 

case, the hormone-free PR also bound at the ESR1 promoter, but not at the enhancer-like site in the 

third intron of the ESR1 gene (Figure S3). 

2.3. Rescue of PR Does Not Restore ESR1 Gene Expression in PR-Deficient Cells 

To explore whether stable expression of PR restores ESR1 gene expression, we stably-expressed 

PR in PR-deficient cells (T47D-Y +PR) and analyzed ESR1 expression. Unexpectedly, ESR1 expression 
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remained significantly reduced at both transcript and protein levels after re-establishing PR levels 

(Figure 3a,b). Similarly, the estrogen-mediated induction of the TFF1 gene remained reduced after 

PR rescue (Figure 3c). In contrast, the progestin-mediated gene transcription was significantly 

restored in PR-rescued cells (Figure S2), demonstrating the capability of re-expressed PR to mediate 

the PR-target gene transcription. 

Together, these data demonstrate that PR re-expression alone is insufficient to restore ESR1 gene 

expression to a level comparable to wild-type cells, suggesting that the ESR1 gene is stably repressed 

through another mechanism once PR is absent in breast cancer cells. 

 

Figure 3. PR rescue of PR-deficient cells does not restore ESR1 gene expression. (a) Gene-specific 

mRNA expression measured by quantitative RT-PCR in T47D control cells, PR-deficient cells (T47D-Y) 

and PR-rescue cells (T47D-Y + PR). The mRNA expression levels were normalized to GAPDH 

expression and are represented as values relative to the T47D cells. PGR, PR-encoding gene; ESR1, 

ER-encoding gene. Error bars represent the SD of three independent experiments. * p less than or 

equal to 0.05, ** p less than or equal to 0.01, *** p less than or equal to 0.005, unpaired two-tailed 

Student’s t-test. (b) Gene-specific protein levels measured by Western blotting in T47D control cells, 

T47D-Y and T47D-Y + PR cells. The lanes T47D and T47D-Y of this image are the same as in Figure 1b 

and are shown here for comparison with T47DY +PR. Blots are representative of three independent 

experiments. * indicates the degradation products of PR-B isoform. (c) PR rescue of PR-depleted cells 

does not restore the estrogen-mediated gene expression. T47D, PR-deficient cells (T47D-Y) and PR-

rescue (T47D-Y + PR) cells were treated with estradiol (E2, 10 nM) or ethanol (vehicle) for 6 h, at which 

point, TFF1 mRNA expression levels were measured by quantitative RT-PCR. Gene-specific 

expression levels were normalized to GAPDH expression and are represented as values relative to the 

vehicle (E2/vehicle). Error bars represent the SD of three independent experiments. ** p less than or 

equal to 0.01, unpaired two-tailed Student’s t-test. 

2.4. Lack of PR Affects DNA Methylation at the ESR1 Promoter 

DNA methylation at the ESR1 promoter represents one of the main epigenetic mechanisms for 

stably repressing ESR1 expression in breast cancers [17]. To explore whether PR loss affects the DNA 

methylation profile of the ESR1 locus, we compared the DNA methylation pattern at the ESR1 
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promoter and intronic PR-binding sites between T47D control cells, PR-deficient cells (T47D-Y) and 

PR-depleted cells (shPR) before and after PR rescue. Methylation of the ESR1 promoter was strongly 

increased in PR-deficient cells and PR-depleted cells, and the higher DNA methylation levels of this 

genomic region persisted after PR rescue (T47D-Y +PR cells) (Figures 4 and S4). In contrast, the DNA 

methylation profile of the intronic-PR binding site was not increased, neither in PR-deficient, nor  

PR-depleted cells, and did not significantly change after PR rescue (Figure 4). 

 

Figure 4. The loss of PR increases the DNA methylation level at the ESR1 promoter. DNA methylation 

of the ESR1 promoter and the enhancer-like intron was assessed by methylated DNA 

immunoprecipitation (MeDIP)-qPCR in T47D control cells, T47D-Y cells and T47D-Y cells with stable 

PR transfection (T47D-Y + PR) (a), or in T47D cells transduced with shRNA against PR (shPR; clone 

trcn0000010776) or scrambled shRNA (shC) (b). The results are represented as values relative to the 

control (T47D or shC). IgG, negative control for immunoprecipitation. Error bars represent the SD of 

three independent experiments. ** p less than or equal to 0.01, unpaired two-tailed Student’s t-test. 

Consistent with these data, as previously demonstrated [18], the analysis of the TGCA breast 

invasive carcinoma (BRCA) dataset showed a clear difference in ESR1 gene methylation levels when 

the patients were segregated based on the PR status. PR-negative breast carcinoma patients present 

higher methylation levels of the ESR1 gene than PR-positive breast carcinomas. The gain of ESR1 

methylation in PR-negative breast carcinomas was stronger at the gene promoter rather than within 

the gene body (Figure S5). 

2.5. DNA Methylation Impedes PR Binding to Hormone Responsive Elements 

DNA methylation can directly affect the affinity of transcription factors towards their binding 

sites [19]. To check whether higher ESR1 promoter methylation levels affect PR binding to this 

genomic region, we compared PR binding levels at the ESR1 locus between T47D control cells, PR-

deficient cells (T47D-Y) and PR-rescue cells (T47D-Y + PR) by the ChIP-qPCR assay. As described 

above, PR bound to the ESR1 promoter and to an enhancer-like intronic sequence in control cells, 

whereas this binding was completely impaired in PR-deficient cells (Figure 2b). Rescue of PR in PR-

deficient cells (T47D-Y +PR) completely restored PR binding at the low-methylated intronic sequence; 

however, it only partially restored PR binding at the highly-methylated promoter site, suggesting 

that hyper-methylation at the ESR1 promoter impedes PR binding to this genomic region (Figure 5a). 

To test this hypothesis, we treated the PR-rescue cells (T47D-Y +PR) with the demethylating agent 5-

azacytidine (5-azaC) or vehicle (control) and then compared the PR binding at the ESR1 locus 

between control and 5-azaC-treated cells. The results showed that 5-azaC treatments significantly 

reduced DNA methylation levels at ESR1 promoter (Figures 5b and S6) and had a tendency to 

increase PR binding levels at this genomic site (Figure 5c). In contrast, 5-azaC treatments did not 

affect the DNA methylation and the PR binding at the ESR1 intronic region (Figure 5b,c). 
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Figure 5. DNA methylation affects PR binding to the ESR1 promoter. (a) The high-methylated ESR1 

promoter, in contrast to the low-methylated intronic sequence, was only partially bound by PR in PR-

rescued cells (T47D-Y + PR). ChIP assays were performed with a specific antibody against PR. Specific 

binding was assessed by quantitative PCR amplification of the ESR1 gene promoter and an enhancer-

like intronic sequence in T47D control cells, PR-deficient cells (T47D-Y) and PR-rescued cells (T47D-

Y + PR). Error bars represent the SD of three independent experiments. * p less than or equal to 0.05, 

** p less than or equal to 0.01, *** p less than or equal to 0.005, unpaired two-tailed Student’s t-test. (b) 

The 5-azacytidine (5-azaC) demethylated ESR1 promoter. DNA methylation analysis was performed 

by the MeDIP-qPCR assay using T47D-Y + PR cells treated with the demethylating agent 5-azaC (5 

µM) or vehicle (control). The results are represented as fold change relative to the control. Error bars 

represent the SD of three independent experiments. ** p less than or equal to 0.01. (c) The 

demethylating agent 5-azaC increases PR binding at the ESR1 promoter in PR-rescued cells (T47D-Y 

+ PR). ChIP was performed as in (b) using T47D-Y + PR cells treated for 112 h with the demethylating 

agent 5-azaC (5 µM) or vehicle (control). Error bars represent the SD of three independent 

experiments. p = 0.07, unpaired two-tailed Student’s t-test. 

The CpG island at the ESR1 promoter contains a canonical progesterone-responsive elements 

(PRE) encompassing a CpG as well as six half palindromic PRE sites with one or two neighboring 

CpG (Figure 6a). To determine whether methylation of PRE affects the PR binding in vitro, we tested 

the PR binding to methylated or unmethylated forms of PRE oligonucleotides by the electrophoresis 

mobility shift assay (EMSA). We found that PR bound more efficiently to the unmethylated PRE 

oligonucleotides than to their methylated forms, especially when the PRE contained two CpG (Figure 

6c), rather than one (Figure 6b). Further, in contrast to the methylated PRE, the unmethylated PRE 

oligonucleotide with two CpG was a high-affinity competitor in EMSA for an PRE oligonucleotide 

without CpG, which was previously shown to be a strong PR binding site (8) (Figure 6d). 

Interestingly, we observed that the CpG-containing PRE were bound by PR less efficiently than the 

PRE without CpGs (Figure 6b,c), suggesting that the presence of CpG, even if not methylated, reduces 

PR binding affinity. Finally, we analyzed the methylation of all genomic regions bound by hormone-
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free PR [14] and found that, despite having a higher CpG content than their flanking genomic regions, 

all the hormone-free PR binding sites had an overall lower level of methylation than their 

surrounding areas (Figure S7). These data suggest that high DNA methylation levels prevent PR 

binding, not only at the ESR1 locus, but also at other PR binding sites. 

 

Figure 6. DNA methylation impedes PR binding to progesterone-responsive elements (PREs). (a) 

Screen shot from the UCSC genome browser showing the CpG island (CpG 89) at the ESR1 promoter 

and the positions of the canonical PREs containing a CpG (blue line) and six half-palindromic PREs 

with one or two neighboring CpGs (red lines). (b,c) Electrophoretic-mobility shift assay using the 

indicated amount of purified human PR to capture the PRE with no CpG (ACAGTTTGT; no CpG), 

one methylated (MetCpG) or unmethylated CpG (UnmetCpG) (ACGGTTTGT) (b); two methylated 

(MetCpGs) or two unmethylated CpGs (UnmetCpGs) (ACGGTTCGT) (c). Quantification of the 

percentage of PR binding to different probes is shown in the lower part of the gel images. Error bars 

represent the SD of three independent experiments. * p less than or equal to 0.05, ** p less than or equal 

to 0.01, unpaired two-tailed Student’s t-test. (d) A double-stranded oligonucleotide probe with no 

CpG (ACAGTTTGT) was incubated with 2.4 μg of purified human PR and analyzed by PAGE either 

in the absence (–) or presence (+) of 100-fold excess of unlabeled oligonucleotides containing two 

unmethylated (UNMET) or two methylated (MET) CpGs (ACGGTTCGT). Error bars represent the 

SD of three independent experiments. *** p less than or equal to 0.005, unpaired two-tailed Student’s 

t-test. The dashed grey line indicates that a lane between the two samples was removed.  
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3. Discussion 

The study of the role of PR in hormone-free breast cancer cells helps to clarify how these cells 

respond to external stimuli, including growth factors and ER modulators used for endocrine therapy. 

We show here that PR binds to the ESR1 locus and is required to maintain the ESR1 gene expression 

in hormone-free breast cancer cells. When the levels of PR are reduced, ESR1 gene expression 

decreases in parallel with an increase of the DNA methylation level at the ESR1 promoter, suggesting 

that unliganded PR maintains ESR1 expression by preserving a low DNA methylation at the ESR1 

promoter. In line with these results, as previously demonstrated [18], our in silico analysis confirmed 

that PR-negative breast cancer patients present higher ESR1 promoter methylation than PR-positive 

breast carcinomas. Consistently, demethylation of the ESR1 promoter reactivates ESR1 expression in 

ER-negative breast cancer cells [20]. 

The loss of PR did not affect DNA methylation of the ESR1 intronic site, which in contrast to 

ESR1 promoter lacks a CpG island, suggesting that PR selectively prevents methylation around CpG 

islands. However, whether the PR regulates ESR1 promoter methylation in a direct or an indirect 

manner is not clear. Different molecular mechanisms activated by PR downregulation could be 

responsible for ESR1 promoter hypermethylation in PR-depleted cells. In this context, it was 

suggested that DNA methylation can be a secondary event following gene silencing, rather than 

being a major event preceding it [21]. Thus, the reduced levels of ESR1 transcription induced by PR 

depletion may drive to the gain of ESR1 promoter methylation in PR-depleted cells. 

In cells stably lacking PR expression, the stable re-expression of PR did not affect the hyper-

methylation found at the ESR1 promoter and was insufficient to reactivate ESR1 gene expression. 

Moreover, rescue with PR completely restored the PR binding at the low-methylated intronic 

sequence, but only partially restored it at the highly methylated ESR1 promoter site, suggesting that 

DNA methylation affects the PR binding to DNA. Consistently, the treatment of PR-rescued cells 

with the demethylating agent 5-azaC showed a tendency to increase PR binding at the ESR1 

promoter, but not at the low-methylated intronic site. Moreover, in vitro DNA binding experiments 

showed that PR preferentially bound unmethylated PRE oligonucleotides rather than their 

methylated counterpart, demonstrating that PR is a methylation-sensitive DNA binding protein. 

Taken together, these data demonstrate that the gain of DNA methylation at the ESR1 promoter 

observed upon PR loss impedes PR binding to the ESR1 promoter and maintains reduced ESR1 

transcription after PR rescue (Figure 7). Interestingly, there is a single human PR gene with two 

distinct promoter regions that encode two different isoforms, PR-A and PR-B. PR-B is the full-length 

protein that contains 933 amino acids, while PR-A lacks the first 164 amino acids. Although the two 

PR isoforms show high sequence similarity, they are functionally distinct transcriptional factors that 

can regulate the expression of a different subset of genes [22]. We showed that the depletion of both 

PR isoforms reduces the ESR1 expression in T47D breast cancer cells; however, we cannot exclude 

that just one of the PR isoforms is required for the ESR1 expression. Further analyses are required to 

clarify this possibility. 

In many cases, the transcriptional regulation of steroid target genes requires the action of 

regulatory sequences located far away from the promoters [23]. A significant fraction of these distal 

sequences engages in physical interactions with promoters, suggesting that they act as enhancers [22]. 

In this study, we showed that the PR binding site within the ESR1 intronic sequence in T47D breast 

cancer cells exhibits the classical epigenetic marks found at active enhancer regions, including the 

monomethylation of lysine 4 of histone 3 (H3K4me1), a low DNA methylation and a DNase 

hypersensitivity [2,15]. This suggests that PR through its binding to the ESR1 promoter and the 

enhancer-like intronic sequence could facilitate the interaction between these two genomic regions to 

enhance the ESR1 transcription in T47D breast cancer cells. 

The expression of ER and PR strongly affects breast cancer prognosis and response to endocrine 

therapy, with double-negative ER–/PR– breast cancers having worse clinical outcome than ER+/PR+ 

breast cancers [5]. Although ER is expressed in a large proportion of PR-positive breast cancers 

(ER+/PR+), a smaller percentage of patients express ER without PR (ER+/PR−) [4], demonstrating that 

a subgroup of ER+ breast cancers can still express the ESR1 gene independently of the PR protein. 
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However, the ER+/PR− breast cancers are less likely to respond to estrogen and selective ER 

modulator (SERM) therapy than breast cancers positive for both receptors (ER+/PR+) [5]. 

Interestingly, the different response to SERM therapy between these two groups of cancers was 

significant only in patients that were also negative for the epidermal growth factor 2 (HER2-), but not 

in HER2+ tumors, suggesting that the PR positively affects the response of breast cancers to endocrine 

therapy, especially when the HER2 signaling is inactivated [24]. Since the SERM treatments target 

ER, how the absence of PR affects this kind of therapy was unclear. Our finding that PR-deficient 

cells show lower ER levels compared to control cells suggests that the ER+/PR+ breast cancers are 

more likely to respond to SERM therapy because they could maintain the ESR1 levels higher than 

breast cancers without PR protein. Future analyses are needed to clarify this hypothesis. 

 

 

Figure 7. Model of the regulation of the ESR1 gene expression and DNA methylation by PR in 

hormone-free breast cancer cells. In hormone-free ER+/PR+ breast cancer cells, PR binds to the low-

methylated gene promoter, as well as to an enhancer-like intronic sequence of ESR1. PR binding at 

the gene promoter is required for maintaining ESR1 transcription. In the absence of PR, DNA 

methylation (mC) increases at the ESR1 promoter, and ESR1 transcription is reduced. Re-expression 

of PR in PR-depleted cells leads to PR binding to the low-methylated enhancer-like intronic sequence, 

but the high level of DNA methylation (mC) at the ESR1 promoter impedes PR binding to this 

genomic region. Consequently, re-expression of PR in PR-depleted cells is insufficient to restore ESR1 

expression. 

4. Materials and Methods 

4.1. Cell Culture and Chemical Treatments 

The T47D-MTVL (T47D) breast cancer cells used in this study have a stable integrated copy of 

the luciferase reporter gene driven by the MMTV promoter [14]. T47D, T47D-Y [11] and T47D-Y + PR 

[12] were routinely grown in RPMI 1640 medium and MCF7 and BT474 cells in DMEM medium. The 

T47D-Y + PR cell line was previously engineered to express the PR-B isoform [12]. The mediums were 

supplemented with 10% FBS, glutamine and standard antibiotics. For the experiments in the absence 

of hormones, cells were grown 48 h in medium without phenol red supplemented with 10% dextran-

coated charcoal-treated FBS (DCC/FBS). In contrast to normal FBS, the DCC/FBS does not contain 

hormone-similar compounds that can activate PR activity. Moreover, since the cell cycle phase can 
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influence PR activity [25], cells were then synchronized in G0/G1 by serum starvation for 16 h to avoid 

cell cycle phase variability. For the hormone treatments, cells were then induced with estradiol E2 (10 

nM), progestin R5020 (10 nM) or vehicle (ethanol) for 6 h. For 5-azacytidine treatments, T47D-Y + PR 

cells were grown for 96 h (48 h using DMEM medium supplemented with 10% FBS and 48 h with 

DMEM without phenol red supplemented with 10% DCC/FBS) with 5 µM of 5-azacytidine (A3656, 

Sigma-Aldrich, St. Louis, MO, USA) or vehicle (1:1 acetic acid to water). Cells were finally 

synchronized in G0/G1 by 16 h of serum starvation before performing PR binding and DNA 

methylation analysis. 

4.2. Lentivirus Preparation and Infection 

HEK-293 cells were transfected with pVSV-G [26] and pCMV∆R8.91 [27], together with the 

pLKO.1-puro non-targeting vector (SHC001; Sigma-Aldrich, St. Louis, MO, USA) or pLKO.1-shRNA 

against PR using CaCl2 to permeabilize the cell membrane. Two different clones of PLKO.1-shRNA 

against PR have been used: clone trcn0000010776 and clone trcn0000003321 (SHCLND-NM_000926, 

Sigma-Aldrich, St. Louis, MO, USA). The viral particles containing the shRNA were collected 72 h 

after the transfection and used to infect breast cancer cells stably. Cell populations were finally 

selected with puromycin (1 μg/mL) and processed to quantify mRNA and protein expression. 

4.3. Reverse Transcription and Quantitative PCR 

Total RNA was isolated with the RNeasy extraction kit (Qiagen, Hilden, Germany). 

Complementary DNA (cDNA) was generated from 100 ng of total RNA with the First Strand cDNA 

Superscript II Synthesis kit (Invitrogen, Carlsbad, CA, USA; #11904018) and analyzed by quantitative 

PCR. Gene-specific expression was regularly normalized to GAPDH expression. Primers sequences 

are listed in Table S1. 

4.4. Western Blotting 

Cell lysates were resolved on SDS-polyacrylamide gels, and the proteins were transferred to 

Hybond-ECL nitrocellulose membranes (Amersham). Membranes were blocked with TBS-0.1% 

Tween 20 (TBS-T) with 5% of skimmed milk, incubated for 1 h at room temperature with a primary 

antibody (antibody against PR, sc-7208 from Santa Cruz Biotechnology; antibody against ERα, sc-543 

from Santa Cruz Biotechnology; antibody against α-tubulin, T9026 from Sigma, St. Louis, MO, USA), 

diluted in TBS-T with 2.5% skimmed milk. After three washes with TBS-T, membranes were 

incubated for 45 min at room temperature with horseradish peroxidase-conjugated secondary 

antibodies (GE Healthcare, Chicago, IL, USA). Antibody binding was detected by chemiluminescence 

on an LAS-3000 image analyzer (Fuji PhotoFilm, Tokyo, Japan), and band intensity was quantified 

by the ImageJ tool. 

4.5. Chromatin Immunoprecipitation 

Chromatin immunoprecipitation (ChIP) assays were performed as described previously [28], 

with minor modifications. Cells were cross-linked in medium containing 1% formaldehyde for 10 

min at 37 °C, and crosslinking was quenched with 125 mM glycine for 5 min at room temperature. 

After cells were lysed in hypotonic buffer, the nuclei were lysed with SDS-lysis buffer. Chromatin 

was sheared by sonication and incubated 16 h with 5 μg of antibody against progesterone receptor 

(PR, Santa Cruz Biotechnology, Dallas, TX, USA, sc-7208) or rabbit IgG (Cell Signaling, Danvers, MA, 

USA, #2729s). Immunocomplexes were recovered with protein A agarose bead slurry (Diagenode, 

Denville, NJ, USA, #C03020002) for 2 h with rotation and washed with ChIP buffer (Diagenode, 

Denville, NJ, USA, #K0249001) and Tris-EDTA buffer. For reversing the crosslinking, samples were 

incubated with proteinase K (10 mg/mL) at 65 °C for 16 h. DNA was purified and analyzed by 

quantitative PCR. Primer sequences are listed in Table S1. 

For PR ChIP-seq analysis, the reads of the previously published PR ChIP-seq [14] were trimmed 

using Trimmomatic (Version 0.33) with the parameter values recommended by Bolger et al. [29]. The 
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trimmed reads were aligned to the hg19 assembly version of the human genome using BWA (Version 

0.7.12-r1039) [30]. The FASTA file containing the genome reference sequence of hg19 was 

downloaded from the UCSC Genome Browser discarding the random scaffolds and the alternative 

haplotypes from the reference sequence for the alignment [31]. The BWA-MEM algorithm and 

SAMtools (Version 1.2, using htslib 1.2.1) [32] were used to convert SAM files to BAM files and to 

sort them to retain only uniquely-aligned reads. The PR binding sites were identified with the MACS2 

tool (Version 2.1.0.20150420) [33]. Peaks were additionally filtered until those remaining had a false 

discovery rate (FDR) q-value <10–6 and a 4-fold enrichment over the control sample (input), leaving 

476 peaks for subsequent analyses. 

4.6. DNA Methylation 

The DNA methylation analyses were performed by the methylated DNA immunoprecipitation 

assay coupled with quantitative-PCR (MeDIP-qPCR) or high-throughput sequencing (MeDIP-seq). 

For MeDIP-qPCR, genomic DNA was randomly sheared by sonication to generate fragments 

between 300 and 700 bp. Sonicated DNA was denatured and then immunoprecipitated using an 

antibody against 5mC (Eurogentec; #BI-MECY-1000) or mouse IgG antibody, as previously described 

[34]. The immunocomplexes were recovered using 8 μL Dynabeads (M-280; Thermofisher, Waltham, 

Massachusetts), and the pull-down products were detected by quantitative-PCR. Primers sequences 

are listed in Table S1. 

For MeDIP-seq, adaptors from the NEBNext Ultra DNA Library Prep Kit from Illumina were 

added to the fragmented DNA. Fragmented DNA was immunoprecipitated with antibody against 

5mC as described above, and the amplified library was prepared using the NEBNext Ultra DNA 

Library Prep Kit for Illumina (E7370L) following the manufacturer’s instructions. Amplified libraries 

were sequenced, and reads were aligned with BowTie v1.1.2 using the reference human genome 

Version 19 (hg19), as previously described [35]. The mapped reads were filtered for duplicates and 

used to compute genome-wide reads-per-million (RPM) normalized signal tracks. The 5mC and CpG 

heat maps were generated using DeepTools (Version 2.2.0) [36] and BEDtools (Version v2.24.0) [37], 

and the matrix underlying the heatmaps was used to generate the 5mC and CpG average profiles. To 

test the significance of the overall reduction of 5mC methylation observed in the progesterone-

receptor binding sites (PRBs), we calculated the average 5mC normalized read counts signal over 

each PRB and random regions resulting from shuffling the genomic coordinates of the PRBs, while 

keeping their sizes as in the true set of regions (this second step was repeated 1000 times to generate 

an empirical null distribution of 5mC methylation averaged values). The Mann–Whitney U-test was 

applied using the stats module of the Python’s SciPy library [38]. The DNA methylation data obtained 

by the MeDIP-seq method are available in the Gene Expression Omnibus (GEO) repository, 

Accession Number GSE107966. 

For bisulfite-sequencing method, DNA was treated with sodium bisulfite using the EpiTect 

bisulfite kit (Qiagen, Hilden, Germany), and the ESR1 promoter was amplified by two rounds of PCR 

using the oligonucleotide primers listed in Table S1. The PCR product was gel purified by the gel 

extraction kit (Qiagen, Hilden, Germany) and cloned in the pCR2.1 Topo TA cloning vector 

(Invitrogen, Carlsbad, CA, USA). Ten recombinant clones were then isolated using the GenElute 

plasmid miniprep kit (Sigma -Aldrich, St. Louis, MO, USA) and finally sequenced on an ABI DNA 

sequencer. 

4.7. Electrophoresis Mobility-Shift Assay 

Recombinant human PR (isoform B; PRB) was expressed in baculovirus and purified as 

previously described [39]. Radioactive double-stranded oligonucleotides containing the 

progesterone-responsive elements (PRE) were incubated with the indicated amounts of PR-B for 20 

min at room temperature and analyzed in a 5% acrylamide-bisacrylamide electrophoresis gel. The 

radioactivity of the DNA-protein complex was then quantified by using the PhosphorImager and 

ImageQuant software (Molecular Dynamics). For the EMSA competition assay, a radioactive 

oligonucleotide without CpGs was first mixed with 100-fold of non-radioactive unmethylated or 
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methylated probe containing two CpGs and then incubated with 2.4 μg of PR-B for 20 min at room 

temperature. DNA-protein complexes either in the absence or presence of unlabeled oligonucleotides 

were then analyzed as described above. Oligonucleotides sequences are listed in Table S1. 

5. Conclusions 

In this study, we demonstrate that PR binds to the low-methylated ESR1 promoter and 

maintains both basal gene expression and the DNA methylation profile of the ESR1 locus in hormone-

free breast cancer cells. These data expand our understanding of the complex crosstalk between PR 

and ER and suggest that the analysis of DNA methylation of the ESR1 promoter in breast cancer cells 

can help to design more appropriate targeted therapies for different types of breast cancer patients. 

Supplementary Materials: Figure S1: Depletion of PR reduces the ESR1 expression in hormone-free breast 

cancer cells; Figure S2: PR depletion and PR rescue affect progestin-mediated gene transcription; Figure S3: PR 

binds at ESR1 gene promoter in MCF7 breast cancer cells; Figure S4: The loss of PR increases DNA methylation 

at ESR1 promoter; Figure S5: DNA methylation at the ESR1 locus is higher in PR-negative than in PR-positive 

breast invasive cancers; Figure S6: The 5-azacytidine (5-azaC) demethylates the ESR1 promoter; Figure S7: The 

PR binding sites are low methylated in hormone-deprived breast cancer cells. Table S1: Oligonucleotide 

sequences. 
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